System and method for controlling operation of an LED-based light

Information

  • Patent Grant
  • 10278247
  • Patent Number
    10,278,247
  • Date Filed
    Friday, September 22, 2017
    7 years ago
  • Date Issued
    Tuesday, April 30, 2019
    5 years ago
Abstract
For controlling operation of a light source, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.
Description
TECHNICAL FIELD

The embodiments disclosed herein relate in general to a light emitting diode (LED)-based light for replacing a conventional light in a standard light fixture, and in particular to a lighting control system for controlling the operation of an LED-based light.


BACKGROUND

Fluorescent lights are widely used in a variety of locations, such as schools and office buildings. Although conventional fluorescent lights have certain advantages over, for example, incandescent lights, they also pose certain disadvantages including, inter alia, disposal problems due to the presence of toxic materials within the light.


LED-based lights designed as one-for-one replacements for fluorescent lights have appeared in recent years. LED-based lights can be used in a building with a control system capable of managing various aspects of the building, including its lighting conditions. A lighting control system can be designed to regulate the lighting conditions in a building through selective control of the operation of LED-based lights, in order to, for example, improve usability of the building or to optimize its energy use. Some of these lighting control systems can remotely regulate individual lighting conditions of multiple different areas within the building. Such individualized regulation requires some form of association between each LED-based light and the particular area in which the LED-based light is positioned to illuminate. Association can entail, for example, manually assigning an LED-based light positioned to illuminate a particular area with a logical address designated within the lighting control system to correspond to that area. Once associated, the lighting control system can correctly control operation of an LED-based light based upon the desired lighting conditions for its respective area.


SUMMARY

Disclosed herein are embodiments of methods and systems for controlling operation of a light source. In one aspect, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.


In another aspect, alighting control system comprises: a light source positioned to provide lighting for an area; and a control unit configured to: identify, based on a determined physical position of the light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting, identify at least one desired lighting condition for the identified area, and control operation of the light source based on the identified at least one desired lighting condition for the identified area.


In yet another aspect, a method of selecting a lighting condition for controlling operation of a light source comprises: storing, in memory, a plurality of position-dependent lighting conditions; and selecting, using a processor in communication with the memory, one of the position-dependent lighting conditions for controlling operation of the light source based on a determined physical position of the light source, such that the operation of the light source is controlled based on the selected position-dependent lighting condition.


These and other aspects will be described in additional detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features, advantages and other uses of the present system and methods will become more apparent by referring to the following detailed description and drawings in which:



FIG. 1 is a system view of a lighting control system configured to control operation of an LED-based light;



FIG. 2 is a flow chart illustrating a process including operations for installing and associating the LED-based light of FIG. 1 within the lighting control system;



FIG. 3 is an exploded perspective view of an example of an LED-based light for use in the lighting control system of FIG. 1; and



FIG. 4 is an exploded perspective view of an alternative example of an LED-based light for use in the lighting control system of FIG. 1.





DETAILED DESCRIPTION

Manual association between an LED-based light and the particular area in which the LED-based light is positioned to illuminate can be time consuming and error-prone. Further, associations can be broken if a logically addressable LED-based light is moved and/or replaced during service, which can cause incorrect control over the operation of the LED-based light.


Disclosed herein are example configurations of a lighting control system for a building that can use information relating to the position of an LED-based light to associate the LED-based light with a particular area for purposes of regulating the lighting conditions for that area. Further disclosed herein are exemplary configurations of a control system that can reduce the amount of user input required to determine the information relating to the position of the LED-based light.


A building can include systems for managing various aspects of the building. These aspects can generally include the environmental conditions of the building, such as heating, ventilation and air conditioning (HVAC) conditions, security conditions and/or lighting conditions, for example. A “smart” building can include a control system, such as a building automation system, that can automatically manage the environmental conditions of the building in accordance with desired environmental conditions. Such buildings can include one or more areas located throughout the building, with each area lending itself to individualized regulation of one or more of its environmental conditions.


A representative building 10 including a building automation system implementing a lighting control system 12 for regulating the lighting conditions of multiple areas 14 throughout the building 10 is shown in FIG. 1. The terms “building” and “building automation system” are used herein to describe the lighting control system 12 with reference to a representative setting in which the lighting control system 12 can be implemented. However, the lighting control system 12 could be implemented in other settings, such as outdoors, for example, or in other settings in which a number of different areas 14 lending themselves to individualized regulation with respect to their lighting conditions can be defined.


Regulation of the environmental conditions of the multiple areas 14 located throughout the building 10 can include a process of defining the areas 14 to be controlled. Each area 14, as it relates to individualized regulation of its environmental conditions, can correspond to some characteristic of the building 10 or its contents, or can correspond to some characteristic of the defined area 14. With respect to regulation of lighting conditions with the lighting control system 12, for example, the area 14 could be defined as an individual room or group of rooms located within the building 10. The area 14 could additionally or alternatively be defined in terms of its physical surroundings, such as an area adjacent to source of light extrinsic to the lighting control system 12, for instance a window supplying natural light. The area 14 could also be defined in relation to its particular functional considerations and/or constraints with respect to lighting conditions. For example, the area 14 could be defined above a workstation, or the area 14 could correspond to a particular type of room within the building 10, such as an office, a conference room, a hallway or a bathroom, for example. Similarly, the area 14 could be defined in relation to its particular requirements with respect to lighting conditions, which could involve requirements of performance lighting, efficient lighting, safety lighting, comfort lighting and/or alarm lighting, for example. As a non-limiting example, an area 14A could be an individual room located within the building 10, an area 14B could be located adjacent an east facing window receiving natural light and thereby requiring less artificial light from the lighting control system 12, and an area 14C could be located adjacent a desk or other workstation.


An area 14 could be one discrete individual location within the building 10, or could comprise some grouping of locations lending themselves to similar regulation of their environmental conditions. A building 10 could include a single area 14 or multiple areas 14, and each area 14 of a building 10 need not be defined according to an approach used to define another area 14 of the building 10. The building 10 can include more or less than the illustrated areas 14A, 14B and 14C, and the building 10 can include alternative and/or additional areas 14 depending upon which of a variety of environmental conditions is regulated. That is, with respect to regulation of environmental conditions other than lighting conditions, areas 14 could be defined within the building 10 other than as the areas 14A, 14B and 14C described above, and alternative and/or additional areas 14 could be defined for purposes of individualized regulation of the various other environmental conditions.


A building automation system for the building 10 can implement the lighting control system 12 to individually regulate the lighting conditions for each of the areas 14 located throughout the building 10. The illustrated lighting control system 12 may include one or more LED-based lights 16 positioned to illuminate each of the areas. The lighting conditions for the area 14 in which an LED-based light 16 is positioned can be regulated through selective control of the operation the LED-based light 16. For ease of understanding, the lighting control system 12 is generally described below with reference to a single LED-based light 16 positioned to illuminate a singular area 14. However, it should be understood that the lighting control system 12 can include a plurality of areas 14A, 14B and 14C, each of which can include one or more respective LED-based lights 16 positioned to illuminate the areas 14A, 14B and 14C.


The lighting control system 12 includes one or more devices for controlling the operation of the LED-based light 16. In a basic lighting system, operation of an LED-based light 16 could be controlled by electrically connecting a device such as a light switch, dimmer or other similar operator actuated device between the LED-based light 16 and a power supply. These devices control operation of the LED-based light 16 by regulating a supply of AC or DC electrical power to the LED-based light 16. For example, a supply of electrical power to the LED-based light 16 can be selectively switched to control an on/off function of the LED-based light 16, and a supply of electrical power to the LED-based light 16 can be selectively modulated to control a dimming function of the LED-based light 16.


The illustrated implementation of the lighting control system 12 includes a control unit 20 configured to control the operation of the LED-based light 16 by selectively controlling a supply of electrical power to the LED-based light 16. The control unit 20 can be or include one or more controllers configured for controlling the operation of multiple LED-based lights 16 positioned in different areas 14 located throughout the building 10. A controller could be a programmable controller, such as a microcomputer including a random access memory (RAM), a read-only memory (ROM) and a central processing unit (CPU) in addition to various input and output connections. Generally, the control functions described herein can be implemented by one or more software programs stored in internal or external memory and are performed by execution by the CPU. However, some or all of the functions could also be implemented by hardware components. Although the control unit 20 is shown and described as a single central controller for performing multiple functions related to multiple areas 14, the functions described herein could be implemented by separate controllers which collectively comprise the illustrated control unit 20.


The control unit 20 can be electrically connected between the LED-based light 16 and a power supply and configured to control operation of the LED-based light 16 by directly switching and/or modulating a supply of electrical power to LED-based light 16. Alternatively, the control unit 20 can be configured to control operation of the LED-based light 16 by indirectly controlling a supply of electrical power to the LED-based light 16, for example by communicating a control signal α to a switching device. For example, as shown in FIG. 1, lighting control system 12 may include a switching unit 22 communicatively coupled to the control unit 20.


The switching unit 22 is electrically connected between the LED-based light 16 and a power supply and is configured to receive the control signal α and, in response to the control signal α, selectively regulate a supply of electrical power to the LED-based light 16. The switching unit 22 can control an on/off function of the LED-based light 16 by including a relay or other mechanical, electrical or electromechanical switch configured to selectively switch a supply of electrical power to the LED-based light 16. The switching unit 22 can alternatively or additionally be or include components configured to selectively modulate a supply of electrical power to the LED-based light 16 to control a dimming function of the LED-based light 16. The switching unit 22 can selectively regulate a supply of electrical power to the LED-based light 16 to control operation of the LED-based light 16 in a variety of other manners. For example, in addition to controlling on/off and dimming functions of the LED-based light 16, the switching unit 22 can also be configured to regulate a supply of electrical power to the LED-based light 16 to achieve continuous, intermittent or other non-continuous operation of the LED-based light 16. For example, the LED-based light 16 could be operated steadily, variably, or could be blinked, flashed or amplified according to some timed pattern by the switching unit 22, depending upon the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate.


Each area 14 located throughout the building 10 can lend itself to individualized regulation of its lighting conditions in accordance with respective desired lighting conditions. The lighting control system 12 includes the control unit 20 for controlling the lighting conditions of the area 14 through selective control of the operation of the LED-based light 16 positioned to illuminate the area 14. As described above, the control unit 20 controls the operation of the LED-based light 16 by communicating a control signal α to the switching unit 22 configured to selectively regulate a supply of electrical power to the LED-based light 16. The control signal α generally corresponds to the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate. The control signal α can be representative of a setpoint illumination level for the area 14, or could be representative of some other particular requirement or characteristic with respect to the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the control signal α could be representative of a requirement for performance lighting, efficient lighting, safety lighting, comfort lighting and/or alarm lighting in the area 14.


The control unit 20 is configured to determine the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate, and to generate the control signal α corresponding to the desired lighting conditions. The control unit 20 can generate the control signal α with logic implementing various algorithmic or heuristics techniques. As non-limiting examples, the control unit 20 can include logic implementing timers, alarms, and/or rules relating to occupancy sensing, daylight harvesting or manual override control.


The lighting control system 12 can further include one or more input devices 24 corresponding to each of the areas 14. The input devices 24 are configured to relay information relating to the actual or desired lighting conditions and/or other environmental conditions of the area 14 to the control unit 20. The lighting control system 12 can utilize the information from an input device 24 for purposes of individualized regulation of the lighting conditions for its area 14. The input devices 24 are configured to generate one or more input signals β. The input devices 24 are communicatively coupled to the control unit 20, and the logic of the control unit 20 can be responsive to the input signals β to generate the control signal α for communication to the switching unit 22.


The illustrated input devices 24 can include a user interface 26 and various sensors 28. The user interface 26 is configured to receive information from a user of the building 10 relating to requested lighting conditions for the area 14 to which the user interface 26 corresponds, and to generate corresponding input signals β for communication to the control unit 20. The user interface 26 can be or include a switch, dimmer or other user actuated device. The user interface 26 could also include a web-based or similar computer-based component for receiving information relating to requested lighting conditions for an area 14.


The lighting control system 12 can incorporate the input signals β communicated from the user interface 26 to varying degrees as compared to input signals β communicated from other input devices 24. For example, the lighting control system 12 could give priority to the user interface 26 by providing for manual override control of the operation of the LED-based light 16 on the basis of a user's actuation of the user interface 26. In this example, the control unit 20 could include logic for generating a control signal α directing the switching unit 22 to regulate a supply of electrical power to the LED-based light 16 in direct accordance with an operator's requested lighting conditions. Alternatively, the lighting control system 12 could be arranged such that a supply of electrical power to LED-based light 16 is regulated directly by the user interface 26 in accordance with an operator's requested lighting conditions without regard to a control signal α generated by the control unit 20.


The sensors 28 may be configured for measuring, monitoring and/or estimating various environmental conditions within a corresponding area 14 and for generating corresponding input signals β for communication to the control unit 20. Sensors 28 can include, for example, a sensor for measuring the actual lighting conditions of the area 14, or sensors 28 could include a sensor for monitoring or estimating occupancy of the area 14. The sensors 28 could include a motion sensor, a voice-activated sensor or a clock or calendar, for example. Similar to the input signals β from the user interface 26, the input signals β from the sensors 28 can be incorporated into the logic of the control unit 20 for generation of the control signal α.


An exemplary communications link 40 is included in the lighting control system 12 for communicatively coupling the components of the lighting control system 12. The communications link 40 may generally be configured to support digital and/or analog communication between the components included in the lighting control system 12. For example, the communications link 40 may be configured to communicatively couple the control unit 20, the switching unit 22 and the input devices 24. The communications link 40 can include wired and/or wireless communications channels using any industry standard or proprietary protocols. As a non-limiting example, a wired communications link 40 could be implemented with 0-10V signals, DALI or Ethernet. As a further non-limiting example, a wireless communications link 40 could be implemented, for example, with wireless DALI, IEEE 802.11, Wi-Fi, Bluetooth or RF channels, or through infrared, ultrasonic or modulated visible light, such as light emitted from the LED-based lights 16. Further, the communications link 40 could be implemented with multiple communications channels, each using differing protocols.


The illustrated lighting control system 12 can provide localized regulation of the lighting conditions for multiple different areas 14 with the control unit 20 by selectively controlling the operation of the respective LED-based lights 16 positioned to illuminate the respective areas 14. The control unit 20 can determine differing desired lighting conditions for each of the areas 14. For example, the desired lighting conditions for area 14A could necessitate that the LED-based light 16 positioned to illuminate area 14A be controlled to an on state, the desired lighting conditions for area 14B could necessitate that the LED-based light 16 positioned to illuminate area 14B be controlled to an off state, and the desired lighting conditions for area 14C could necessitate that the LED-based light 16 positioned to illuminate area 14C be controlled to a modulated state.


In order for the lighting control system 12 to efficiently regulate the lighting conditions in multiple areas 14, the lighting control system 12 may be configured to control the LED-based light 16 positioned to illuminate a particular area 14 without affecting the operation of LED-based lights 16 positioned to illuminate other areas 14. Proper functioning of the lighting control system 12 generally requires some association between each LED-based light 16 and the area 14 in which the LED-based light 16 is positioned to illuminate. Association can entail, for example, manually landing wires between terminals of the control unit 20 and switching units 22 and/or corresponding LED-based lights 16. Alternatively, association could entail manually assigning a switching unit 22 and/or corresponding LED-based light 16 with a logical address designated within the lighting control system 12, for example within the logic of the control unit 20, to correspond to a particular area 14. Once associated, the lighting control system 12 can control operation of an LED-based light 16 to regulate the lighting conditions for its respective area 14 according to its desired lighting conditions.


The illustrated lighting control system 12 may include a plurality of communications units 42 configured to receive information relating to the position of an LED-based light 16 within the building 10. The lighting control system 12 is configured to use the information relating to the position of the LED-based light 16 within the building 10 to associate the LED-based light 16 with the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the lighting control system 12 can be configured to compare the position of an LED-based light 16 with known or determined positions of the areas 14 located throughout the building 10. The lighting control system 12 can then correlate the position of the LED-based light 16 with a particular area 14 in which the LED-based light 16 is positioned to illuminate. Once a correlation is drawn between a particular LED-based light 16 and the area 14 in which the LED-based light 16 is positioned to illuminate, the lighting control system 12 can associate the LED-based light 16 to the area 14 for purposes of future regulation of the lighting conditions for that area 14.


The communications units 42 may be communicatively coupled to the lighting control system 12 through one or more communications channels that can be included in the communications link 40. As shown in FIG. 1, the communications units 42 may be communicatively coupled to the switching units 22. Each of the communications units 42 may include a communications device 44 configured to receive a location signal γ from a communications device 46 included in the switching units 22. The communications devices 44 and 46 can be configured for communication through a communications channel implemented to communicatively couple the communications units 42 and the switching units 22, and the communications channel need not be the same as used elsewhere in the communication link 40. For example, an existing building automation system for the building 10 may already include wired communications channels for communicatively coupling the control unit 20, the switching unit 22 and the input devices 24. The building automation system for the building 10 could be retrofitted to implement the lighting control system 12 by including a wireless communications channel configured to communicatively couple the communications units 42 to the switching units 22. In this non-limiting example, the communications devices 44 and 46 can be the illustrated transceivers 44 and 46. However, the communications devices 44 and 46 could be other devices known to those skilled in the art configured to send and/or receive the location signal γ over a chosen communications channel included in the communications link 40.


As shown in FIG. 1, the communications units 42 may be communicatively coupled to switching units 22 to receive the location signal γ from the communications devices 46. The switching units 22 including the communications devices 46 can be located adjacent to or included in corresponding LED-based lights 16, such that the location signal γ conveys information generally relating to the position of the LED-based light 16. Although the communications devices 46 are described with reference to the switching units 22, the communications devices 46 could alternatively be included in the LED-based lights 16, or could be otherwise included in the lighting control system 12 according to some known or determinable spatial relationship with the LED-based light 16.


The lighting control system 12 is configured to determine, or estimate, the physical position of each of the LED-based lights 16 based at least partially upon the location signal γ. The position of an LED-based light 16 could be determined absolutely, for example, or could be determined relative to some aspect relating to the building 10 or lighting control system 12. In the exemplary implementation of the lighting control system 12, multiple communications units 42 form a spatially distributed network of communications units 42. The communications units 42 can be distributed within and/or without the building 10 to form the spatially distributed network of communications units 42. The location signal γ can be received by one or more of the communications units 42, which can be configured to determine the position of the LED-based lights 16, either individually, in some combination with each other, and/or in combination with the control unit 20 or other components of the lighting control system 12.


The lighting control system 12 can be configured to determine the position of the LED-based light 16 using various techniques, either individually or in some combination. As non-limiting examples, the position of an LED-based light 16 can be determined based upon time of arrival (TOA) of RF, infrared or ultrasonic signals, or based upon TOA of light signals, such as visible light signals emitted from the LED-based lights 16; the position of an LED-based light 16 can be determined based upon direction finding (DF) of RF, infrared or ultrasonic signals, or based upon DF of light signals, such as visible light signals emitted from the LED-based lights 16; the position of an LED-based light 16 could be determined by superimposing currents on power lines forming a power grid, or though other branch circuit monitoring methods; or the position of an LED-based light 16 could be determined by monitoring the strength of the location signal γ throughout the spatially distributed network of communications units 42. The position of an LED-based light 16 could also be determined through communication with components external from the lighting control system 12, for example by using 3g or 4g signals to communicate with global positioning systems (GPSs) or other external location systems. The position of the LED-based light 16 could also be determined more accurately through some combination of the above techniques.


A process of installing an LED-based light 16 into the lighting control system 12 of a building 10 is illustrated in FIG. 2. In step S10, information relating to the positions of each of the areas 14 located throughout the building 10 is stored in the lighting control system 12. The lighting control system 12 can be configured to know or determine the positions of each of the areas 14. Similar to the positions of the LED-based lights 16, the positions of the areas 14 could be known or determined absolutely, for example, or relative to some aspect relating to the building 10 or the lighting control system 12. For example, the physical aspects of the building 10, such as floor plans or power supply structures, could be stored in memory on the control unit 20, along with information relating to the relative positions of the areas 14 within the building 10.


In step S12, an LED-based light 16 is installed into the lighting control system 12. In step S14, the LED-based light 16 joins the lighting control system 12 by communicating with the control unit 20 through the communications link 40, and in step S16, the control unit 20 recognizes the LED-based light 16 as newly installed into (or newly positioned within) the lighting control system 12. The LED-based light 16 can have a logical address readable by the control unit 20, for example, or can be otherwise recognizable by the control unit 20 as a distinct lighting element.


In step S18, the location signal γ is communicated to the spatially distributed network of communications units 42. The location signal γ can be communicated autonomously, for example, or at the direction of the installer or at the direction of the lighting control system 12 or control unit 20. In step S20, the position of the LED-based light 16 is determined using one or more of the above described location techniques, as well as others. The logic for determining the position of the LED-based light 16 can be implemented by one or more of the communications units 42, or can be distributed between one or more of the communications units 42 and the other components of the lighting control system 12. The position of an LED-based light 16 could also be determined physically externally from the lighting control system 12, for example through communication with a GPS or other location system. The position of the newly installed LED-based 16 could also be determined and/or verified with reference to one or more LED-based lights 16 whose positions are manually determined.


In step S22, the lighting control system 12 can use the determined position of the LED-based light 16 to associate the LED-based light 16 with the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the lighting control system 12 can implement logic using the control unit 20 to compare the determined position of the LED-based light 16 with the known or determined positions of the areas 14 located throughout the building 10. By correlating the determined position of the LED-based light 16 with a position of a particular area 14, the control unit 20 can determine that the LED-based light 16 is positioned to illuminate that particular area 14. Finally, in step S24, the lighting control system 12 can associate the LED-based light 16 to the area 14 within the control unit 20 for purposes of future regulation of the lighting conditions for that area 14.



FIG. 3 illustrates an example of an LED-based light 116 for use in the lighting control system 12. The LED-based light 116 is configured to replace a conventional light in a standard light fixture 110. The light fixture 110 can be designed to accept conventional fluorescent lights, such as T5, T8 or T12 fluorescent tube lights, or can be designed to accept other standard lights, such as incandescent bulbs. The light fixture 110 could alternatively be designed to accept non-standard lights, such as lights installed by an electrician. The light fixture 110 can connect to a power supply, and can optionally include a ballast connected between the power supply and the LED-based light 116. The switching unit 22 could be compatible with the fixture 110 to electrically connect between the power supply and the LED-based light 116, or the switching unit 22 could be included in the fixture 110, for example.


In some implementations, the LED-based light 116 includes a housing 112 at least partially defined by a high dielectric light transmitting lens 114. The lens 114 can be made from polycarbonate, acrylic, glass or other light transmitting material (i.e., the lens 114 can be transparent or translucent). The term “lens” as used herein means a light transmitting structure, and not necessarily a structure for concentrating or diverging light. The LED-based light 116 can include features for uniformly distributing light to an environment to be illuminated in order to replicate the uniform light distribution of a conventional fluorescent light. For example, the lens 114 can be manufactured to include light diffracting structures, such as ridges, dots, bumps, dimples or other uneven surfaces formed on an interior or exterior of the lens 114. The light diffracting structures can be formed integrally with the lens 114, for example, by molding or extruding, or the structures can be formed in a separate manufacturing step such as surface roughening. In addition to or as an alternative to light diffracting structures, a light diffracting film can be applied to the exterior of the lens 114 or placed in the housing 112, or, the material from which the lens 114 is formed can include light refracting particles. For example, the lens 114 can be made from a composite, such as polycarbonate, with particles of a light refracting material interspersed in the polycarbonate. In other embodiments, the LED-based light 116 may not include any light diffracting structures or film.


The housing 112 can include a light transmitting tube at least partially defined by the lens 114. Alternatively, the housing 112 can be formed by attaching multiple individual parts, not all of which need be light transmitting. For example, the housing 112 can be formed in part by attaching the lens 114 to an opaque lower portion. The housing 112 can additionally include other components, such as one or more highly thermally conductive structures for enhancing heat dissipation. While the illustrated housing 112 is cylindrical, a housing having a square, triangular, polygonal, or other cross sectional shape can alternatively be used. Similarly, while the illustrated housing 112 is linear, housings having an alternative shape, e.g., a U-shape or a circular shape can alternatively be used. The LED-based light 116 can have any suitable length. For example, the LED-based light 116 may be approximately 48″ long, and the housing 112 can have a 0.625″, 1.0″ or 1.5″ diameter for engagement with a common standard fluorescent light fixture.


The LED-based light 116 can include an electrical connector 118 positioned at each end of the housing 112. In the illustrated example, the electrical connector 118 is a bi-pin connector carried by an end cap 120. A pair of end caps 120 can be attached at opposing longitudinal ends of the housing 112 for physically connecting the LED-based light 116 to a standard fluorescent light fixture 110. The end caps 120 can be the sole physical connection between the LED-based light 116 and the fixture 110. At least one of the end caps 120 can additionally electrically connect the LED-based light 116 to the fixture 110 to provide power to the LED-based light 116. Each end cap 120 can include two pins 122, although two of the total four pins can be “dummy pins” that provide physical but not electrical connection to the fixture 110. Bi-pin electrical connector 118 is compatible with many standard fluorescent fixtures, although other types of electrical connectors can be used, such as single pin connector or screw type connector.


The LED-based light 116 can include a circuit board 124 supported within the housing 112. The circuit board 124 can include at least one LED 126, a plurality of series-connected or parallel-connected LEDs 126, an array of LEDs 126 or any other arrangement of LEDs 126. Each of the illustrated LEDs 126 can include a single diode or multiple diodes, such as a package of diodes producing light that appears to an ordinary observer as coming from a single source. The LEDs 126 can be surface-mount devices of a type available from Nichia, although other types of LEDs can alternatively be used. For example, the LED-based light 116 can include high-brightness semiconductor LEDs, organic light emitting diodes (OLEDs), semiconductor dies that produce light in response to current, light emitting polymers, electro-luminescent strips (EL) or the like.


The circuit board 124 can include power supply circuitry configured to condition an input power received from, for example, the fixture 110 through the electrical connector 118 to a power usable by and suitable for the LEDs 126. In some implementations, the power supply circuitry can include one or more of an inrush protection circuit, a surge suppressor circuit, a noise filter circuit, a rectifier circuit, a main filter circuit, a current regulator circuit and a shunt voltage regulator circuit. The power supply circuitry can be suitably designed to receive a wide range of currents and/or voltages from a power source and convert them to a power usable by the LEDs 126.


The circuit board 124 is illustrated as an elongate printed circuit board. The circuit board 124 can extend a length or a partial length of the housing 112. Multiple circuit board sections can be joined by bridge connectors to create the circuit board 124. The circuit board 124 can be supported within the housing 112 through slidable engagement with a part of the housing 112, though the circuit board 124 can alternatively be clipped, adhered, snap- or friction-fit, screwed or otherwise connected to the housing 112. Also, other types of circuit boards may be used, such as a metal core circuit board. Or, instead of the circuit board 124, other types of electrical connections (e.g., wires) can be used to electrically connect the LEDs 126 to a power source.


The LEDs 126 can emit white light or light within a range of wavelengths. However, LEDs that emit blue light, ultra-violet light or other wavelengths of light can be used in place of or in combination with white light emitting LEDs 126. The number, spacing and orientation of the LEDs 126 can be a function of a length of the LED-based light 116, a desired lumen output of the LED-based light 116, the wattage of the LEDs 126 and/or the viewing angle of the LEDs 126. For a 48″ LED-based light 116, the number of LEDs 126 may vary from about thirty to sixty such that the LED-based light 116 outputs approximately 3,000 lumens. However, a different number of LEDs 126 can alternatively be used, and the LED-based light 116 can output any other amount of lumens. The LEDs 126 can be evenly spaced along the circuit board 124 and arranged on the circuit board 124 to substantially fill a space along a length of the lens 114 between end caps 120 positioned at opposing longitudinal ends of the housing 112. Alternatively, single or multiple LEDs 126 can be located at one or both ends of the LED-based light 116. The LEDs 126 can be arranged in a single longitudinally extending row along a central portion of the LED circuit board 124, as shown, or can be arranged in a plurality of rows or arranged in groups. The spacing of the LEDs 126 can be determined based on, for example, the light distribution of each LED 126 and the number of LEDs 126.


An alternative example of and LED-based light 216 is shown in FIG. 4. The construction of the LED-based light 216 can be similar to the construction of the LED-based light 116 of FIG. 3, and the LED-based light 216 can include the housing 112, the lens 114, the bi-pin 122 electrical connectors 118 carried by a pair of end caps 120, the circuit board 124 and the LEDs 126.


In addition, the LED-based light 216 can incorporate one or more of the above described components of the lighting control system 12. For example, the switching unit 22 can be included the LED-based light 216. The switching unit 22 can be included in the circuit board 124 and can be electrically connected between the fixture 110 conveying electrical power from a power supply and the LEDs 126 of the LED-based light 216. The switching unit 22 of the LED-based light 216 can be configured to receive the control signal α and, in response to the control signal α, selectively regulate a supply of electrical power to the LEDs 126 to control operation of the LED-based light 216.


The LED-based light 216 can also incorporate one or more of the sensors 28, for example, and can incorporate a communications unit 42 for determining the location of other LED-based lights 216. For example, multiple LED-based lights 216 including a communications unit 42 can together form the spatially distributed network of communications units 42. The positions of one or more LED-based lights 216 including a communications unit 42 can be determined manually, with the positions of the remainder of the LED-based lights 16, 116 or 216 installed into the lighting control system 12 being determined according to the process and techniques described above. In this example, the LED-based light 216 also includes communications devices 44 and/or 46 for sending and receiving location signals γ, although the LED-based light 216 could also communicate with the lighting control system 12 through the communications channels of the communications link 40.


The LED-based lights described herein are presented as examples and are not meant to be limiting. The embodiments can be used with any lighting components known to those skilled in the art and compatible with the scope of the disclosure. In addition, the disclosed processes and techniques can be applied in a variety of building automation system implemented control systems to regulate environmental conditions other than lighting conditions. For example, the disclosed processes and techniques can be applied to determine the position of printers, alarm system components and/or HVAC components, and various controllers can be control operation of these components for purpose of regulating related environmental conditions of the building 10.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims
  • 1. A lighting system comprising: a first light source having a first communications device associated therewith, the first communications device being configured to transmit a location signal;a control unit remote from the first light source, the control unit comprising a processor configured to:store data regarding a plurality of physical areas, the data comprising, for each physical area:a definition of the physical area, wherein the definition of the physical area comprises at least one of an indication of a functional characteristic of the physical area, an indication of a physical surrounding of the physical area, an indication of a presence of natural light in proximity to the physical area, or an indication of a constraint associated with the physical area, andan indication of a lighting condition associated with the physical area;receive the first location signal;determine that the first light source is positioned within a first physical area of the plurality of physical areas based on the location signal;store an indication of an association between the first light source and the first physical area;retrieve the indication of the lighting condition associated with the first physical area; andoperate the first light source to satisfy the lighting condition associated with the first physical area, wherein operating the first light source comprises transmitting one or more command signals to the first communications device associated with the first light source.
  • 2. A lighting system comprising: a first light source having a first communications device associated therewith, the first communications device being configured to transmit a location signal;a control unit remote from the first light source, the control unit comprising a processor configured to:store data regarding a plurality of physical areas, the data comprising, for each physical area:a definition of the physical area, andan indication of a lighting condition associated with the physical area;receive the first location signal, wherein the indication of the lighting condition associated with the physical area comprises at least one of an indication of a lighting performance requirement associated with the physical area, an indication of a lighting efficiency requirement associated with the physical area, an indication of a safety lighting requirement associated with the physical area, or an indication of a comfort requirement associated with the physical area;determine that the first light source is positioned within a first physical area of the plurality of physical areas based on the location signal;store an indication of an association between the first light source and the first physical area;retrieve the indication of the lighting condition associated with the first physical area; andoperate the first light source to satisfy the lighting condition associated with the first physical area, wherein operating the first light source comprises transmitting one or more command signals to the first communications device associated with the first light source.
  • 3. A lighting system comprising: a first light source having a first communications device associated therewith, the first communications device being configured to transmit a location signal;a control unit remote from the first light source, the control unit comprising a processor configured to:store data regarding a plurality of physical areas, the data comprising, for each physical area:a definition of the physical area, andan indication of a lighting condition associated with the physical area;receive the first location signal;determine that the first light source is positioned within a first physical area of the plurality of physical areas based on the location signal;store an indication of an association between the first light source and the first physical area;retrieve the indication of the lighting condition associated with the first physical area; andoperate the first light source to satisfy the lighting condition associated with the first physical area, wherein operating the first light source comprises transmitting one or more command signals to the first communications device associated with the first light source, and modifying a brightness of the first light source to satisfy the lighting condition associated with the first physical area.
  • 4. The lighting system of claim 3, wherein modifying the light output of the first light source comprises increasing the brightness of the first light source.
  • 5. The lighting system of claim 3, wherein modifying the light output of the first light source comprises decreasing the brightness of the first light source.
  • 6. The lighting system of claim 3, wherein operating the first light source further comprises: receiving, at the control unit, sensor data from one or more sensors positioned in the first physical area, the sensor data indicating a current physical lighting condition of the first physical area;determining, at the control unit, that the current physical lighting condition does not satisfy the lighting condition associated with the first physical area;responsive to determining that the current physical lighting condition does not satisfy the lighting condition associated with the first physical area, modifying the brightness of the first light source to satisfy the lighting condition associated with the first physical area.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Utility application Ser. No. 15/008,864, filed Jan. 28, 2016, which is a continuation of U.S. Utility application Ser. No. 13/934,607, filed Jul. 3, 2013, which claims priority benefit to U.S. Provisional Patent Application No. 61/669,319 filed Jul. 9, 2012, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (946)
Number Name Date Kind
2826679 Rosenburg Mar 1958 A
2909097 Alden et al. Oct 1959 A
3178622 Paul et al. Apr 1965 A
3272977 Holmes Sep 1966 A
3318185 Hermann May 1967 A
3561719 Grindle Feb 1971 A
3586936 McLeroy Jun 1971 A
3601621 Ritchie Aug 1971 A
3612855 Juhnke Oct 1971 A
3643088 Osteen et al. Feb 1972 A
3739336 Burland Jun 1973 A
3746918 Drucker et al. Jul 1973 A
3818216 Larraburu Jun 1974 A
3832503 Crane Aug 1974 A
3858086 Anderson et al. Dec 1974 A
3909670 Wakamatsu et al. Sep 1975 A
3924120 Cox, III Dec 1975 A
3958885 Stockinger et al. May 1976 A
3969720 Nishino Jul 1976 A
3974637 Bergey et al. Aug 1976 A
3993386 Rowe Nov 1976 A
4001571 Martin Jan 1977 A
4054814 Fegley et al. Oct 1977 A
4070568 Gala Jan 1978 A
4082395 Donato et al. Apr 1978 A
4096349 Donato Jun 1978 A
4102558 Krachman Jul 1978 A
4107581 Abernethy Aug 1978 A
4189663 Schmutzer et al. Feb 1980 A
4211955 Ray Jul 1980 A
4241295 Williams, Jr. Dec 1980 A
4261029 Mousset Apr 1981 A
4262255 Kokei et al. Apr 1981 A
4271408 Teshima et al. Jun 1981 A
4271458 George, Jr. Jun 1981 A
4272689 Crosby et al. Jun 1981 A
4273999 Pierpoint Jun 1981 A
4298869 Okuno Nov 1981 A
4329625 Niskizawa et al. May 1982 A
4339788 White et al. Jul 1982 A
4342947 Bloyd Aug 1982 A
4344117 Niccum Aug 1982 A
4367464 Kurahashi et al. Jan 1983 A
4382272 Quelle et al. May 1983 A
4388567 Yamazaki et al. Jun 1983 A
4388589 Molldrem, Jr. Jun 1983 A
4392187 Bornhorst Jul 1983 A
4394719 Moberg Jul 1983 A
4420711 Takahashi et al. Dec 1983 A
4455562 Dolan et al. Jun 1984 A
4500796 Quin Feb 1985 A
4521835 Meggs et al. Jun 1985 A
4531114 Topol et al. Jul 1985 A
4581687 Nakanishi Apr 1986 A
4597033 Meggs et al. Jun 1986 A
4600972 MacIntyre Jul 1986 A
4607317 Lin Aug 1986 A
4622881 Rand Nov 1986 A
4625152 Nakai Nov 1986 A
4635052 Aoike et al. Jan 1987 A
4647217 Havel Mar 1987 A
4650971 Manecci et al. Mar 1987 A
4656398 Michael et al. Apr 1987 A
4661890 Watanabe et al. Apr 1987 A
4668895 Schneiter May 1987 A
4669033 Lee May 1987 A
4675575 Smith et al. Jun 1987 A
4682079 Sanders et al. Jul 1987 A
4686425 Havel Aug 1987 A
4687340 Havel Aug 1987 A
4688154 Nilssen Aug 1987 A
4688869 Kelly Aug 1987 A
4695769 Schweickardt Sep 1987 A
4698730 Sakai et al. Oct 1987 A
4701669 Head et al. Oct 1987 A
4705406 Havel Nov 1987 A
4707141 Havel Nov 1987 A
4727289 Uchida Feb 1988 A
4739454 Federgreen Apr 1988 A
4740882 Miller Apr 1988 A
4748545 Schmitt May 1988 A
4753148 Johnson Jun 1988 A
4758173 Northrop Jul 1988 A
4765708 Becker et al. Aug 1988 A
4771274 Havel Sep 1988 A
4780621 Bartleucc et al. Oct 1988 A
4794373 Harrison Dec 1988 A
4794383 Havel Dec 1988 A
4801928 Minter Jan 1989 A
4810937 Havel Mar 1989 A
4818072 Mohebban Apr 1989 A
4824269 Havel Apr 1989 A
4837565 White Jun 1989 A
4843627 Stebbins Jun 1989 A
4845481 Havel Jul 1989 A
4845745 Havel Jul 1989 A
4847536 Lowe et al. Jul 1989 A
4851972 Altman Jul 1989 A
4854701 Noll et al. Aug 1989 A
4857801 Farrell Aug 1989 A
4863223 Weissenbach et al. Sep 1989 A
4870325 Kazar Sep 1989 A
4874320 Freed et al. Oct 1989 A
4887074 Simon et al. Dec 1989 A
4894832 Colak Jan 1990 A
4901207 Sato et al. Feb 1990 A
4904988 Nesbit et al. Feb 1990 A
4912371 Hamilton Mar 1990 A
4920459 Rothwell et al. Apr 1990 A
4922154 Cacoub May 1990 A
4929936 Friedman et al. May 1990 A
4934852 Havel Jun 1990 A
4941072 Yasumoto et al. Jul 1990 A
4943900 Gartner Jul 1990 A
4962687 Belliveau et al. Oct 1990 A
4965561 Havel Oct 1990 A
4973835 Kurosu et al. Nov 1990 A
4977351 Bavaro et al. Dec 1990 A
4979081 Leach et al. Dec 1990 A
4979180 Muncheryan Dec 1990 A
4980806 Taylor et al. Dec 1990 A
4991070 Stob Feb 1991 A
4992704 Stinson Feb 1991 A
5003227 Nilssen Mar 1991 A
5008595 Kazar Apr 1991 A
5008788 Palinkas Apr 1991 A
5010459 Taylor et al. Apr 1991 A
5018054 Ohashi et al. May 1991 A
5027037 Wei Jun 1991 A
5027262 Freed Jun 1991 A
5032960 Katoh Jul 1991 A
5034807 Von Kohorn Jul 1991 A
5036248 McEwan et al. Jul 1991 A
5038255 Nishihashi et al. Aug 1991 A
5065226 Kluitmans et al. Nov 1991 A
5072216 Grange Dec 1991 A
5078039 Tulk et al. Jan 1992 A
5083063 Brooks Jan 1992 A
5088013 Revis Feb 1992 A
5089748 Ihms Feb 1992 A
5103382 Kondo et al. Apr 1992 A
5122733 Havel Jun 1992 A
5126634 Johnson Jun 1992 A
5128595 Hara Jul 1992 A
5130909 Gross Jul 1992 A
5134387 Smith et al. Jul 1992 A
5136483 Schoniger et al. Aug 1992 A
5140220 Hasegawa Aug 1992 A
5142199 Elwell Aug 1992 A
5151679 Dimmick Sep 1992 A
5154641 McLaughlin Oct 1992 A
5161879 McDermott Nov 1992 A
5161882 Garrett Nov 1992 A
5164715 Kashiwabara et al. Nov 1992 A
5184114 Brown Feb 1993 A
5194854 Havel Mar 1993 A
5198756 Jenkins et al. Mar 1993 A
5209560 Taylor et al. May 1993 A
5220250 Szuba Jun 1993 A
5225765 Callahan et al. Jul 1993 A
5226723 Chen Jul 1993 A
5254910 Yang Oct 1993 A
5256948 Boldin et al. Oct 1993 A
5278542 Smith et al. Jan 1994 A
5281961 Elwell Jan 1994 A
5282121 Bornhorst et al. Jan 1994 A
5283517 Havel Feb 1994 A
5287352 Jackson et al. Feb 1994 A
5294865 Haraden Mar 1994 A
5298871 Shimohara Mar 1994 A
5301090 Hed Apr 1994 A
5303124 Wrobel Apr 1994 A
5307295 Taylor et al. Apr 1994 A
5321593 Moates Jun 1994 A
5323226 Schreder Jun 1994 A
5329431 Taylor et al. Jul 1994 A
5341988 Rein et al. Aug 1994 A
5344068 Haessig Sep 1994 A
5350977 Hamamoto et al. Sep 1994 A
5357170 Luchaco et al. Oct 1994 A
5365411 Rycroft et al. Nov 1994 A
5371618 Tai et al. Dec 1994 A
5374876 Horibata et al. Dec 1994 A
5375043 Tokunaga Dec 1994 A
5381074 Rudzewicz et al. Jan 1995 A
5388357 Malita Feb 1995 A
5402702 Hata Apr 1995 A
5404094 Green et al. Apr 1995 A
5404282 Klinke et al. Apr 1995 A
5406176 Sugden Apr 1995 A
5410328 Yoksza et al. Apr 1995 A
5412284 Moore et al. May 1995 A
5412552 Fernandes May 1995 A
5420482 Phares May 1995 A
5421059 Leffers, Jr. Jun 1995 A
5430356 Ference et al. Jul 1995 A
5432408 Matsuda et al. Jul 1995 A
5436535 Yang Jul 1995 A
5436853 Shimohara Jul 1995 A
5450301 Waltz et al. Sep 1995 A
5461188 Drago et al. Oct 1995 A
5463280 Johnson Oct 1995 A
5463502 Savage, Jr. Oct 1995 A
5465144 Parker et al. Nov 1995 A
5473522 Kriz et al. Dec 1995 A
5475300 Havel Dec 1995 A
5481441 Stevens Jan 1996 A
5489827 Xia Feb 1996 A
5491402 Small Feb 1996 A
5493183 Kimball Feb 1996 A
5504395 Johnson et al. Apr 1996 A
5506760 Giebler et al. Apr 1996 A
5513082 Asano Apr 1996 A
5519496 Borgert et al. May 1996 A
5530322 Ference et al. Jun 1996 A
5539628 Seib Jul 1996 A
5544809 Keating et al. Aug 1996 A
5545950 Cho Aug 1996 A
5550440 Allison et al. Aug 1996 A
5559681 Duarte Sep 1996 A
5561346 Byrne Oct 1996 A
5575459 Anderson Nov 1996 A
5575554 Guritz Nov 1996 A
5581158 Quazi Dec 1996 A
5592051 Korkala Jan 1997 A
5592054 Nerone et al. Jan 1997 A
5600199 Martin, Sr. et al. Feb 1997 A
5607227 Yasumoto et al. Mar 1997 A
5608290 Hutchisson et al. Mar 1997 A
5614788 Mullins et al. Mar 1997 A
5621282 Haskell Apr 1997 A
5621603 Adamec et al. Apr 1997 A
5621662 Humphries et al. Apr 1997 A
5622423 Lee Apr 1997 A
5633629 Hochstein May 1997 A
5634711 Kennedy et al. Jun 1997 A
5640061 Bornhorst et al. Jun 1997 A
5640141 Myllymaki Jun 1997 A
5642129 Zavracky et al. Jun 1997 A
5655830 Ruskouski Aug 1997 A
5656935 Havel Aug 1997 A
5661374 Cassidy et al. Aug 1997 A
5661645 Hochstein Aug 1997 A
5673059 Zavracky et al. Sep 1997 A
5682103 Burrell Oct 1997 A
5684523 Satoh et al. Nov 1997 A
5688042 Madadi et al. Nov 1997 A
5697695 Lin et al. Dec 1997 A
5701058 Roth Dec 1997 A
5712650 Barlow Jan 1998 A
5713655 Blackman Feb 1998 A
5721471 Begemann et al. Feb 1998 A
5725148 Hartman Mar 1998 A
5726535 Yan Mar 1998 A
5731759 Finucan Mar 1998 A
5734590 Tebbe Mar 1998 A
5751118 Mortimer May 1998 A
5752766 Bailey et al. May 1998 A
5765940 Levy et al. Jun 1998 A
5769527 Taylor et al. Jun 1998 A
5781108 Jacob et al. Jul 1998 A
5784006 Hochstein Jul 1998 A
5785227 Akiba Jul 1998 A
5790329 Klaus et al. Aug 1998 A
5803579 Turnbull et al. Sep 1998 A
5803580 Tseng Sep 1998 A
5803729 Tsimerman Sep 1998 A
5806965 Deese Sep 1998 A
5810463 Small Sep 1998 A
5812105 Kawahara et al. Sep 1998 A
5813751 Van de Ven Sep 1998 A
5813753 Shaffer Sep 1998 A
5821695 Vriens et al. Sep 1998 A
5825051 Vilanilam et al. Oct 1998 A
5828178 Bauer et al. Oct 1998 A
5831522 York et al. Oct 1998 A
5836676 Weed et al. Nov 1998 A
5841177 Komoto et al. Nov 1998 A
5848837 Ando et al. Nov 1998 A
5850126 Gustafson Dec 1998 A
5851063 Kanbar Dec 1998 A
5852658 Doughty et al. Dec 1998 A
5854542 Knight et al. Dec 1998 A
5859508 Ge et al. Jan 1999 A
5865529 Ge et al. Jan 1999 A
5890794 Yan Feb 1999 A
5896010 Abtahi et al. Apr 1999 A
5904415 Mikolajczak et al. Apr 1999 A
5907742 Robertson et al. May 1999 A
5909378 Johnson et al. May 1999 A
5912653 De Milleville Jun 1999 A
5917287 Fitch Jun 1999 A
5917534 Haederle et al. Jun 1999 A
5921660 Rajeswaran Jun 1999 A
5924784 Yu Jul 1999 A
5927845 Chliwnyj et al. Jul 1999 A
5934792 Gustafson et al. Jul 1999 A
5936599 Camarota Aug 1999 A
5943802 Reymond Aug 1999 A
5946209 Tijanic Aug 1999 A
5949347 Eckel et al. Aug 1999 A
5951145 Iwasaki et al. Sep 1999 A
5952680 Strite Sep 1999 A
5959547 Tubel et al. Sep 1999 A
5961072 Bodle Oct 1999 A
5962989 Baker Oct 1999 A
5962992 Huang et al. Oct 1999 A
5963185 Havel Oct 1999 A
5966069 Zmurk et al. Oct 1999 A
5971597 Baldwin et al. Oct 1999 A
5973594 Baldwin et al. Oct 1999 A
5974553 Gandar Oct 1999 A
5980064 Metroyanis Nov 1999 A
5998925 Shimizu et al. Dec 1999 A
5998928 Hipp Dec 1999 A
6000807 Moreland Dec 1999 A
6007209 Pelka Dec 1999 A
6008783 Kitagawa et al. Dec 1999 A
6010228 Blackman et al. Jan 2000 A
6011691 Schreffler Jan 2000 A
6016038 Mueller et al. Jan 2000 A
6018237 Havel Jan 2000 A
6019493 Kuo et al. Feb 2000 A
6020825 Chansky et al. Feb 2000 A
6025550 Kato Feb 2000 A
6028694 Schmidt Feb 2000 A
6030099 McDermott Feb 2000 A
6031343 Recknagel et al. Feb 2000 A
6056420 Wilson et al. May 2000 A
6068383 Robertson et al. May 2000 A
6069597 Hansen May 2000 A
6072280 Allen Jun 2000 A
6074074 Marcus Jun 2000 A
6084359 Hetzel et al. Jul 2000 A
6086220 Lash et al. Jul 2000 A
6091200 Lenz Jul 2000 A
6092915 Rensch Jul 2000 A
6095661 Lebens et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6107755 Katyl et al. Aug 2000 A
6116748 George Sep 2000 A
6121875 Hamm et al. Sep 2000 A
6127783 Pashley et al. Oct 2000 A
6132072 Turnbull et al. Oct 2000 A
6135604 Lin Oct 2000 A
6135620 Marsh Oct 2000 A
6139174 Butterworth Oct 2000 A
6149283 Conway et al. Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6151529 Batko Nov 2000 A
6153985 Grossman Nov 2000 A
6158882 Bischoff, Jr. Dec 2000 A
6166496 Lys et al. Dec 2000 A
6175201 Sid Jan 2001 B1
6175220 Billig et al. Jan 2001 B1
6181126 Havel Jan 2001 B1
6183086 Neubert Feb 2001 B1
6183104 Ferrara Feb 2001 B1
6184628 Ruthenberg Feb 2001 B1
6196471 Ruthenberg Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6215409 Blach Apr 2001 B1
6217190 Altman et al. Apr 2001 B1
6219239 Mellberg et al. Apr 2001 B1
6220722 Begemann Apr 2001 B1
6227679 Zhang et al. May 2001 B1
6238075 Dealey et al. May 2001 B1
6241359 Lin Jun 2001 B1
6249221 Reed Jun 2001 B1
6250774 Begemann et al. Jun 2001 B1
6252350 Alvarez Jun 2001 B1
6252358 Xydis et al. Jun 2001 B1
6268600 Nakamura et al. Jul 2001 B1
6273338 White Aug 2001 B1
6275397 McClain Aug 2001 B1
6283612 Hunter Sep 2001 B1
6290140 Pesko et al. Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6293684 Riblett Sep 2001 B1
6297724 Bryans et al. Oct 2001 B1
6305109 Lee Oct 2001 B1
6305821 Hsieh et al. Oct 2001 B1
6307331 Bonasia et al. Oct 2001 B1
6310590 Havel Oct 2001 B1
6315429 Grandolfo Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6325651 Nishihara et al. Dec 2001 B1
6334699 Gladnick Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6354714 Rhodes Mar 2002 B1
6361186 Slayden Mar 2002 B1
6362578 Swanson et al. Mar 2002 B1
6369525 Chang et al. Apr 2002 B1
6371637 Atchinson et al. Apr 2002 B1
6373733 Wu et al. Apr 2002 B1
6379022 Amerson et al. Apr 2002 B1
6388393 Illingworth May 2002 B1
6388396 Katyl et al. May 2002 B1
6394623 Tsui May 2002 B1
6396216 Noone et al. May 2002 B1
6400096 Wells et al. Jun 2002 B1
6404131 Kawano et al. Jun 2002 B1
6411022 Machida Jun 2002 B1
6411045 Nerone Jun 2002 B1
6422716 Henrici et al. Jul 2002 B2
6428189 Hochstein Aug 2002 B1
6429604 Chang Aug 2002 B1
6445139 Marshall et al. Sep 2002 B1
6448550 Nishimura Sep 2002 B1
6448716 Hutchison Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6464373 Petrick Oct 2002 B1
6469457 Callahan Oct 2002 B2
6471388 Marsh Oct 2002 B1
6472823 Yen Oct 2002 B2
6473002 Hutchison Oct 2002 B1
6488392 Lu Dec 2002 B1
6495964 Muthu et al. Dec 2002 B1
6511204 Emmel et al. Jan 2003 B2
6517218 Hochstein Feb 2003 B2
6521879 Rand et al. Feb 2003 B1
6522078 Okamoto et al. Feb 2003 B1
6527411 Sayers Mar 2003 B1
6528954 Lys et al. Mar 2003 B1
6528958 Hulshof et al. Mar 2003 B2
6538375 Duggal et al. Mar 2003 B1
6540381 Douglas, II Apr 2003 B1
6541800 Barnett et al. Apr 2003 B2
6548967 Dowling et al. Apr 2003 B1
6568834 Scianna May 2003 B1
6573536 Dry Jun 2003 B1
6577072 Saito et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577512 Tripathi et al. Jun 2003 B2
6577794 Currie et al. Jun 2003 B1
6578979 Truttmann-Battig Jun 2003 B2
6582103 Popovich et al. Jun 2003 B1
6583550 Iwasa et al. Jun 2003 B2
6583573 Bierman Jun 2003 B2
6585393 Brandes et al. Jul 2003 B1
6586890 Min et al. Jul 2003 B2
6587049 Thacker Jul 2003 B1
6590343 Pederson Jul 2003 B2
6592238 Cleaver et al. Jul 2003 B2
6594369 Une Jul 2003 B1
6596977 Muthu et al. Jul 2003 B2
6598996 Lodhie Jul 2003 B1
6608453 Morgan et al. Aug 2003 B2
6608614 Johnson Aug 2003 B1
6609804 Nolan et al. Aug 2003 B2
6609813 Showers et al. Aug 2003 B1
6612712 Nepil Sep 2003 B2
6612717 Yen Sep 2003 B2
6612729 Hoffmann Sep 2003 B1
6621222 Hong Sep 2003 B1
6623151 Pederson Sep 2003 B2
6624597 Dowling et al. Sep 2003 B2
6634770 Cao Oct 2003 B2
6634779 Reed Oct 2003 B2
6636003 Rahm et al. Oct 2003 B2
6639349 Bahadur Oct 2003 B1
6641284 Stopa et al. Nov 2003 B2
6652117 Tsai Nov 2003 B2
6659622 Katogi et al. Dec 2003 B2
6660935 Southard et al. Dec 2003 B2
6666689 Savage, Jr. Dec 2003 B1
6667623 Bourgault et al. Dec 2003 B2
6674096 Sommers Jan 2004 B2
6676284 Wynne Jan 2004 B1
6679621 West et al. Jan 2004 B2
6681154 Nierlich et al. Jan 2004 B2
6682205 Lin Jan 2004 B2
6683419 Kriparos Jan 2004 B2
6700136 Guida Mar 2004 B2
6712486 Popovich et al. Mar 2004 B1
6717376 Lys et al. Apr 2004 B2
6717526 Martineau et al. Apr 2004 B2
6720745 Lys et al. Apr 2004 B2
6726348 Gloisten Apr 2004 B2
6736328 Takusagawa May 2004 B1
6736525 Chin May 2004 B2
6741324 Kim May 2004 B1
6744223 Laflamme et al. Jun 2004 B2
6748299 Motoyama Jun 2004 B1
6762562 Leong Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6774584 Lys et al. Aug 2004 B2
6777891 Lys et al. Aug 2004 B2
6781329 Mueller et al. Aug 2004 B2
6787999 Stimac et al. Sep 2004 B2
6788000 Appelberg et al. Sep 2004 B2
6788011 Mueller et al. Sep 2004 B2
6791840 Chun Sep 2004 B2
6796680 Showers et al. Sep 2004 B1
6799864 Bohler et al. Oct 2004 B2
6801003 Schanberger et al. Oct 2004 B2
6803732 Kraus et al. Oct 2004 B2
6806659 Mueller et al. Oct 2004 B1
6814470 Rizkin et al. Nov 2004 B2
6814478 Menke et al. Nov 2004 B2
6815724 Dry Nov 2004 B2
6846094 Luk Jan 2005 B2
6851816 Wu et al. Feb 2005 B2
6851832 Tieszen Feb 2005 B2
6853150 Clauberg et al. Feb 2005 B2
6853151 Leong et al. Feb 2005 B2
6853563 Yang et al. Feb 2005 B1
6857924 Fu et al. Feb 2005 B2
6860628 Robertson et al. Mar 2005 B2
6866401 Sommers et al. Mar 2005 B2
6869204 Morgan et al. Mar 2005 B2
6871981 Alexanderson et al. Mar 2005 B2
6874924 Hulse et al. Apr 2005 B1
6879883 Motoyama Apr 2005 B1
6883929 Dowling Apr 2005 B2
6883934 Kawakami et al. Apr 2005 B2
6888322 Dowling et al. May 2005 B2
6897624 Lys et al. May 2005 B2
6909239 Gauna Jun 2005 B2
6909921 Bilger Jun 2005 B1
6918680 Seeberger Jul 2005 B2
6921181 Yen Jul 2005 B2
6926419 An Aug 2005 B2
6936968 Cross et al. Aug 2005 B2
6936978 Morgan et al. Aug 2005 B2
6940230 Myron et al. Sep 2005 B2
6948829 Verdes et al. Sep 2005 B2
6953261 Jiao et al. Oct 2005 B1
6957905 Pritchard et al. Oct 2005 B1
6963175 Archenhold et al. Nov 2005 B2
6964501 Ryan Nov 2005 B2
6965197 Tyan et al. Nov 2005 B2
6965205 Piepgras et al. Nov 2005 B2
6967448 Morgan et al. Nov 2005 B2
6969179 Sloan et al. Nov 2005 B2
6969186 Sonderegger et al. Nov 2005 B2
6969954 Lys Nov 2005 B2
6975079 Lys et al. Dec 2005 B2
6979097 Elam et al. Dec 2005 B2
6982518 Chou et al. Jan 2006 B2
6995681 Pederson Feb 2006 B2
6997576 Lodhie et al. Feb 2006 B1
6999318 Newby Feb 2006 B2
7004603 Knight Feb 2006 B2
7008079 Smith Mar 2006 B2
7014336 Duchame et al. Mar 2006 B1
7015650 McGrath Mar 2006 B2
7018063 Michael et al. Mar 2006 B2
7018074 Raby et al. Mar 2006 B2
7021799 Mizuyoshi Apr 2006 B2
7021809 Iwasa et al. Apr 2006 B2
7024256 Krzyzanowski et al. Apr 2006 B2
7029145 Frederick Apr 2006 B2
7031920 Dowling et al. Apr 2006 B2
7033036 Pederson Apr 2006 B2
7038398 Lys et al. May 2006 B1
7038399 Lys et al. May 2006 B2
7042172 Dowling et al. May 2006 B2
7048423 Stepanenko et al. May 2006 B2
7049761 Timmermans et al. May 2006 B2
7052171 Lefebvre et al. May 2006 B1
7053557 Cross et al. May 2006 B2
7064498 Dowling et al. Jun 2006 B2
7064674 Pederson Jun 2006 B2
7067992 Leong et al. Jun 2006 B2
7077978 Setlur et al. Jul 2006 B2
7080927 Feuerborn et al. Jul 2006 B2
7086747 Nielson et al. Aug 2006 B2
7088014 Nierlich et al. Aug 2006 B2
7088904 Ryan, Jr. Aug 2006 B2
7102902 Brown et al. Sep 2006 B1
7113541 Lys et al. Sep 2006 B1
7114830 Robertson et al. Oct 2006 B2
7114834 Rivas et al. Oct 2006 B2
7118262 Negley Oct 2006 B2
7119503 Kemper Oct 2006 B2
7120560 Williams et al. Oct 2006 B2
7121679 Fujimoto Oct 2006 B2
7122976 Null et al. Oct 2006 B1
7123139 Sweeney Oct 2006 B2
7128442 Lee et al. Oct 2006 B2
7128454 Kim et al. Oct 2006 B2
7132635 Dowling Nov 2006 B2
7132785 Duchame Nov 2006 B2
7132804 Lys et al. Nov 2006 B2
7135824 Lys et al. Nov 2006 B2
7139617 Morgan et al. Nov 2006 B1
7144135 Martin et al. Dec 2006 B2
7153002 Kim et al. Dec 2006 B2
7161311 Mueller et al. Jan 2007 B2
7161313 Piepgras et al. Jan 2007 B2
7161556 Morgan et al. Jan 2007 B2
7164110 Pitigoi-Aron et al. Jan 2007 B2
7164235 Ito et al. Jan 2007 B2
7164863 Thomas et al. Jan 2007 B2
7165866 Li Jan 2007 B2
7167777 Budike, Jr. Jan 2007 B2
7168843 Striebel Jan 2007 B2
7178941 Roberge et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
7186003 Dowling et al. Mar 2007 B2
7186005 Hulse Mar 2007 B2
7187141 Mueller et al. Mar 2007 B2
7190126 Paton Mar 2007 B1
7192154 Becker Mar 2007 B2
7198387 Gloisten et al. Apr 2007 B1
7201491 Bayat et al. Apr 2007 B2
7201497 Weaver, Jr. et al. Apr 2007 B2
7202613 Morgan et al. Apr 2007 B2
7204615 Arik et al. Apr 2007 B2
7204622 Dowling et al. Apr 2007 B2
7207696 Lin Apr 2007 B1
7210818 Luk et al. May 2007 B2
7210957 Mrakovich et al. May 2007 B2
7211959 Chou May 2007 B1
7213934 Zarian et al. May 2007 B2
7217004 Park et al. May 2007 B2
7217012 Southard et al. May 2007 B2
7217022 Ruffin May 2007 B2
7218056 Harwood May 2007 B1
7218238 Right et al. May 2007 B2
7220015 Dowling May 2007 B2
7220018 Crabb et al. May 2007 B2
7221104 Lys et al. May 2007 B2
7221110 Sears et al. May 2007 B2
7224000 Aanegola et al. May 2007 B2
7226189 Lee et al. Jun 2007 B2
7228052 Lin Jun 2007 B1
7228190 Dowling et al. Jun 2007 B2
7231060 Dowling et al. Jun 2007 B2
7233115 Lys Jun 2007 B2
7233831 Blackwell Jun 2007 B2
7236366 Chen Jun 2007 B2
7237924 Marineau et al. Jul 2007 B2
7237925 Mayer et al. Jul 2007 B2
7239523 Hsu et al. Jul 2007 B1
7241038 Naniwa et al. Jul 2007 B2
7242152 Dowling et al. Jul 2007 B2
7244058 DiPenti et al. Jul 2007 B2
7246926 Harwood Jul 2007 B2
7246931 Hseih et al. Jul 2007 B2
7248239 Dowling et al. Jul 2007 B2
7249269 Motoyama Jul 2007 B1
7249865 Robertson Jul 2007 B2
7252408 Mazzochette et al. Aug 2007 B2
7253566 Lys et al. Aug 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7255460 Lee Aug 2007 B2
7256554 Lys Aug 2007 B2
7258458 Mochiachvili et al. Aug 2007 B2
7258467 Saccomanno et al. Aug 2007 B2
7259528 Pilz Aug 2007 B2
7262439 Setlur et al. Aug 2007 B2
7262559 Tripathi et al. Aug 2007 B2
7264372 Maglica Sep 2007 B2
7267467 Wu et al. Sep 2007 B2
7270443 Kurtz et al. Sep 2007 B2
7271794 Cheng et al. Sep 2007 B1
7273300 Mrakovich Sep 2007 B2
7274045 Chandran et al. Sep 2007 B2
7274160 Mueller et al. Sep 2007 B2
7285801 Eliashevich et al. Oct 2007 B2
7288902 Melanson Oct 2007 B1
7288904 Numeroli et al. Oct 2007 B2
7296912 Beauchamp Nov 2007 B2
7300184 Ichikawa et al. Nov 2007 B2
7300192 Mueller et al. Nov 2007 B2
7303300 Dowling et al. Dec 2007 B2
7306353 Popovich et al. Dec 2007 B2
7307391 Shan Dec 2007 B2
7308296 Lys et al. Dec 2007 B2
7309965 Dowling et al. Dec 2007 B2
7318658 Wang et al. Jan 2008 B2
7319244 Liu et al. Jan 2008 B2
7319246 Soules et al. Jan 2008 B2
7321191 Setlur et al. Jan 2008 B2
7326964 Lim et al. Feb 2008 B2
7327281 Hutchison Feb 2008 B2
7329024 Lynch et al. Feb 2008 B2
7329031 Liaw et al. Feb 2008 B2
7344278 Paravantsos Mar 2008 B2
7345320 Dahm Mar 2008 B2
7348604 Matheson Mar 2008 B2
7350936 Ducharme et al. Apr 2008 B2
7350952 Nishigaki Apr 2008 B2
7352138 Lys et al. Apr 2008 B2
7352339 Morgan et al. Apr 2008 B2
7353071 Blackwell et al. Apr 2008 B2
7358679 Lys et al. Apr 2008 B2
7358929 Mueller et al. Apr 2008 B2
7370986 Chan May 2008 B2
7374327 Schexnaider May 2008 B2
7378805 Oh et al. May 2008 B2
7378976 Paterno May 2008 B1
7385359 Dowling et al. Jun 2008 B2
7391159 Harwood Jun 2008 B2
7396142 Laizure, Jr. et al. Jul 2008 B2
7396146 Wang Jul 2008 B2
7401935 VanderSchuit Jul 2008 B2
7401945 Zhang Jul 2008 B2
7423548 Kontovich Sep 2008 B2
7427840 Morgan et al. Sep 2008 B2
7429117 Pohlert et al. Sep 2008 B2
7434964 Zheng et al. Oct 2008 B1
7438441 Sun et al. Oct 2008 B2
7449847 Schanberger et al. Nov 2008 B2
7466082 Snyder et al. Dec 2008 B1
7470046 Kao et al. Dec 2008 B2
7476002 Wolf et al. Jan 2009 B2
7476004 Chan Jan 2009 B2
7478924 Robertson Jan 2009 B2
7482764 Morgan et al. Jan 2009 B2
7490957 Leong et al. Feb 2009 B2
7494246 Harbers et al. Feb 2009 B2
7497596 Ge Mar 2009 B2
7498753 McAvoy et al. Mar 2009 B2
7507001 Kit Mar 2009 B2
7510299 Timmermans et al. Mar 2009 B2
7510400 Glovatsky et al. Mar 2009 B2
7511613 Wang Mar 2009 B2
7514876 Roach, Jr. Apr 2009 B2
7520635 Wolf et al. Apr 2009 B2
7521872 Bruning Apr 2009 B2
7524089 Park Apr 2009 B2
7530701 Chan-Wing May 2009 B2
7534002 Yamaguchi et al. May 2009 B2
7549769 Kim et al. Jun 2009 B2
7556396 Kuo et al. Jul 2009 B2
7559663 Wong et al. Jul 2009 B2
7562998 Yen Jul 2009 B1
7569981 Ciancanelli Aug 2009 B1
7572030 Booth et al. Aug 2009 B2
7575339 Hung Aug 2009 B2
7579786 Soos Aug 2009 B2
7583035 Shteynberg et al. Sep 2009 B2
7583901 Nakagawa et al. Sep 2009 B2
7592757 Hargenrader et al. Sep 2009 B2
7594738 Lin et al. Sep 2009 B1
7598681 Lys et al. Oct 2009 B2
7598684 Lys et al. Oct 2009 B2
7600907 Liu et al. Oct 2009 B2
7602559 Jang et al. Oct 2009 B2
7616849 Simon Nov 2009 B1
7618157 Galvez et al. Nov 2009 B1
7619366 Diederiks Nov 2009 B2
7635201 Deng Dec 2009 B2
7635214 Perlo Dec 2009 B2
7639517 Zhou et al. Dec 2009 B2
7648251 Whitehouse et al. Jan 2010 B2
7654703 Kan et al. Feb 2010 B2
7661839 Tsai Feb 2010 B2
7690813 Kanamori et al. Apr 2010 B2
7710047 Shteynberg et al. May 2010 B2
7710253 Fredricks May 2010 B1
7712918 Siemiet et al. May 2010 B2
7748886 Pazula et al. Jul 2010 B2
7758207 Zhou et al. Jul 2010 B1
7759881 Melanson Jul 2010 B1
7784966 Verfuerth et al. Aug 2010 B2
7800511 Hutchison et al. Sep 2010 B1
7815338 Siemiet et al. Oct 2010 B2
7815341 Steedly et al. Oct 2010 B2
7828471 Lin Nov 2010 B2
7843150 Wang et al. Nov 2010 B2
7848702 Ho et al. Dec 2010 B2
7850341 Mrakovich et al. Dec 2010 B2
7855641 Okafo Dec 2010 B1
7878683 Logan et al. Feb 2011 B2
7887216 Patrick Feb 2011 B2
7887226 Huang et al. Feb 2011 B2
7889051 Billig Feb 2011 B1
7904209 Podgomy et al. Mar 2011 B2
7926975 Siemiet et al. Apr 2011 B2
7938562 Ivey et al. May 2011 B2
7946729 Ivey et al. May 2011 B2
7976185 Uang et al. Jul 2011 B2
7976196 Ivey et al. Jul 2011 B2
7990070 Nerone Aug 2011 B2
7997770 Meurer Aug 2011 B1
8013472 Adest et al. Sep 2011 B2
8093823 Ivey et al. Jan 2012 B1
8118447 Simon et al. Feb 2012 B2
8136738 Kopp Mar 2012 B1
8159152 Salessi Apr 2012 B1
8167452 Chou May 2012 B2
8177388 Yen May 2012 B2
8179037 Chan et al. May 2012 B2
8183989 Tsai May 2012 B2
8203445 Recker et al. Jun 2012 B2
8214084 Ivey et al. Jul 2012 B2
8230690 Salessi Jul 2012 B1
8247985 Timmermans et al. Aug 2012 B2
8251544 Ivey et al. Aug 2012 B2
8262249 Hsia et al. Sep 2012 B2
8272764 Son Sep 2012 B2
8287144 Pedersen et al. Oct 2012 B2
8297788 Bishop Oct 2012 B2
8299722 Melanson Oct 2012 B2
8304993 Tzou et al. Nov 2012 B2
8313213 Lin et al. Nov 2012 B2
8319407 Ke Nov 2012 B2
8319433 Lin et al. Nov 2012 B2
8319437 Carlin et al. Nov 2012 B2
8322878 Hsia et al. Dec 2012 B2
8324817 Ivey et al. Dec 2012 B2
8337071 Negley et al. Dec 2012 B2
8366291 Hoffmann Feb 2013 B2
8376579 Chang Feb 2013 B2
8376588 Yen Feb 2013 B2
8382322 Bishop Feb 2013 B2
8382327 Timmermans et al. Feb 2013 B2
8382502 Cao et al. Feb 2013 B2
8398275 Wang et al. Mar 2013 B2
8403692 Cao et al. Mar 2013 B2
8405314 Jensen Mar 2013 B2
8434914 Li et al. May 2013 B2
8454193 Simon et al. Jun 2013 B2
8496351 Lo et al. Jul 2013 B2
8523394 Simon et al. Sep 2013 B2
8531109 Visser et al. Sep 2013 B2
8571716 Ivey et al. Oct 2013 B2
8628216 Ivey et al. Jan 2014 B2
8653984 Ivey et al. Feb 2014 B2
8870412 Timmermans et al. Oct 2014 B1
9016895 Handsaker Apr 2015 B2
9253040 Pitchers Feb 2016 B2
20010015297 Harle et al. Aug 2001 A1
20010033488 Chliwnyj et al. Oct 2001 A1
20010045803 Cencur Nov 2001 A1
20020011801 Chang Jan 2002 A1
20020015297 Hayashi et al. Feb 2002 A1
20020038157 Dowling et al. Mar 2002 A1
20020041159 Kaping Apr 2002 A1
20020044006 Dowling et al. Apr 2002 A1
20020044066 Dowling et al. Apr 2002 A1
20020047516 Iwasa et al. Apr 2002 A1
20020047569 Dowling et al. Apr 2002 A1
20020047624 Stam et al. Apr 2002 A1
20020047628 Morgan et al. Apr 2002 A1
20020048169 Dowling et al. Apr 2002 A1
20020057061 Mueller et al. May 2002 A1
20020060526 Timmermans et al. May 2002 A1
20020070688 Dowling et al. Jun 2002 A1
20020074559 Dowling et al. Jun 2002 A1
20020074958 Crenshaw Jun 2002 A1
20020078221 Blackwell et al. Jun 2002 A1
20020101197 Lys et al. Aug 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020130627 Morgan et al. Sep 2002 A1
20020145394 Morgan et al. Oct 2002 A1
20020145869 Dowling Oct 2002 A1
20020152045 Dowling Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020153851 Morgan et al. Oct 2002 A1
20020158583 Lys et al. Oct 2002 A1
20020163316 Lys et al. Nov 2002 A1
20020171365 Morgan et al. Nov 2002 A1
20020171377 Mueller et al. Nov 2002 A1
20020171387 Morgan et al. Nov 2002 A1
20020176253 Lee Nov 2002 A1
20020176259 Ducharme Nov 2002 A1
20020179816 Haines et al. Dec 2002 A1
20020195975 Schanberger et al. Dec 2002 A1
20030011538 Lys et al. Jan 2003 A1
20030021117 Chan Jan 2003 A1
20030028260 Blackwell et al. Feb 2003 A1
20030031015 Ishibashi Feb 2003 A1
20030048641 Alexanderson et al. Mar 2003 A1
20030052599 Sun Mar 2003 A1
20030057884 Dowling et al. Mar 2003 A1
20030057886 Lys et al. Mar 2003 A1
20030057887 Dowling et al. Mar 2003 A1
20030057890 Lys et al. Mar 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030085710 Bourgault et al. May 2003 A1
20030095404 Becks et al. May 2003 A1
20030100837 Lys et al. May 2003 A1
20030102810 Cross et al. Jun 2003 A1
20030133292 Mueller et al. Jul 2003 A1
20030137258 Piepgras et al. Jul 2003 A1
20030185005 Sommers et al. Oct 2003 A1
20030185014 Gloisten et al. Oct 2003 A1
20030189412 Cunningham Oct 2003 A1
20030218879 Tieszen Nov 2003 A1
20030222578 Cok Dec 2003 A1
20030222587 Dowling et al. Dec 2003 A1
20030234342 Gaines et al. Dec 2003 A1
20040003545 Gillespie et al. Jan 2004 A1
20040007980 Shibata Jan 2004 A1
20040012959 Robertson et al. Jan 2004 A1
20040036006 Dowling Feb 2004 A1
20040037088 English et al. Feb 2004 A1
20040052076 Mueller et al. Mar 2004 A1
20040062041 Cross et al. Apr 2004 A1
20040075572 Buschmann et al. Apr 2004 A1
20040080960 Wu Apr 2004 A1
20040090191 Mueller et al. May 2004 A1
20040090787 Dowling et al. May 2004 A1
20040105261 Ducharme et al. Jun 2004 A1
20040105264 Spero Jun 2004 A1
20040113568 Dowling et al. Jun 2004 A1
20040114371 Lea et al. Jun 2004 A1
20040116039 Mueller et al. Jun 2004 A1
20040124782 Yu Jul 2004 A1
20040130908 McClurg et al. Jul 2004 A1
20040130909 Mueller et al. Jul 2004 A1
20040141321 Dowling et al. Jul 2004 A1
20040145886 Fatemi et al. Jul 2004 A1
20040155609 Lys et al. Aug 2004 A1
20040160199 Morgan et al. Aug 2004 A1
20040178751 Mueller et al. Sep 2004 A1
20040189262 McGrath Sep 2004 A1
20040212320 Dowling et al. Oct 2004 A1
20040212321 Lys et al. Oct 2004 A1
20040212993 Morgan et al. Oct 2004 A1
20040223328 Lee et al. Nov 2004 A1
20040240890 Lys et al. Dec 2004 A1
20040251854 Matsuda et al. Dec 2004 A1
20040257007 Lys et al. Dec 2004 A1
20050013133 Yeh Jan 2005 A1
20050023536 Shackle Feb 2005 A1
20050024877 Frederick Feb 2005 A1
20050030744 Ducharme et al. Feb 2005 A1
20050035728 Schanberger et al. Feb 2005 A1
20050036300 Dowling et al. Feb 2005 A1
20050040774 Mueller et al. Feb 2005 A1
20050041161 Dowling et al. Feb 2005 A1
20050041424 Ducharme Feb 2005 A1
20050043907 Eckel et al. Feb 2005 A1
20050044617 Mueller et al. Mar 2005 A1
20050047132 Dowling et al. Mar 2005 A1
20050047134 Mueller et al. Mar 2005 A1
20050062440 Lys et al. Mar 2005 A1
20050063194 Lys et al. Mar 2005 A1
20050078477 Lo Apr 2005 A1
20050093488 Hung et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107694 Jansen et al. May 2005 A1
20050110384 Peterson May 2005 A1
20050116667 Mueller et al. Jun 2005 A1
20050128751 Roberge et al. Jun 2005 A1
20050141225 Striebel Jun 2005 A1
20050151489 Lys et al. Jul 2005 A1
20050151663 Tanguay Jul 2005 A1
20060192502 Brown et al. Aug 2006 A1
20080157957 Pitchers Jul 2008 A1
Related Publications (1)
Number Date Country
20180027625 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
61669319 Jul 2012 US
Continuations (2)
Number Date Country
Parent 15008864 Jan 2016 US
Child 15712701 US
Parent 13934607 Jul 2013 US
Child 15008864 US