The embodiments disclosed herein relate in general to a light emitting diode (LED)-based light for replacing a conventional light in a standard light fixture, and in particular to a lighting control system for controlling the operation of an LED-based light.
Fluorescent lights are widely used in a variety of locations, such as schools and office buildings. Although conventional fluorescent lights have certain advantages over, for example, incandescent lights, they also pose certain disadvantages including, inter alia, disposal problems due to the presence of toxic materials within the light.
LED-based lights designed as one-for-one replacements for fluorescent lights have appeared in recent years. LED-based lights can be used in a building with a control system capable of managing various aspects of the building, including its lighting conditions. A lighting control system can be designed to regulate the lighting conditions in a building through selective control of the operation of LED-based lights, in order to, for example, improve usability of the building or to optimize its energy use. Some of these lighting control systems can remotely regulate individual lighting conditions of multiple different areas within the building. Such individualized regulation requires some form of association between each LED-based light and the particular area in which the LED-based light is positioned to illuminate. Association can entail, for example, manually assigning an LED-based light positioned to illuminate a particular area with a logical address designated within the lighting control system to correspond to that area. Once associated, the lighting control system can correctly control operation of an LED-based light based upon the desired lighting conditions for its respective area.
Disclosed herein are embodiments of methods and systems for controlling operation of a light source. In one aspect, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.
In another aspect, alighting control system comprises: a light source positioned to provide lighting for an area; and a control unit configured to: identify, based on a determined physical position of the light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting, identify at least one desired lighting condition for the identified area, and control operation of the light source based on the identified at least one desired lighting condition for the identified area.
In yet another aspect, a method of selecting a lighting condition for controlling operation of a light source comprises: storing, in memory, a plurality of position-dependent lighting conditions; and selecting, using a processor in communication with the memory, one of the position-dependent lighting conditions for controlling operation of the light source based on a determined physical position of the light source, such that the operation of the light source is controlled based on the selected position-dependent lighting condition.
These and other aspects will be described in additional detail below.
The various features, advantages and other uses of the present system and methods will become more apparent by referring to the following detailed description and drawings in which:
Manual association between an LED-based light and the particular area in which the LED-based light is positioned to illuminate can be time consuming and error-prone. Further, associations can be broken if a logically addressable LED-based light is moved and/or replaced during service, which can cause incorrect control over the operation of the LED-based light.
Disclosed herein are example configurations of a lighting control system for a building that can use information relating to the position of an LED-based light to associate the LED-based light with a particular area for purposes of regulating the lighting conditions for that area. Further disclosed herein are exemplary configurations of a control system that can reduce the amount of user input required to determine the information relating to the position of the LED-based light.
A building can include systems for managing various aspects of the building. These aspects can generally include the environmental conditions of the building, such as heating, ventilation and air conditioning (HVAC) conditions, security conditions and/or lighting conditions, for example. A “smart” building can include a control system, such as a building automation system, that can automatically manage the environmental conditions of the building in accordance with desired environmental conditions. Such buildings can include one or more areas located throughout the building, with each area lending itself to individualized regulation of one or more of its environmental conditions.
A representative building 10 including a building automation system implementing a lighting control system 12 for regulating the lighting conditions of multiple areas 14 throughout the building 10 is shown in
Regulation of the environmental conditions of the multiple areas 14 located throughout the building 10 can include a process of defining the areas 14 to be controlled. Each area 14, as it relates to individualized regulation of its environmental conditions, can correspond to some characteristic of the building 10 or its contents, or can correspond to some characteristic of the defined area 14. With respect to regulation of lighting conditions with the lighting control system 12, for example, the area 14 could be defined as an individual room or group of rooms located within the building 10. The area 14 could additionally or alternatively be defined in terms of its physical surroundings, such as an area adjacent to source of light extrinsic to the lighting control system 12, for instance a window supplying natural light. The area 14 could also be defined in relation to its particular functional considerations and/or constraints with respect to lighting conditions. For example, the area 14 could be defined above a workstation, or the area 14 could correspond to a particular type of room within the building 10, such as an office, a conference room, a hallway or a bathroom, for example. Similarly, the area 14 could be defined in relation to its particular requirements with respect to lighting conditions, which could involve requirements of performance lighting, efficient lighting, safety lighting, comfort lighting and/or alarm lighting, for example. As a non-limiting example, an area 14A could be an individual room located within the building 10, an area 14B could be located adjacent an east facing window receiving natural light and thereby requiring less artificial light from the lighting control system 12, and an area 14C could be located adjacent a desk or other workstation.
An area 14 could be one discrete individual location within the building 10, or could comprise some grouping of locations lending themselves to similar regulation of their environmental conditions. A building 10 could include a single area 14 or multiple areas 14, and each area 14 of a building 10 need not be defined according to an approach used to define another area 14 of the building 10. The building 10 can include more or less than the illustrated areas 14A, 14B and 14C, and the building 10 can include alternative and/or additional areas 14 depending upon which of a variety of environmental conditions is regulated. That is, with respect to regulation of environmental conditions other than lighting conditions, areas 14 could be defined within the building 10 other than as the areas 14A, 14B and 14C described above, and alternative and/or additional areas 14 could be defined for purposes of individualized regulation of the various other environmental conditions.
A building automation system for the building 10 can implement the lighting control system 12 to individually regulate the lighting conditions for each of the areas 14 located throughout the building 10. The illustrated lighting control system 12 may include one or more LED-based lights 16 positioned to illuminate each of the areas. The lighting conditions for the area 14 in which an LED-based light 16 is positioned can be regulated through selective control of the operation the LED-based light 16. For ease of understanding, the lighting control system 12 is generally described below with reference to a single LED-based light 16 positioned to illuminate a singular area 14. However, it should be understood that the lighting control system 12 can include a plurality of areas 14A, 14B and 14C, each of which can include one or more respective LED-based lights 16 positioned to illuminate the areas 14A, 14B and 14C.
The lighting control system 12 includes one or more devices for controlling the operation of the LED-based light 16. In a basic lighting system, operation of an LED-based light 16 could be controlled by electrically connecting a device such as a light switch, dimmer or other similar operator actuated device between the LED-based light 16 and a power supply. These devices control operation of the LED-based light 16 by regulating a supply of AC or DC electrical power to the LED-based light 16. For example, a supply of electrical power to the LED-based light 16 can be selectively switched to control an on/off function of the LED-based light 16, and a supply of electrical power to the LED-based light 16 can be selectively modulated to control a dimming function of the LED-based light 16.
The illustrated implementation of the lighting control system 12 includes a control unit 20 configured to control the operation of the LED-based light 16 by selectively controlling a supply of electrical power to the LED-based light 16. The control unit 20 can be or include one or more controllers configured for controlling the operation of multiple LED-based lights 16 positioned in different areas 14 located throughout the building 10. A controller could be a programmable controller, such as a microcomputer including a random access memory (RAM), a read-only memory (ROM) and a central processing unit (CPU) in addition to various input and output connections. Generally, the control functions described herein can be implemented by one or more software programs stored in internal or external memory and are performed by execution by the CPU. However, some or all of the functions could also be implemented by hardware components. Although the control unit 20 is shown and described as a single central controller for performing multiple functions related to multiple areas 14, the functions described herein could be implemented by separate controllers which collectively comprise the illustrated control unit 20.
The control unit 20 can be electrically connected between the LED-based light 16 and a power supply and configured to control operation of the LED-based light 16 by directly switching and/or modulating a supply of electrical power to LED-based light 16. Alternatively, the control unit 20 can be configured to control operation of the LED-based light 16 by indirectly controlling a supply of electrical power to the LED-based light 16, for example by communicating a control signal α to a switching device. For example, as shown in
The switching unit 22 is electrically connected between the LED-based light 16 and a power supply and is configured to receive the control signal α and, in response to the control signal α, selectively regulate a supply of electrical power to the LED-based light 16. The switching unit 22 can control an on/off function of the LED-based light 16 by including a relay or other mechanical, electrical or electromechanical switch configured to selectively switch a supply of electrical power to the LED-based light 16. The switching unit 22 can alternatively or additionally be or include components configured to selectively modulate a supply of electrical power to the LED-based light 16 to control a dimming function of the LED-based light 16. The switching unit 22 can selectively regulate a supply of electrical power to the LED-based light 16 to control operation of the LED-based light 16 in a variety of other manners. For example, in addition to controlling on/off and dimming functions of the LED-based light 16, the switching unit 22 can also be configured to regulate a supply of electrical power to the LED-based light 16 to achieve continuous, intermittent or other non-continuous operation of the LED-based light 16. For example, the LED-based light 16 could be operated steadily, variably, or could be blinked, flashed or amplified according to some timed pattern by the switching unit 22, depending upon the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate.
Each area 14 located throughout the building 10 can lend itself to individualized regulation of its lighting conditions in accordance with respective desired lighting conditions. The lighting control system 12 includes the control unit 20 for controlling the lighting conditions of the area 14 through selective control of the operation of the LED-based light 16 positioned to illuminate the area 14. As described above, the control unit 20 controls the operation of the LED-based light 16 by communicating a control signal α to the switching unit 22 configured to selectively regulate a supply of electrical power to the LED-based light 16. The control signal α generally corresponds to the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate. The control signal α can be representative of a setpoint illumination level for the area 14, or could be representative of some other particular requirement or characteristic with respect to the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the control signal α could be representative of a requirement for performance lighting, efficient lighting, safety lighting, comfort lighting and/or alarm lighting in the area 14.
The control unit 20 is configured to determine the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate, and to generate the control signal α corresponding to the desired lighting conditions. The control unit 20 can generate the control signal α with logic implementing various algorithmic or heuristics techniques. As non-limiting examples, the control unit 20 can include logic implementing timers, alarms, and/or rules relating to occupancy sensing, daylight harvesting or manual override control.
The lighting control system 12 can further include one or more input devices 24 corresponding to each of the areas 14. The input devices 24 are configured to relay information relating to the actual or desired lighting conditions and/or other environmental conditions of the area 14 to the control unit 20. The lighting control system 12 can utilize the information from an input device 24 for purposes of individualized regulation of the lighting conditions for its area 14. The input devices 24 are configured to generate one or more input signals β. The input devices 24 are communicatively coupled to the control unit 20, and the logic of the control unit 20 can be responsive to the input signals β to generate the control signal α for communication to the switching unit 22.
The illustrated input devices 24 can include a user interface 26 and various sensors 28. The user interface 26 is configured to receive information from a user of the building 10 relating to requested lighting conditions for the area 14 to which the user interface 26 corresponds, and to generate corresponding input signals β for communication to the control unit 20. The user interface 26 can be or include a switch, dimmer or other user actuated device. The user interface 26 could also include a web-based or similar computer-based component for receiving information relating to requested lighting conditions for an area 14.
The lighting control system 12 can incorporate the input signals β communicated from the user interface 26 to varying degrees as compared to input signals β communicated from other input devices 24. For example, the lighting control system 12 could give priority to the user interface 26 by providing for manual override control of the operation of the LED-based light 16 on the basis of a user's actuation of the user interface 26. In this example, the control unit 20 could include logic for generating a control signal α directing the switching unit 22 to regulate a supply of electrical power to the LED-based light 16 in direct accordance with an operator's requested lighting conditions. Alternatively, the lighting control system 12 could be arranged such that a supply of electrical power to LED-based light 16 is regulated directly by the user interface 26 in accordance with an operator's requested lighting conditions without regard to a control signal α generated by the control unit 20.
The sensors 28 may be configured for measuring, monitoring and/or estimating various environmental conditions within a corresponding area 14 and for generating corresponding input signals β for communication to the control unit 20. Sensors 28 can include, for example, a sensor for measuring the actual lighting conditions of the area 14, or sensors 28 could include a sensor for monitoring or estimating occupancy of the area 14. The sensors 28 could include a motion sensor, a voice-activated sensor or a clock or calendar, for example. Similar to the input signals β from the user interface 26, the input signals β from the sensors 28 can be incorporated into the logic of the control unit 20 for generation of the control signal α.
An exemplary communications link 40 is included in the lighting control system 12 for communicatively coupling the components of the lighting control system 12. The communications link 40 may generally be configured to support digital and/or analog communication between the components included in the lighting control system 12. For example, the communications link 40 may be configured to communicatively couple the control unit 20, the switching unit 22 and the input devices 24. The communications link 40 can include wired and/or wireless communications channels using any industry standard or proprietary protocols. As a non-limiting example, a wired communications link 40 could be implemented with 0-10V signals, DALI or Ethernet. As a further non-limiting example, a wireless communications link 40 could be implemented, for example, with wireless DALI, IEEE 802.11, Wi-Fi, Bluetooth or RF channels, or through infrared, ultrasonic or modulated visible light, such as light emitted from the LED-based lights 16. Further, the communications link 40 could be implemented with multiple communications channels, each using differing protocols.
The illustrated lighting control system 12 can provide localized regulation of the lighting conditions for multiple different areas 14 with the control unit 20 by selectively controlling the operation of the respective LED-based lights 16 positioned to illuminate the respective areas 14. The control unit 20 can determine differing desired lighting conditions for each of the areas 14. For example, the desired lighting conditions for area 14A could necessitate that the LED-based light 16 positioned to illuminate area 14A be controlled to an on state, the desired lighting conditions for area 14B could necessitate that the LED-based light 16 positioned to illuminate area 14B be controlled to an off state, and the desired lighting conditions for area 14C could necessitate that the LED-based light 16 positioned to illuminate area 14C be controlled to a modulated state.
In order for the lighting control system 12 to efficiently regulate the lighting conditions in multiple areas 14, the lighting control system 12 may be configured to control the LED-based light 16 positioned to illuminate a particular area 14 without affecting the operation of LED-based lights 16 positioned to illuminate other areas 14. Proper functioning of the lighting control system 12 generally requires some association between each LED-based light 16 and the area 14 in which the LED-based light 16 is positioned to illuminate. Association can entail, for example, manually landing wires between terminals of the control unit 20 and switching units 22 and/or corresponding LED-based lights 16. Alternatively, association could entail manually assigning a switching unit 22 and/or corresponding LED-based light 16 with a logical address designated within the lighting control system 12, for example within the logic of the control unit 20, to correspond to a particular area 14. Once associated, the lighting control system 12 can control operation of an LED-based light 16 to regulate the lighting conditions for its respective area 14 according to its desired lighting conditions.
The illustrated lighting control system 12 may include a plurality of communications units 42 configured to receive information relating to the position of an LED-based light 16 within the building 10. The lighting control system 12 is configured to use the information relating to the position of the LED-based light 16 within the building 10 to associate the LED-based light 16 with the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the lighting control system 12 can be configured to compare the position of an LED-based light 16 with known or determined positions of the areas 14 located throughout the building 10. The lighting control system 12 can then correlate the position of the LED-based light 16 with a particular area 14 in which the LED-based light 16 is positioned to illuminate. Once a correlation is drawn between a particular LED-based light 16 and the area 14 in which the LED-based light 16 is positioned to illuminate, the lighting control system 12 can associate the LED-based light 16 to the area 14 for purposes of future regulation of the lighting conditions for that area 14.
The communications units 42 may be communicatively coupled to the lighting control system 12 through one or more communications channels that can be included in the communications link 40. As shown in
As shown in
The lighting control system 12 is configured to determine, or estimate, the physical position of each of the LED-based lights 16 based at least partially upon the location signal γ. The position of an LED-based light 16 could be determined absolutely, for example, or could be determined relative to some aspect relating to the building 10 or lighting control system 12. In the exemplary implementation of the lighting control system 12, multiple communications units 42 form a spatially distributed network of communications units 42. The communications units 42 can be distributed within and/or without the building 10 to form the spatially distributed network of communications units 42. The location signal γ can be received by one or more of the communications units 42, which can be configured to determine the position of the LED-based lights 16, either individually, in some combination with each other, and/or in combination with the control unit 20 or other components of the lighting control system 12.
The lighting control system 12 can be configured to determine the position of the LED-based light 16 using various techniques, either individually or in some combination. As non-limiting examples, the position of an LED-based light 16 can be determined based upon time of arrival (TOA) of RF, infrared or ultrasonic signals, or based upon TOA of light signals, such as visible light signals emitted from the LED-based lights 16; the position of an LED-based light 16 can be determined based upon direction finding (DF) of RF, infrared or ultrasonic signals, or based upon DF of light signals, such as visible light signals emitted from the LED-based lights 16; the position of an LED-based light 16 could be determined by superimposing currents on power lines forming a power grid, or though other branch circuit monitoring methods; or the position of an LED-based light 16 could be determined by monitoring the strength of the location signal γ throughout the spatially distributed network of communications units 42. The position of an LED-based light 16 could also be determined through communication with components external from the lighting control system 12, for example by using 3g or 4g signals to communicate with global positioning systems (GPSs) or other external location systems. The position of the LED-based light 16 could also be determined more accurately through some combination of the above techniques.
A process of installing an LED-based light 16 into the lighting control system 12 of a building 10 is illustrated in
In step S12, an LED-based light 16 is installed into the lighting control system 12. In step S14, the LED-based light 16 joins the lighting control system 12 by communicating with the control unit 20 through the communications link 40, and in step S16, the control unit 20 recognizes the LED-based light 16 as newly installed into (or newly positioned within) the lighting control system 12. The LED-based light 16 can have a logical address readable by the control unit 20, for example, or can be otherwise recognizable by the control unit 20 as a distinct lighting element.
In step S18, the location signal γ is communicated to the spatially distributed network of communications units 42. The location signal γ can be communicated autonomously, for example, or at the direction of the installer or at the direction of the lighting control system 12 or control unit 20. In step S20, the position of the LED-based light 16 is determined using one or more of the above described location techniques, as well as others. The logic for determining the position of the LED-based light 16 can be implemented by one or more of the communications units 42, or can be distributed between one or more of the communications units 42 and the other components of the lighting control system 12. The position of an LED-based light 16 could also be determined physically externally from the lighting control system 12, for example through communication with a GPS or other location system. The position of the newly installed LED-based 16 could also be determined and/or verified with reference to one or more LED-based lights 16 whose positions are manually determined.
In step S22, the lighting control system 12 can use the determined position of the LED-based light 16 to associate the LED-based light 16 with the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the lighting control system 12 can implement logic using the control unit 20 to compare the determined position of the LED-based light 16 with the known or determined positions of the areas 14 located throughout the building 10. By correlating the determined position of the LED-based light 16 with a position of a particular area 14, the control unit 20 can determine that the LED-based light 16 is positioned to illuminate that particular area 14. Finally, in step S24, the lighting control system 12 can associate the LED-based light 16 to the area 14 within the control unit 20 for purposes of future regulation of the lighting conditions for that area 14.
In some implementations, the LED-based light 116 includes a housing 112 at least partially defined by a high dielectric light transmitting lens 114. The lens 114 can be made from polycarbonate, acrylic, glass or other light transmitting material (i.e., the lens 114 can be transparent or translucent). The term “lens” as used herein means a light transmitting structure, and not necessarily a structure for concentrating or diverging light. The LED-based light 116 can include features for uniformly distributing light to an environment to be illuminated in order to replicate the uniform light distribution of a conventional fluorescent light. For example, the lens 114 can be manufactured to include light diffracting structures, such as ridges, dots, bumps, dimples or other uneven surfaces formed on an interior or exterior of the lens 114. The light diffracting structures can be formed integrally with the lens 114, for example, by molding or extruding, or the structures can be formed in a separate manufacturing step such as surface roughening. In addition to or as an alternative to light diffracting structures, a light diffracting film can be applied to the exterior of the lens 114 or placed in the housing 112, or, the material from which the lens 114 is formed can include light refracting particles. For example, the lens 114 can be made from a composite, such as polycarbonate, with particles of a light refracting material interspersed in the polycarbonate. In other embodiments, the LED-based light 116 may not include any light diffracting structures or film.
The housing 112 can include a light transmitting tube at least partially defined by the lens 114. Alternatively, the housing 112 can be formed by attaching multiple individual parts, not all of which need be light transmitting. For example, the housing 112 can be formed in part by attaching the lens 114 to an opaque lower portion. The housing 112 can additionally include other components, such as one or more highly thermally conductive structures for enhancing heat dissipation. While the illustrated housing 112 is cylindrical, a housing having a square, triangular, polygonal, or other cross sectional shape can alternatively be used. Similarly, while the illustrated housing 112 is linear, housings having an alternative shape, e.g., a U-shape or a circular shape can alternatively be used. The LED-based light 116 can have any suitable length. For example, the LED-based light 116 may be approximately 48″ long, and the housing 112 can have a 0.625″, 1.0″ or 1.5″ diameter for engagement with a common standard fluorescent light fixture.
The LED-based light 116 can include an electrical connector 118 positioned at each end of the housing 112. In the illustrated example, the electrical connector 118 is a bi-pin connector carried by an end cap 120. A pair of end caps 120 can be attached at opposing longitudinal ends of the housing 112 for physically connecting the LED-based light 116 to a standard fluorescent light fixture 110. The end caps 120 can be the sole physical connection between the LED-based light 116 and the fixture 110. At least one of the end caps 120 can additionally electrically connect the LED-based light 116 to the fixture 110 to provide power to the LED-based light 116. Each end cap 120 can include two pins 122, although two of the total four pins can be “dummy pins” that provide physical but not electrical connection to the fixture 110. Bi-pin electrical connector 118 is compatible with many standard fluorescent fixtures, although other types of electrical connectors can be used, such as single pin connector or screw type connector.
The LED-based light 116 can include a circuit board 124 supported within the housing 112. The circuit board 124 can include at least one LED 126, a plurality of series-connected or parallel-connected LEDs 126, an array of LEDs 126 or any other arrangement of LEDs 126. Each of the illustrated LEDs 126 can include a single diode or multiple diodes, such as a package of diodes producing light that appears to an ordinary observer as coming from a single source. The LEDs 126 can be surface-mount devices of a type available from Nichia, although other types of LEDs can alternatively be used. For example, the LED-based light 116 can include high-brightness semiconductor LEDs, organic light emitting diodes (OLEDs), semiconductor dies that produce light in response to current, light emitting polymers, electro-luminescent strips (EL) or the like.
The circuit board 124 can include power supply circuitry configured to condition an input power received from, for example, the fixture 110 through the electrical connector 118 to a power usable by and suitable for the LEDs 126. In some implementations, the power supply circuitry can include one or more of an inrush protection circuit, a surge suppressor circuit, a noise filter circuit, a rectifier circuit, a main filter circuit, a current regulator circuit and a shunt voltage regulator circuit. The power supply circuitry can be suitably designed to receive a wide range of currents and/or voltages from a power source and convert them to a power usable by the LEDs 126.
The circuit board 124 is illustrated as an elongate printed circuit board. The circuit board 124 can extend a length or a partial length of the housing 112. Multiple circuit board sections can be joined by bridge connectors to create the circuit board 124. The circuit board 124 can be supported within the housing 112 through slidable engagement with a part of the housing 112, though the circuit board 124 can alternatively be clipped, adhered, snap- or friction-fit, screwed or otherwise connected to the housing 112. Also, other types of circuit boards may be used, such as a metal core circuit board. Or, instead of the circuit board 124, other types of electrical connections (e.g., wires) can be used to electrically connect the LEDs 126 to a power source.
The LEDs 126 can emit white light or light within a range of wavelengths. However, LEDs that emit blue light, ultra-violet light or other wavelengths of light can be used in place of or in combination with white light emitting LEDs 126. The number, spacing and orientation of the LEDs 126 can be a function of a length of the LED-based light 116, a desired lumen output of the LED-based light 116, the wattage of the LEDs 126 and/or the viewing angle of the LEDs 126. For a 48″ LED-based light 116, the number of LEDs 126 may vary from about thirty to sixty such that the LED-based light 116 outputs approximately 3,000 lumens. However, a different number of LEDs 126 can alternatively be used, and the LED-based light 116 can output any other amount of lumens. The LEDs 126 can be evenly spaced along the circuit board 124 and arranged on the circuit board 124 to substantially fill a space along a length of the lens 114 between end caps 120 positioned at opposing longitudinal ends of the housing 112. Alternatively, single or multiple LEDs 126 can be located at one or both ends of the LED-based light 116. The LEDs 126 can be arranged in a single longitudinally extending row along a central portion of the LED circuit board 124, as shown, or can be arranged in a plurality of rows or arranged in groups. The spacing of the LEDs 126 can be determined based on, for example, the light distribution of each LED 126 and the number of LEDs 126.
An alternative example of and LED-based light 216 is shown in
In addition, the LED-based light 216 can incorporate one or more of the above described components of the lighting control system 12. For example, the switching unit 22 can be included the LED-based light 216. The switching unit 22 can be included in the circuit board 124 and can be electrically connected between the fixture 110 conveying electrical power from a power supply and the LEDs 126 of the LED-based light 216. The switching unit 22 of the LED-based light 216 can be configured to receive the control signal α and, in response to the control signal α, selectively regulate a supply of electrical power to the LEDs 126 to control operation of the LED-based light 216.
The LED-based light 216 can also incorporate one or more of the sensors 28, for example, and can incorporate a communications unit 42 for determining the location of other LED-based lights 216. For example, multiple LED-based lights 216 including a communications unit 42 can together form the spatially distributed network of communications units 42. The positions of one or more LED-based lights 216 including a communications unit 42 can be determined manually, with the positions of the remainder of the LED-based lights 16, 116 or 216 installed into the lighting control system 12 being determined according to the process and techniques described above. In this example, the LED-based light 216 also includes communications devices 44 and/or 46 for sending and receiving location signals γ, although the LED-based light 216 could also communicate with the lighting control system 12 through the communications channels of the communications link 40.
The LED-based lights described herein are presented as examples and are not meant to be limiting. The embodiments can be used with any lighting components known to those skilled in the art and compatible with the scope of the disclosure. In addition, the disclosed processes and techniques can be applied in a variety of building automation system implemented control systems to regulate environmental conditions other than lighting conditions. For example, the disclosed processes and techniques can be applied to determine the position of printers, alarm system components and/or HVAC components, and various controllers can be control operation of these components for purpose of regulating related environmental conditions of the building 10.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application is a continuation of U.S. Utility application Ser. No. 15/008,864, filed Jan. 28, 2016, which is a continuation of U.S. Utility application Ser. No. 13/934,607, filed Jul. 3, 2013, which claims priority benefit to U.S. Provisional Patent Application No. 61/669,319 filed Jul. 9, 2012, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2826679 | Rosenburg | Mar 1958 | A |
2909097 | Alden et al. | Oct 1959 | A |
3178622 | Paul et al. | Apr 1965 | A |
3272977 | Holmes | Sep 1966 | A |
3318185 | Hermann | May 1967 | A |
3561719 | Grindle | Feb 1971 | A |
3586936 | McLeroy | Jun 1971 | A |
3601621 | Ritchie | Aug 1971 | A |
3612855 | Juhnke | Oct 1971 | A |
3643088 | Osteen et al. | Feb 1972 | A |
3739336 | Burland | Jun 1973 | A |
3746918 | Drucker et al. | Jul 1973 | A |
3818216 | Larraburu | Jun 1974 | A |
3832503 | Crane | Aug 1974 | A |
3858086 | Anderson et al. | Dec 1974 | A |
3909670 | Wakamatsu et al. | Sep 1975 | A |
3924120 | Cox, III | Dec 1975 | A |
3958885 | Stockinger et al. | May 1976 | A |
3969720 | Nishino | Jul 1976 | A |
3974637 | Bergey et al. | Aug 1976 | A |
3993386 | Rowe | Nov 1976 | A |
4001571 | Martin | Jan 1977 | A |
4054814 | Fegley et al. | Oct 1977 | A |
4070568 | Gala | Jan 1978 | A |
4082395 | Donato et al. | Apr 1978 | A |
4096349 | Donato | Jun 1978 | A |
4102558 | Krachman | Jul 1978 | A |
4107581 | Abernethy | Aug 1978 | A |
4189663 | Schmutzer et al. | Feb 1980 | A |
4211955 | Ray | Jul 1980 | A |
4241295 | Williams, Jr. | Dec 1980 | A |
4261029 | Mousset | Apr 1981 | A |
4262255 | Kokei et al. | Apr 1981 | A |
4271408 | Teshima et al. | Jun 1981 | A |
4271458 | George, Jr. | Jun 1981 | A |
4272689 | Crosby et al. | Jun 1981 | A |
4273999 | Pierpoint | Jun 1981 | A |
4298869 | Okuno | Nov 1981 | A |
4329625 | Niskizawa et al. | May 1982 | A |
4339788 | White et al. | Jul 1982 | A |
4342947 | Bloyd | Aug 1982 | A |
4344117 | Niccum | Aug 1982 | A |
4367464 | Kurahashi et al. | Jan 1983 | A |
4382272 | Quelle et al. | May 1983 | A |
4388567 | Yamazaki et al. | Jun 1983 | A |
4388589 | Molldrem, Jr. | Jun 1983 | A |
4392187 | Bornhorst | Jul 1983 | A |
4394719 | Moberg | Jul 1983 | A |
4420711 | Takahashi et al. | Dec 1983 | A |
4455562 | Dolan et al. | Jun 1984 | A |
4500796 | Quin | Feb 1985 | A |
4521835 | Meggs et al. | Jun 1985 | A |
4531114 | Topol et al. | Jul 1985 | A |
4581687 | Nakanishi | Apr 1986 | A |
4597033 | Meggs et al. | Jun 1986 | A |
4600972 | MacIntyre | Jul 1986 | A |
4607317 | Lin | Aug 1986 | A |
4622881 | Rand | Nov 1986 | A |
4625152 | Nakai | Nov 1986 | A |
4635052 | Aoike et al. | Jan 1987 | A |
4647217 | Havel | Mar 1987 | A |
4650971 | Manecci et al. | Mar 1987 | A |
4656398 | Michael et al. | Apr 1987 | A |
4661890 | Watanabe et al. | Apr 1987 | A |
4668895 | Schneiter | May 1987 | A |
4669033 | Lee | May 1987 | A |
4675575 | Smith et al. | Jun 1987 | A |
4682079 | Sanders et al. | Jul 1987 | A |
4686425 | Havel | Aug 1987 | A |
4687340 | Havel | Aug 1987 | A |
4688154 | Nilssen | Aug 1987 | A |
4688869 | Kelly | Aug 1987 | A |
4695769 | Schweickardt | Sep 1987 | A |
4698730 | Sakai et al. | Oct 1987 | A |
4701669 | Head et al. | Oct 1987 | A |
4705406 | Havel | Nov 1987 | A |
4707141 | Havel | Nov 1987 | A |
4727289 | Uchida | Feb 1988 | A |
4739454 | Federgreen | Apr 1988 | A |
4740882 | Miller | Apr 1988 | A |
4748545 | Schmitt | May 1988 | A |
4753148 | Johnson | Jun 1988 | A |
4758173 | Northrop | Jul 1988 | A |
4765708 | Becker et al. | Aug 1988 | A |
4771274 | Havel | Sep 1988 | A |
4780621 | Bartleucc et al. | Oct 1988 | A |
4794373 | Harrison | Dec 1988 | A |
4794383 | Havel | Dec 1988 | A |
4801928 | Minter | Jan 1989 | A |
4810937 | Havel | Mar 1989 | A |
4818072 | Mohebban | Apr 1989 | A |
4824269 | Havel | Apr 1989 | A |
4837565 | White | Jun 1989 | A |
4843627 | Stebbins | Jun 1989 | A |
4845481 | Havel | Jul 1989 | A |
4845745 | Havel | Jul 1989 | A |
4847536 | Lowe et al. | Jul 1989 | A |
4851972 | Altman | Jul 1989 | A |
4854701 | Noll et al. | Aug 1989 | A |
4857801 | Farrell | Aug 1989 | A |
4863223 | Weissenbach et al. | Sep 1989 | A |
4870325 | Kazar | Sep 1989 | A |
4874320 | Freed et al. | Oct 1989 | A |
4887074 | Simon et al. | Dec 1989 | A |
4894832 | Colak | Jan 1990 | A |
4901207 | Sato et al. | Feb 1990 | A |
4904988 | Nesbit et al. | Feb 1990 | A |
4912371 | Hamilton | Mar 1990 | A |
4920459 | Rothwell et al. | Apr 1990 | A |
4922154 | Cacoub | May 1990 | A |
4929936 | Friedman et al. | May 1990 | A |
4934852 | Havel | Jun 1990 | A |
4941072 | Yasumoto et al. | Jul 1990 | A |
4943900 | Gartner | Jul 1990 | A |
4962687 | Belliveau et al. | Oct 1990 | A |
4965561 | Havel | Oct 1990 | A |
4973835 | Kurosu et al. | Nov 1990 | A |
4977351 | Bavaro et al. | Dec 1990 | A |
4979081 | Leach et al. | Dec 1990 | A |
4979180 | Muncheryan | Dec 1990 | A |
4980806 | Taylor et al. | Dec 1990 | A |
4991070 | Stob | Feb 1991 | A |
4992704 | Stinson | Feb 1991 | A |
5003227 | Nilssen | Mar 1991 | A |
5008595 | Kazar | Apr 1991 | A |
5008788 | Palinkas | Apr 1991 | A |
5010459 | Taylor et al. | Apr 1991 | A |
5018054 | Ohashi et al. | May 1991 | A |
5027037 | Wei | Jun 1991 | A |
5027262 | Freed | Jun 1991 | A |
5032960 | Katoh | Jul 1991 | A |
5034807 | Von Kohorn | Jul 1991 | A |
5036248 | McEwan et al. | Jul 1991 | A |
5038255 | Nishihashi et al. | Aug 1991 | A |
5065226 | Kluitmans et al. | Nov 1991 | A |
5072216 | Grange | Dec 1991 | A |
5078039 | Tulk et al. | Jan 1992 | A |
5083063 | Brooks | Jan 1992 | A |
5088013 | Revis | Feb 1992 | A |
5089748 | Ihms | Feb 1992 | A |
5103382 | Kondo et al. | Apr 1992 | A |
5122733 | Havel | Jun 1992 | A |
5126634 | Johnson | Jun 1992 | A |
5128595 | Hara | Jul 1992 | A |
5130909 | Gross | Jul 1992 | A |
5134387 | Smith et al. | Jul 1992 | A |
5136483 | Schoniger et al. | Aug 1992 | A |
5140220 | Hasegawa | Aug 1992 | A |
5142199 | Elwell | Aug 1992 | A |
5151679 | Dimmick | Sep 1992 | A |
5154641 | McLaughlin | Oct 1992 | A |
5161879 | McDermott | Nov 1992 | A |
5161882 | Garrett | Nov 1992 | A |
5164715 | Kashiwabara et al. | Nov 1992 | A |
5184114 | Brown | Feb 1993 | A |
5194854 | Havel | Mar 1993 | A |
5198756 | Jenkins et al. | Mar 1993 | A |
5209560 | Taylor et al. | May 1993 | A |
5220250 | Szuba | Jun 1993 | A |
5225765 | Callahan et al. | Jul 1993 | A |
5226723 | Chen | Jul 1993 | A |
5254910 | Yang | Oct 1993 | A |
5256948 | Boldin et al. | Oct 1993 | A |
5278542 | Smith et al. | Jan 1994 | A |
5281961 | Elwell | Jan 1994 | A |
5282121 | Bornhorst et al. | Jan 1994 | A |
5283517 | Havel | Feb 1994 | A |
5287352 | Jackson et al. | Feb 1994 | A |
5294865 | Haraden | Mar 1994 | A |
5298871 | Shimohara | Mar 1994 | A |
5301090 | Hed | Apr 1994 | A |
5303124 | Wrobel | Apr 1994 | A |
5307295 | Taylor et al. | Apr 1994 | A |
5321593 | Moates | Jun 1994 | A |
5323226 | Schreder | Jun 1994 | A |
5329431 | Taylor et al. | Jul 1994 | A |
5341988 | Rein et al. | Aug 1994 | A |
5344068 | Haessig | Sep 1994 | A |
5350977 | Hamamoto et al. | Sep 1994 | A |
5357170 | Luchaco et al. | Oct 1994 | A |
5365411 | Rycroft et al. | Nov 1994 | A |
5371618 | Tai et al. | Dec 1994 | A |
5374876 | Horibata et al. | Dec 1994 | A |
5375043 | Tokunaga | Dec 1994 | A |
5381074 | Rudzewicz et al. | Jan 1995 | A |
5388357 | Malita | Feb 1995 | A |
5402702 | Hata | Apr 1995 | A |
5404094 | Green et al. | Apr 1995 | A |
5404282 | Klinke et al. | Apr 1995 | A |
5406176 | Sugden | Apr 1995 | A |
5410328 | Yoksza et al. | Apr 1995 | A |
5412284 | Moore et al. | May 1995 | A |
5412552 | Fernandes | May 1995 | A |
5420482 | Phares | May 1995 | A |
5421059 | Leffers, Jr. | Jun 1995 | A |
5430356 | Ference et al. | Jul 1995 | A |
5432408 | Matsuda et al. | Jul 1995 | A |
5436535 | Yang | Jul 1995 | A |
5436853 | Shimohara | Jul 1995 | A |
5450301 | Waltz et al. | Sep 1995 | A |
5461188 | Drago et al. | Oct 1995 | A |
5463280 | Johnson | Oct 1995 | A |
5463502 | Savage, Jr. | Oct 1995 | A |
5465144 | Parker et al. | Nov 1995 | A |
5473522 | Kriz et al. | Dec 1995 | A |
5475300 | Havel | Dec 1995 | A |
5481441 | Stevens | Jan 1996 | A |
5489827 | Xia | Feb 1996 | A |
5491402 | Small | Feb 1996 | A |
5493183 | Kimball | Feb 1996 | A |
5504395 | Johnson et al. | Apr 1996 | A |
5506760 | Giebler et al. | Apr 1996 | A |
5513082 | Asano | Apr 1996 | A |
5519496 | Borgert et al. | May 1996 | A |
5530322 | Ference et al. | Jun 1996 | A |
5539628 | Seib | Jul 1996 | A |
5544809 | Keating et al. | Aug 1996 | A |
5545950 | Cho | Aug 1996 | A |
5550440 | Allison et al. | Aug 1996 | A |
5559681 | Duarte | Sep 1996 | A |
5561346 | Byrne | Oct 1996 | A |
5575459 | Anderson | Nov 1996 | A |
5575554 | Guritz | Nov 1996 | A |
5581158 | Quazi | Dec 1996 | A |
5592051 | Korkala | Jan 1997 | A |
5592054 | Nerone et al. | Jan 1997 | A |
5600199 | Martin, Sr. et al. | Feb 1997 | A |
5607227 | Yasumoto et al. | Mar 1997 | A |
5608290 | Hutchisson et al. | Mar 1997 | A |
5614788 | Mullins et al. | Mar 1997 | A |
5621282 | Haskell | Apr 1997 | A |
5621603 | Adamec et al. | Apr 1997 | A |
5621662 | Humphries et al. | Apr 1997 | A |
5622423 | Lee | Apr 1997 | A |
5633629 | Hochstein | May 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5640061 | Bornhorst et al. | Jun 1997 | A |
5640141 | Myllymaki | Jun 1997 | A |
5642129 | Zavracky et al. | Jun 1997 | A |
5655830 | Ruskouski | Aug 1997 | A |
5656935 | Havel | Aug 1997 | A |
5661374 | Cassidy et al. | Aug 1997 | A |
5661645 | Hochstein | Aug 1997 | A |
5673059 | Zavracky et al. | Sep 1997 | A |
5682103 | Burrell | Oct 1997 | A |
5684523 | Satoh et al. | Nov 1997 | A |
5688042 | Madadi et al. | Nov 1997 | A |
5697695 | Lin et al. | Dec 1997 | A |
5701058 | Roth | Dec 1997 | A |
5712650 | Barlow | Jan 1998 | A |
5713655 | Blackman | Feb 1998 | A |
5721471 | Begemann et al. | Feb 1998 | A |
5725148 | Hartman | Mar 1998 | A |
5726535 | Yan | Mar 1998 | A |
5731759 | Finucan | Mar 1998 | A |
5734590 | Tebbe | Mar 1998 | A |
5751118 | Mortimer | May 1998 | A |
5752766 | Bailey et al. | May 1998 | A |
5765940 | Levy et al. | Jun 1998 | A |
5769527 | Taylor et al. | Jun 1998 | A |
5781108 | Jacob et al. | Jul 1998 | A |
5784006 | Hochstein | Jul 1998 | A |
5785227 | Akiba | Jul 1998 | A |
5790329 | Klaus et al. | Aug 1998 | A |
5803579 | Turnbull et al. | Sep 1998 | A |
5803580 | Tseng | Sep 1998 | A |
5803729 | Tsimerman | Sep 1998 | A |
5806965 | Deese | Sep 1998 | A |
5810463 | Small | Sep 1998 | A |
5812105 | Kawahara et al. | Sep 1998 | A |
5813751 | Van de Ven | Sep 1998 | A |
5813753 | Shaffer | Sep 1998 | A |
5821695 | Vriens et al. | Sep 1998 | A |
5825051 | Vilanilam et al. | Oct 1998 | A |
5828178 | Bauer et al. | Oct 1998 | A |
5831522 | York et al. | Oct 1998 | A |
5836676 | Weed et al. | Nov 1998 | A |
5841177 | Komoto et al. | Nov 1998 | A |
5848837 | Ando et al. | Nov 1998 | A |
5850126 | Gustafson | Dec 1998 | A |
5851063 | Kanbar | Dec 1998 | A |
5852658 | Doughty et al. | Dec 1998 | A |
5854542 | Knight et al. | Dec 1998 | A |
5859508 | Ge et al. | Jan 1999 | A |
5865529 | Ge et al. | Jan 1999 | A |
5890794 | Yan | Feb 1999 | A |
5896010 | Abtahi et al. | Apr 1999 | A |
5904415 | Mikolajczak et al. | Apr 1999 | A |
5907742 | Robertson et al. | May 1999 | A |
5909378 | Johnson et al. | May 1999 | A |
5912653 | De Milleville | Jun 1999 | A |
5917287 | Fitch | Jun 1999 | A |
5917534 | Haederle et al. | Jun 1999 | A |
5921660 | Rajeswaran | Jun 1999 | A |
5924784 | Yu | Jul 1999 | A |
5927845 | Chliwnyj et al. | Jul 1999 | A |
5934792 | Gustafson et al. | Jul 1999 | A |
5936599 | Camarota | Aug 1999 | A |
5943802 | Reymond | Aug 1999 | A |
5946209 | Tijanic | Aug 1999 | A |
5949347 | Eckel et al. | Aug 1999 | A |
5951145 | Iwasaki et al. | Sep 1999 | A |
5952680 | Strite | Sep 1999 | A |
5959547 | Tubel et al. | Sep 1999 | A |
5961072 | Bodle | Oct 1999 | A |
5962989 | Baker | Oct 1999 | A |
5962992 | Huang et al. | Oct 1999 | A |
5963185 | Havel | Oct 1999 | A |
5966069 | Zmurk et al. | Oct 1999 | A |
5971597 | Baldwin et al. | Oct 1999 | A |
5973594 | Baldwin et al. | Oct 1999 | A |
5974553 | Gandar | Oct 1999 | A |
5980064 | Metroyanis | Nov 1999 | A |
5998925 | Shimizu et al. | Dec 1999 | A |
5998928 | Hipp | Dec 1999 | A |
6000807 | Moreland | Dec 1999 | A |
6007209 | Pelka | Dec 1999 | A |
6008783 | Kitagawa et al. | Dec 1999 | A |
6010228 | Blackman et al. | Jan 2000 | A |
6011691 | Schreffler | Jan 2000 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6018237 | Havel | Jan 2000 | A |
6019493 | Kuo et al. | Feb 2000 | A |
6020825 | Chansky et al. | Feb 2000 | A |
6025550 | Kato | Feb 2000 | A |
6028694 | Schmidt | Feb 2000 | A |
6030099 | McDermott | Feb 2000 | A |
6031343 | Recknagel et al. | Feb 2000 | A |
6056420 | Wilson et al. | May 2000 | A |
6068383 | Robertson et al. | May 2000 | A |
6069597 | Hansen | May 2000 | A |
6072280 | Allen | Jun 2000 | A |
6074074 | Marcus | Jun 2000 | A |
6084359 | Hetzel et al. | Jul 2000 | A |
6086220 | Lash et al. | Jul 2000 | A |
6091200 | Lenz | Jul 2000 | A |
6092915 | Rensch | Jul 2000 | A |
6095661 | Lebens et al. | Aug 2000 | A |
6097352 | Zavracky et al. | Aug 2000 | A |
6107755 | Katyl et al. | Aug 2000 | A |
6116748 | George | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6127783 | Pashley et al. | Oct 2000 | A |
6132072 | Turnbull et al. | Oct 2000 | A |
6135604 | Lin | Oct 2000 | A |
6135620 | Marsh | Oct 2000 | A |
6139174 | Butterworth | Oct 2000 | A |
6149283 | Conway et al. | Nov 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6151529 | Batko | Nov 2000 | A |
6153985 | Grossman | Nov 2000 | A |
6158882 | Bischoff, Jr. | Dec 2000 | A |
6166496 | Lys et al. | Dec 2000 | A |
6175201 | Sid | Jan 2001 | B1 |
6175220 | Billig et al. | Jan 2001 | B1 |
6181126 | Havel | Jan 2001 | B1 |
6183086 | Neubert | Feb 2001 | B1 |
6183104 | Ferrara | Feb 2001 | B1 |
6184628 | Ruthenberg | Feb 2001 | B1 |
6196471 | Ruthenberg | Mar 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6215409 | Blach | Apr 2001 | B1 |
6217190 | Altman et al. | Apr 2001 | B1 |
6219239 | Mellberg et al. | Apr 2001 | B1 |
6220722 | Begemann | Apr 2001 | B1 |
6227679 | Zhang et al. | May 2001 | B1 |
6238075 | Dealey et al. | May 2001 | B1 |
6241359 | Lin | Jun 2001 | B1 |
6249221 | Reed | Jun 2001 | B1 |
6250774 | Begemann et al. | Jun 2001 | B1 |
6252350 | Alvarez | Jun 2001 | B1 |
6252358 | Xydis et al. | Jun 2001 | B1 |
6268600 | Nakamura et al. | Jul 2001 | B1 |
6273338 | White | Aug 2001 | B1 |
6275397 | McClain | Aug 2001 | B1 |
6283612 | Hunter | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
6292901 | Lys et al. | Sep 2001 | B1 |
6293684 | Riblett | Sep 2001 | B1 |
6297724 | Bryans et al. | Oct 2001 | B1 |
6305109 | Lee | Oct 2001 | B1 |
6305821 | Hsieh et al. | Oct 2001 | B1 |
6307331 | Bonasia et al. | Oct 2001 | B1 |
6310590 | Havel | Oct 2001 | B1 |
6315429 | Grandolfo | Nov 2001 | B1 |
6323832 | Nishizawa et al. | Nov 2001 | B1 |
6325651 | Nishihara et al. | Dec 2001 | B1 |
6334699 | Gladnick | Jan 2002 | B1 |
6340868 | Lys et al. | Jan 2002 | B1 |
6354714 | Rhodes | Mar 2002 | B1 |
6361186 | Slayden | Mar 2002 | B1 |
6362578 | Swanson et al. | Mar 2002 | B1 |
6369525 | Chang et al. | Apr 2002 | B1 |
6371637 | Atchinson et al. | Apr 2002 | B1 |
6373733 | Wu et al. | Apr 2002 | B1 |
6379022 | Amerson et al. | Apr 2002 | B1 |
6388393 | Illingworth | May 2002 | B1 |
6388396 | Katyl et al. | May 2002 | B1 |
6394623 | Tsui | May 2002 | B1 |
6396216 | Noone et al. | May 2002 | B1 |
6400096 | Wells et al. | Jun 2002 | B1 |
6404131 | Kawano et al. | Jun 2002 | B1 |
6411022 | Machida | Jun 2002 | B1 |
6411045 | Nerone | Jun 2002 | B1 |
6422716 | Henrici et al. | Jul 2002 | B2 |
6428189 | Hochstein | Aug 2002 | B1 |
6429604 | Chang | Aug 2002 | B1 |
6445139 | Marshall et al. | Sep 2002 | B1 |
6448550 | Nishimura | Sep 2002 | B1 |
6448716 | Hutchison | Sep 2002 | B1 |
6459919 | Lys et al. | Oct 2002 | B1 |
6464373 | Petrick | Oct 2002 | B1 |
6469457 | Callahan | Oct 2002 | B2 |
6471388 | Marsh | Oct 2002 | B1 |
6472823 | Yen | Oct 2002 | B2 |
6473002 | Hutchison | Oct 2002 | B1 |
6488392 | Lu | Dec 2002 | B1 |
6495964 | Muthu et al. | Dec 2002 | B1 |
6511204 | Emmel et al. | Jan 2003 | B2 |
6517218 | Hochstein | Feb 2003 | B2 |
6521879 | Rand et al. | Feb 2003 | B1 |
6522078 | Okamoto et al. | Feb 2003 | B1 |
6527411 | Sayers | Mar 2003 | B1 |
6528954 | Lys et al. | Mar 2003 | B1 |
6528958 | Hulshof et al. | Mar 2003 | B2 |
6538375 | Duggal et al. | Mar 2003 | B1 |
6540381 | Douglas, II | Apr 2003 | B1 |
6541800 | Barnett et al. | Apr 2003 | B2 |
6548967 | Dowling et al. | Apr 2003 | B1 |
6568834 | Scianna | May 2003 | B1 |
6573536 | Dry | Jun 2003 | B1 |
6577072 | Saito et al. | Jun 2003 | B2 |
6577080 | Lys et al. | Jun 2003 | B2 |
6577512 | Tripathi et al. | Jun 2003 | B2 |
6577794 | Currie et al. | Jun 2003 | B1 |
6578979 | Truttmann-Battig | Jun 2003 | B2 |
6582103 | Popovich et al. | Jun 2003 | B1 |
6583550 | Iwasa et al. | Jun 2003 | B2 |
6583573 | Bierman | Jun 2003 | B2 |
6585393 | Brandes et al. | Jul 2003 | B1 |
6586890 | Min et al. | Jul 2003 | B2 |
6587049 | Thacker | Jul 2003 | B1 |
6590343 | Pederson | Jul 2003 | B2 |
6592238 | Cleaver et al. | Jul 2003 | B2 |
6594369 | Une | Jul 2003 | B1 |
6596977 | Muthu et al. | Jul 2003 | B2 |
6598996 | Lodhie | Jul 2003 | B1 |
6608453 | Morgan et al. | Aug 2003 | B2 |
6608614 | Johnson | Aug 2003 | B1 |
6609804 | Nolan et al. | Aug 2003 | B2 |
6609813 | Showers et al. | Aug 2003 | B1 |
6612712 | Nepil | Sep 2003 | B2 |
6612717 | Yen | Sep 2003 | B2 |
6612729 | Hoffmann | Sep 2003 | B1 |
6621222 | Hong | Sep 2003 | B1 |
6623151 | Pederson | Sep 2003 | B2 |
6624597 | Dowling et al. | Sep 2003 | B2 |
6634770 | Cao | Oct 2003 | B2 |
6634779 | Reed | Oct 2003 | B2 |
6636003 | Rahm et al. | Oct 2003 | B2 |
6639349 | Bahadur | Oct 2003 | B1 |
6641284 | Stopa et al. | Nov 2003 | B2 |
6652117 | Tsai | Nov 2003 | B2 |
6659622 | Katogi et al. | Dec 2003 | B2 |
6660935 | Southard et al. | Dec 2003 | B2 |
6666689 | Savage, Jr. | Dec 2003 | B1 |
6667623 | Bourgault et al. | Dec 2003 | B2 |
6674096 | Sommers | Jan 2004 | B2 |
6676284 | Wynne | Jan 2004 | B1 |
6679621 | West et al. | Jan 2004 | B2 |
6681154 | Nierlich et al. | Jan 2004 | B2 |
6682205 | Lin | Jan 2004 | B2 |
6683419 | Kriparos | Jan 2004 | B2 |
6700136 | Guida | Mar 2004 | B2 |
6712486 | Popovich et al. | Mar 2004 | B1 |
6717376 | Lys et al. | Apr 2004 | B2 |
6717526 | Martineau et al. | Apr 2004 | B2 |
6720745 | Lys et al. | Apr 2004 | B2 |
6726348 | Gloisten | Apr 2004 | B2 |
6736328 | Takusagawa | May 2004 | B1 |
6736525 | Chin | May 2004 | B2 |
6741324 | Kim | May 2004 | B1 |
6744223 | Laflamme et al. | Jun 2004 | B2 |
6748299 | Motoyama | Jun 2004 | B1 |
6762562 | Leong | Jul 2004 | B2 |
6768047 | Chang et al. | Jul 2004 | B2 |
6774584 | Lys et al. | Aug 2004 | B2 |
6777891 | Lys et al. | Aug 2004 | B2 |
6781329 | Mueller et al. | Aug 2004 | B2 |
6787999 | Stimac et al. | Sep 2004 | B2 |
6788000 | Appelberg et al. | Sep 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6791840 | Chun | Sep 2004 | B2 |
6796680 | Showers et al. | Sep 2004 | B1 |
6799864 | Bohler et al. | Oct 2004 | B2 |
6801003 | Schanberger et al. | Oct 2004 | B2 |
6803732 | Kraus et al. | Oct 2004 | B2 |
6806659 | Mueller et al. | Oct 2004 | B1 |
6814470 | Rizkin et al. | Nov 2004 | B2 |
6814478 | Menke et al. | Nov 2004 | B2 |
6815724 | Dry | Nov 2004 | B2 |
6846094 | Luk | Jan 2005 | B2 |
6851816 | Wu et al. | Feb 2005 | B2 |
6851832 | Tieszen | Feb 2005 | B2 |
6853150 | Clauberg et al. | Feb 2005 | B2 |
6853151 | Leong et al. | Feb 2005 | B2 |
6853563 | Yang et al. | Feb 2005 | B1 |
6857924 | Fu et al. | Feb 2005 | B2 |
6860628 | Robertson et al. | Mar 2005 | B2 |
6866401 | Sommers et al. | Mar 2005 | B2 |
6869204 | Morgan et al. | Mar 2005 | B2 |
6871981 | Alexanderson et al. | Mar 2005 | B2 |
6874924 | Hulse et al. | Apr 2005 | B1 |
6879883 | Motoyama | Apr 2005 | B1 |
6883929 | Dowling | Apr 2005 | B2 |
6883934 | Kawakami et al. | Apr 2005 | B2 |
6888322 | Dowling et al. | May 2005 | B2 |
6897624 | Lys et al. | May 2005 | B2 |
6909239 | Gauna | Jun 2005 | B2 |
6909921 | Bilger | Jun 2005 | B1 |
6918680 | Seeberger | Jul 2005 | B2 |
6921181 | Yen | Jul 2005 | B2 |
6926419 | An | Aug 2005 | B2 |
6936968 | Cross et al. | Aug 2005 | B2 |
6936978 | Morgan et al. | Aug 2005 | B2 |
6940230 | Myron et al. | Sep 2005 | B2 |
6948829 | Verdes et al. | Sep 2005 | B2 |
6953261 | Jiao et al. | Oct 2005 | B1 |
6957905 | Pritchard et al. | Oct 2005 | B1 |
6963175 | Archenhold et al. | Nov 2005 | B2 |
6964501 | Ryan | Nov 2005 | B2 |
6965197 | Tyan et al. | Nov 2005 | B2 |
6965205 | Piepgras et al. | Nov 2005 | B2 |
6967448 | Morgan et al. | Nov 2005 | B2 |
6969179 | Sloan et al. | Nov 2005 | B2 |
6969186 | Sonderegger et al. | Nov 2005 | B2 |
6969954 | Lys | Nov 2005 | B2 |
6975079 | Lys et al. | Dec 2005 | B2 |
6979097 | Elam et al. | Dec 2005 | B2 |
6982518 | Chou et al. | Jan 2006 | B2 |
6995681 | Pederson | Feb 2006 | B2 |
6997576 | Lodhie et al. | Feb 2006 | B1 |
6999318 | Newby | Feb 2006 | B2 |
7004603 | Knight | Feb 2006 | B2 |
7008079 | Smith | Mar 2006 | B2 |
7014336 | Duchame et al. | Mar 2006 | B1 |
7015650 | McGrath | Mar 2006 | B2 |
7018063 | Michael et al. | Mar 2006 | B2 |
7018074 | Raby et al. | Mar 2006 | B2 |
7021799 | Mizuyoshi | Apr 2006 | B2 |
7021809 | Iwasa et al. | Apr 2006 | B2 |
7024256 | Krzyzanowski et al. | Apr 2006 | B2 |
7029145 | Frederick | Apr 2006 | B2 |
7031920 | Dowling et al. | Apr 2006 | B2 |
7033036 | Pederson | Apr 2006 | B2 |
7038398 | Lys et al. | May 2006 | B1 |
7038399 | Lys et al. | May 2006 | B2 |
7042172 | Dowling et al. | May 2006 | B2 |
7048423 | Stepanenko et al. | May 2006 | B2 |
7049761 | Timmermans et al. | May 2006 | B2 |
7052171 | Lefebvre et al. | May 2006 | B1 |
7053557 | Cross et al. | May 2006 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7064674 | Pederson | Jun 2006 | B2 |
7067992 | Leong et al. | Jun 2006 | B2 |
7077978 | Setlur et al. | Jul 2006 | B2 |
7080927 | Feuerborn et al. | Jul 2006 | B2 |
7086747 | Nielson et al. | Aug 2006 | B2 |
7088014 | Nierlich et al. | Aug 2006 | B2 |
7088904 | Ryan, Jr. | Aug 2006 | B2 |
7102902 | Brown et al. | Sep 2006 | B1 |
7113541 | Lys et al. | Sep 2006 | B1 |
7114830 | Robertson et al. | Oct 2006 | B2 |
7114834 | Rivas et al. | Oct 2006 | B2 |
7118262 | Negley | Oct 2006 | B2 |
7119503 | Kemper | Oct 2006 | B2 |
7120560 | Williams et al. | Oct 2006 | B2 |
7121679 | Fujimoto | Oct 2006 | B2 |
7122976 | Null et al. | Oct 2006 | B1 |
7123139 | Sweeney | Oct 2006 | B2 |
7128442 | Lee et al. | Oct 2006 | B2 |
7128454 | Kim et al. | Oct 2006 | B2 |
7132635 | Dowling | Nov 2006 | B2 |
7132785 | Duchame | Nov 2006 | B2 |
7132804 | Lys et al. | Nov 2006 | B2 |
7135824 | Lys et al. | Nov 2006 | B2 |
7139617 | Morgan et al. | Nov 2006 | B1 |
7144135 | Martin et al. | Dec 2006 | B2 |
7153002 | Kim et al. | Dec 2006 | B2 |
7161311 | Mueller et al. | Jan 2007 | B2 |
7161313 | Piepgras et al. | Jan 2007 | B2 |
7161556 | Morgan et al. | Jan 2007 | B2 |
7164110 | Pitigoi-Aron et al. | Jan 2007 | B2 |
7164235 | Ito et al. | Jan 2007 | B2 |
7164863 | Thomas et al. | Jan 2007 | B2 |
7165866 | Li | Jan 2007 | B2 |
7167777 | Budike, Jr. | Jan 2007 | B2 |
7168843 | Striebel | Jan 2007 | B2 |
7178941 | Roberge et al. | Feb 2007 | B2 |
7180252 | Lys et al. | Feb 2007 | B2 |
7186003 | Dowling et al. | Mar 2007 | B2 |
7186005 | Hulse | Mar 2007 | B2 |
7187141 | Mueller et al. | Mar 2007 | B2 |
7190126 | Paton | Mar 2007 | B1 |
7192154 | Becker | Mar 2007 | B2 |
7198387 | Gloisten et al. | Apr 2007 | B1 |
7201491 | Bayat et al. | Apr 2007 | B2 |
7201497 | Weaver, Jr. et al. | Apr 2007 | B2 |
7202613 | Morgan et al. | Apr 2007 | B2 |
7204615 | Arik et al. | Apr 2007 | B2 |
7204622 | Dowling et al. | Apr 2007 | B2 |
7207696 | Lin | Apr 2007 | B1 |
7210818 | Luk et al. | May 2007 | B2 |
7210957 | Mrakovich et al. | May 2007 | B2 |
7211959 | Chou | May 2007 | B1 |
7213934 | Zarian et al. | May 2007 | B2 |
7217004 | Park et al. | May 2007 | B2 |
7217012 | Southard et al. | May 2007 | B2 |
7217022 | Ruffin | May 2007 | B2 |
7218056 | Harwood | May 2007 | B1 |
7218238 | Right et al. | May 2007 | B2 |
7220015 | Dowling | May 2007 | B2 |
7220018 | Crabb et al. | May 2007 | B2 |
7221104 | Lys et al. | May 2007 | B2 |
7221110 | Sears et al. | May 2007 | B2 |
7224000 | Aanegola et al. | May 2007 | B2 |
7226189 | Lee et al. | Jun 2007 | B2 |
7228052 | Lin | Jun 2007 | B1 |
7228190 | Dowling et al. | Jun 2007 | B2 |
7231060 | Dowling et al. | Jun 2007 | B2 |
7233115 | Lys | Jun 2007 | B2 |
7233831 | Blackwell | Jun 2007 | B2 |
7236366 | Chen | Jun 2007 | B2 |
7237924 | Marineau et al. | Jul 2007 | B2 |
7237925 | Mayer et al. | Jul 2007 | B2 |
7239523 | Hsu et al. | Jul 2007 | B1 |
7241038 | Naniwa et al. | Jul 2007 | B2 |
7242152 | Dowling et al. | Jul 2007 | B2 |
7244058 | DiPenti et al. | Jul 2007 | B2 |
7246926 | Harwood | Jul 2007 | B2 |
7246931 | Hseih et al. | Jul 2007 | B2 |
7248239 | Dowling et al. | Jul 2007 | B2 |
7249269 | Motoyama | Jul 2007 | B1 |
7249865 | Robertson | Jul 2007 | B2 |
7252408 | Mazzochette et al. | Aug 2007 | B2 |
7253566 | Lys et al. | Aug 2007 | B2 |
7255457 | Ducharme et al. | Aug 2007 | B2 |
7255460 | Lee | Aug 2007 | B2 |
7256554 | Lys | Aug 2007 | B2 |
7258458 | Mochiachvili et al. | Aug 2007 | B2 |
7258467 | Saccomanno et al. | Aug 2007 | B2 |
7259528 | Pilz | Aug 2007 | B2 |
7262439 | Setlur et al. | Aug 2007 | B2 |
7262559 | Tripathi et al. | Aug 2007 | B2 |
7264372 | Maglica | Sep 2007 | B2 |
7267467 | Wu et al. | Sep 2007 | B2 |
7270443 | Kurtz et al. | Sep 2007 | B2 |
7271794 | Cheng et al. | Sep 2007 | B1 |
7273300 | Mrakovich | Sep 2007 | B2 |
7274045 | Chandran et al. | Sep 2007 | B2 |
7274160 | Mueller et al. | Sep 2007 | B2 |
7285801 | Eliashevich et al. | Oct 2007 | B2 |
7288902 | Melanson | Oct 2007 | B1 |
7288904 | Numeroli et al. | Oct 2007 | B2 |
7296912 | Beauchamp | Nov 2007 | B2 |
7300184 | Ichikawa et al. | Nov 2007 | B2 |
7300192 | Mueller et al. | Nov 2007 | B2 |
7303300 | Dowling et al. | Dec 2007 | B2 |
7306353 | Popovich et al. | Dec 2007 | B2 |
7307391 | Shan | Dec 2007 | B2 |
7308296 | Lys et al. | Dec 2007 | B2 |
7309965 | Dowling et al. | Dec 2007 | B2 |
7318658 | Wang et al. | Jan 2008 | B2 |
7319244 | Liu et al. | Jan 2008 | B2 |
7319246 | Soules et al. | Jan 2008 | B2 |
7321191 | Setlur et al. | Jan 2008 | B2 |
7326964 | Lim et al. | Feb 2008 | B2 |
7327281 | Hutchison | Feb 2008 | B2 |
7329024 | Lynch et al. | Feb 2008 | B2 |
7329031 | Liaw et al. | Feb 2008 | B2 |
7344278 | Paravantsos | Mar 2008 | B2 |
7345320 | Dahm | Mar 2008 | B2 |
7348604 | Matheson | Mar 2008 | B2 |
7350936 | Ducharme et al. | Apr 2008 | B2 |
7350952 | Nishigaki | Apr 2008 | B2 |
7352138 | Lys et al. | Apr 2008 | B2 |
7352339 | Morgan et al. | Apr 2008 | B2 |
7353071 | Blackwell et al. | Apr 2008 | B2 |
7358679 | Lys et al. | Apr 2008 | B2 |
7358929 | Mueller et al. | Apr 2008 | B2 |
7370986 | Chan | May 2008 | B2 |
7374327 | Schexnaider | May 2008 | B2 |
7378805 | Oh et al. | May 2008 | B2 |
7378976 | Paterno | May 2008 | B1 |
7385359 | Dowling et al. | Jun 2008 | B2 |
7391159 | Harwood | Jun 2008 | B2 |
7396142 | Laizure, Jr. et al. | Jul 2008 | B2 |
7396146 | Wang | Jul 2008 | B2 |
7401935 | VanderSchuit | Jul 2008 | B2 |
7401945 | Zhang | Jul 2008 | B2 |
7423548 | Kontovich | Sep 2008 | B2 |
7427840 | Morgan et al. | Sep 2008 | B2 |
7429117 | Pohlert et al. | Sep 2008 | B2 |
7434964 | Zheng et al. | Oct 2008 | B1 |
7438441 | Sun et al. | Oct 2008 | B2 |
7449847 | Schanberger et al. | Nov 2008 | B2 |
7466082 | Snyder et al. | Dec 2008 | B1 |
7470046 | Kao et al. | Dec 2008 | B2 |
7476002 | Wolf et al. | Jan 2009 | B2 |
7476004 | Chan | Jan 2009 | B2 |
7478924 | Robertson | Jan 2009 | B2 |
7482764 | Morgan et al. | Jan 2009 | B2 |
7490957 | Leong et al. | Feb 2009 | B2 |
7494246 | Harbers et al. | Feb 2009 | B2 |
7497596 | Ge | Mar 2009 | B2 |
7498753 | McAvoy et al. | Mar 2009 | B2 |
7507001 | Kit | Mar 2009 | B2 |
7510299 | Timmermans et al. | Mar 2009 | B2 |
7510400 | Glovatsky et al. | Mar 2009 | B2 |
7511613 | Wang | Mar 2009 | B2 |
7514876 | Roach, Jr. | Apr 2009 | B2 |
7520635 | Wolf et al. | Apr 2009 | B2 |
7521872 | Bruning | Apr 2009 | B2 |
7524089 | Park | Apr 2009 | B2 |
7530701 | Chan-Wing | May 2009 | B2 |
7534002 | Yamaguchi et al. | May 2009 | B2 |
7549769 | Kim et al. | Jun 2009 | B2 |
7556396 | Kuo et al. | Jul 2009 | B2 |
7559663 | Wong et al. | Jul 2009 | B2 |
7562998 | Yen | Jul 2009 | B1 |
7569981 | Ciancanelli | Aug 2009 | B1 |
7572030 | Booth et al. | Aug 2009 | B2 |
7575339 | Hung | Aug 2009 | B2 |
7579786 | Soos | Aug 2009 | B2 |
7583035 | Shteynberg et al. | Sep 2009 | B2 |
7583901 | Nakagawa et al. | Sep 2009 | B2 |
7592757 | Hargenrader et al. | Sep 2009 | B2 |
7594738 | Lin et al. | Sep 2009 | B1 |
7598681 | Lys et al. | Oct 2009 | B2 |
7598684 | Lys et al. | Oct 2009 | B2 |
7600907 | Liu et al. | Oct 2009 | B2 |
7602559 | Jang et al. | Oct 2009 | B2 |
7616849 | Simon | Nov 2009 | B1 |
7618157 | Galvez et al. | Nov 2009 | B1 |
7619366 | Diederiks | Nov 2009 | B2 |
7635201 | Deng | Dec 2009 | B2 |
7635214 | Perlo | Dec 2009 | B2 |
7639517 | Zhou et al. | Dec 2009 | B2 |
7648251 | Whitehouse et al. | Jan 2010 | B2 |
7654703 | Kan et al. | Feb 2010 | B2 |
7661839 | Tsai | Feb 2010 | B2 |
7690813 | Kanamori et al. | Apr 2010 | B2 |
7710047 | Shteynberg et al. | May 2010 | B2 |
7710253 | Fredricks | May 2010 | B1 |
7712918 | Siemiet et al. | May 2010 | B2 |
7748886 | Pazula et al. | Jul 2010 | B2 |
7758207 | Zhou et al. | Jul 2010 | B1 |
7759881 | Melanson | Jul 2010 | B1 |
7784966 | Verfuerth et al. | Aug 2010 | B2 |
7800511 | Hutchison et al. | Sep 2010 | B1 |
7815338 | Siemiet et al. | Oct 2010 | B2 |
7815341 | Steedly et al. | Oct 2010 | B2 |
7828471 | Lin | Nov 2010 | B2 |
7843150 | Wang et al. | Nov 2010 | B2 |
7848702 | Ho et al. | Dec 2010 | B2 |
7850341 | Mrakovich et al. | Dec 2010 | B2 |
7855641 | Okafo | Dec 2010 | B1 |
7878683 | Logan et al. | Feb 2011 | B2 |
7887216 | Patrick | Feb 2011 | B2 |
7887226 | Huang et al. | Feb 2011 | B2 |
7889051 | Billig | Feb 2011 | B1 |
7904209 | Podgomy et al. | Mar 2011 | B2 |
7926975 | Siemiet et al. | Apr 2011 | B2 |
7938562 | Ivey et al. | May 2011 | B2 |
7946729 | Ivey et al. | May 2011 | B2 |
7976185 | Uang et al. | Jul 2011 | B2 |
7976196 | Ivey et al. | Jul 2011 | B2 |
7990070 | Nerone | Aug 2011 | B2 |
7997770 | Meurer | Aug 2011 | B1 |
8013472 | Adest et al. | Sep 2011 | B2 |
8093823 | Ivey et al. | Jan 2012 | B1 |
8118447 | Simon et al. | Feb 2012 | B2 |
8136738 | Kopp | Mar 2012 | B1 |
8159152 | Salessi | Apr 2012 | B1 |
8167452 | Chou | May 2012 | B2 |
8177388 | Yen | May 2012 | B2 |
8179037 | Chan et al. | May 2012 | B2 |
8183989 | Tsai | May 2012 | B2 |
8203445 | Recker et al. | Jun 2012 | B2 |
8214084 | Ivey et al. | Jul 2012 | B2 |
8230690 | Salessi | Jul 2012 | B1 |
8247985 | Timmermans et al. | Aug 2012 | B2 |
8251544 | Ivey et al. | Aug 2012 | B2 |
8262249 | Hsia et al. | Sep 2012 | B2 |
8272764 | Son | Sep 2012 | B2 |
8287144 | Pedersen et al. | Oct 2012 | B2 |
8297788 | Bishop | Oct 2012 | B2 |
8299722 | Melanson | Oct 2012 | B2 |
8304993 | Tzou et al. | Nov 2012 | B2 |
8313213 | Lin et al. | Nov 2012 | B2 |
8319407 | Ke | Nov 2012 | B2 |
8319433 | Lin et al. | Nov 2012 | B2 |
8319437 | Carlin et al. | Nov 2012 | B2 |
8322878 | Hsia et al. | Dec 2012 | B2 |
8324817 | Ivey et al. | Dec 2012 | B2 |
8337071 | Negley et al. | Dec 2012 | B2 |
8366291 | Hoffmann | Feb 2013 | B2 |
8376579 | Chang | Feb 2013 | B2 |
8376588 | Yen | Feb 2013 | B2 |
8382322 | Bishop | Feb 2013 | B2 |
8382327 | Timmermans et al. | Feb 2013 | B2 |
8382502 | Cao et al. | Feb 2013 | B2 |
8398275 | Wang et al. | Mar 2013 | B2 |
8403692 | Cao et al. | Mar 2013 | B2 |
8405314 | Jensen | Mar 2013 | B2 |
8434914 | Li et al. | May 2013 | B2 |
8454193 | Simon et al. | Jun 2013 | B2 |
8496351 | Lo et al. | Jul 2013 | B2 |
8523394 | Simon et al. | Sep 2013 | B2 |
8531109 | Visser et al. | Sep 2013 | B2 |
8571716 | Ivey et al. | Oct 2013 | B2 |
8628216 | Ivey et al. | Jan 2014 | B2 |
8653984 | Ivey et al. | Feb 2014 | B2 |
8870412 | Timmermans et al. | Oct 2014 | B1 |
9016895 | Handsaker | Apr 2015 | B2 |
9253040 | Pitchers | Feb 2016 | B2 |
20010015297 | Harle et al. | Aug 2001 | A1 |
20010033488 | Chliwnyj et al. | Oct 2001 | A1 |
20010045803 | Cencur | Nov 2001 | A1 |
20020011801 | Chang | Jan 2002 | A1 |
20020015297 | Hayashi et al. | Feb 2002 | A1 |
20020038157 | Dowling et al. | Mar 2002 | A1 |
20020041159 | Kaping | Apr 2002 | A1 |
20020044006 | Dowling et al. | Apr 2002 | A1 |
20020044066 | Dowling et al. | Apr 2002 | A1 |
20020047516 | Iwasa et al. | Apr 2002 | A1 |
20020047569 | Dowling et al. | Apr 2002 | A1 |
20020047624 | Stam et al. | Apr 2002 | A1 |
20020047628 | Morgan et al. | Apr 2002 | A1 |
20020048169 | Dowling et al. | Apr 2002 | A1 |
20020057061 | Mueller et al. | May 2002 | A1 |
20020060526 | Timmermans et al. | May 2002 | A1 |
20020070688 | Dowling et al. | Jun 2002 | A1 |
20020074559 | Dowling et al. | Jun 2002 | A1 |
20020074958 | Crenshaw | Jun 2002 | A1 |
20020078221 | Blackwell et al. | Jun 2002 | A1 |
20020101197 | Lys et al. | Aug 2002 | A1 |
20020113555 | Lys et al. | Aug 2002 | A1 |
20020130627 | Morgan et al. | Sep 2002 | A1 |
20020145394 | Morgan et al. | Oct 2002 | A1 |
20020145869 | Dowling | Oct 2002 | A1 |
20020152045 | Dowling | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020153851 | Morgan et al. | Oct 2002 | A1 |
20020158583 | Lys et al. | Oct 2002 | A1 |
20020163316 | Lys et al. | Nov 2002 | A1 |
20020171365 | Morgan et al. | Nov 2002 | A1 |
20020171377 | Mueller et al. | Nov 2002 | A1 |
20020171387 | Morgan et al. | Nov 2002 | A1 |
20020176253 | Lee | Nov 2002 | A1 |
20020176259 | Ducharme | Nov 2002 | A1 |
20020179816 | Haines et al. | Dec 2002 | A1 |
20020195975 | Schanberger et al. | Dec 2002 | A1 |
20030011538 | Lys et al. | Jan 2003 | A1 |
20030021117 | Chan | Jan 2003 | A1 |
20030028260 | Blackwell et al. | Feb 2003 | A1 |
20030031015 | Ishibashi | Feb 2003 | A1 |
20030048641 | Alexanderson et al. | Mar 2003 | A1 |
20030052599 | Sun | Mar 2003 | A1 |
20030057884 | Dowling et al. | Mar 2003 | A1 |
20030057886 | Lys et al. | Mar 2003 | A1 |
20030057887 | Dowling et al. | Mar 2003 | A1 |
20030057890 | Lys et al. | Mar 2003 | A1 |
20030076281 | Morgan et al. | Apr 2003 | A1 |
20030085710 | Bourgault et al. | May 2003 | A1 |
20030095404 | Becks et al. | May 2003 | A1 |
20030100837 | Lys et al. | May 2003 | A1 |
20030102810 | Cross et al. | Jun 2003 | A1 |
20030133292 | Mueller et al. | Jul 2003 | A1 |
20030137258 | Piepgras et al. | Jul 2003 | A1 |
20030185005 | Sommers et al. | Oct 2003 | A1 |
20030185014 | Gloisten et al. | Oct 2003 | A1 |
20030189412 | Cunningham | Oct 2003 | A1 |
20030218879 | Tieszen | Nov 2003 | A1 |
20030222578 | Cok | Dec 2003 | A1 |
20030222587 | Dowling et al. | Dec 2003 | A1 |
20030234342 | Gaines et al. | Dec 2003 | A1 |
20040003545 | Gillespie et al. | Jan 2004 | A1 |
20040007980 | Shibata | Jan 2004 | A1 |
20040012959 | Robertson et al. | Jan 2004 | A1 |
20040036006 | Dowling | Feb 2004 | A1 |
20040037088 | English et al. | Feb 2004 | A1 |
20040052076 | Mueller et al. | Mar 2004 | A1 |
20040062041 | Cross et al. | Apr 2004 | A1 |
20040075572 | Buschmann et al. | Apr 2004 | A1 |
20040080960 | Wu | Apr 2004 | A1 |
20040090191 | Mueller et al. | May 2004 | A1 |
20040090787 | Dowling et al. | May 2004 | A1 |
20040105261 | Ducharme et al. | Jun 2004 | A1 |
20040105264 | Spero | Jun 2004 | A1 |
20040113568 | Dowling et al. | Jun 2004 | A1 |
20040114371 | Lea et al. | Jun 2004 | A1 |
20040116039 | Mueller et al. | Jun 2004 | A1 |
20040124782 | Yu | Jul 2004 | A1 |
20040130908 | McClurg et al. | Jul 2004 | A1 |
20040130909 | Mueller et al. | Jul 2004 | A1 |
20040141321 | Dowling et al. | Jul 2004 | A1 |
20040145886 | Fatemi et al. | Jul 2004 | A1 |
20040155609 | Lys et al. | Aug 2004 | A1 |
20040160199 | Morgan et al. | Aug 2004 | A1 |
20040178751 | Mueller et al. | Sep 2004 | A1 |
20040189262 | McGrath | Sep 2004 | A1 |
20040212320 | Dowling et al. | Oct 2004 | A1 |
20040212321 | Lys et al. | Oct 2004 | A1 |
20040212993 | Morgan et al. | Oct 2004 | A1 |
20040223328 | Lee et al. | Nov 2004 | A1 |
20040240890 | Lys et al. | Dec 2004 | A1 |
20040251854 | Matsuda et al. | Dec 2004 | A1 |
20040257007 | Lys et al. | Dec 2004 | A1 |
20050013133 | Yeh | Jan 2005 | A1 |
20050023536 | Shackle | Feb 2005 | A1 |
20050024877 | Frederick | Feb 2005 | A1 |
20050030744 | Ducharme et al. | Feb 2005 | A1 |
20050035728 | Schanberger et al. | Feb 2005 | A1 |
20050036300 | Dowling et al. | Feb 2005 | A1 |
20050040774 | Mueller et al. | Feb 2005 | A1 |
20050041161 | Dowling et al. | Feb 2005 | A1 |
20050041424 | Ducharme | Feb 2005 | A1 |
20050043907 | Eckel et al. | Feb 2005 | A1 |
20050044617 | Mueller et al. | Mar 2005 | A1 |
20050047132 | Dowling et al. | Mar 2005 | A1 |
20050047134 | Mueller et al. | Mar 2005 | A1 |
20050062440 | Lys et al. | Mar 2005 | A1 |
20050063194 | Lys et al. | Mar 2005 | A1 |
20050078477 | Lo | Apr 2005 | A1 |
20050093488 | Hung et al. | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050107694 | Jansen et al. | May 2005 | A1 |
20050110384 | Peterson | May 2005 | A1 |
20050116667 | Mueller et al. | Jun 2005 | A1 |
20050128751 | Roberge et al. | Jun 2005 | A1 |
20050141225 | Striebel | Jun 2005 | A1 |
20050151489 | Lys et al. | Jul 2005 | A1 |
20050151663 | Tanguay | Jul 2005 | A1 |
20060192502 | Brown et al. | Aug 2006 | A1 |
20080157957 | Pitchers | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20180027625 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
61669319 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15008864 | Jan 2016 | US |
Child | 15712701 | US | |
Parent | 13934607 | Jul 2013 | US |
Child | 15008864 | US |