The present invention generally involves a system and method for controlling oxygen emissions from a gas turbine.
One or more gas turbines may often be combined with a heat recovery system to produce a more efficient power generation system having lower emissions. A typical gas turbine includes a compressor at the front, one or more combustors circumferentially arranged around the middle, and a turbine at the rear. The compressor imparts kinetic energy to a working fluid (e.g., air) to bring it to a highly energized state. The compressed working fluid exits the compressor and flows to the combustors where it mixes with fuel and ignites to generate combustion gases having a high temperature and pressure. The combustion gases flow to the turbine where they expand to produce work. For example, expansion of the combustion gases in the turbine may rotate a shaft connected to a generator to produce electricity.
The heat recovery system may be located downstream from the turbine to extract additional heat or work from the exhaust gases exiting the turbine. The heat recovery system may include, for example, a steam generator, a steam turbine, and a condenser. The exhaust gases exiting the turbine may flow through the steam generator to produce steam, and the steam may flow through the steam turbine where it expands to produce work. The condenser may condense the steam exiting the steam turbine into condensate, which in turn may be returned to the steam generator, and the cycle repeats.
In some combined cycle power plants, the exhaust gases exiting the steam generator may be recirculated back to the combustor to provide for near-stoichiometric conditions in the combustion chamber. Specifically, the oxygen content of the recirculated exhaust gases may be approximately 50%, 75%, or 90% less than the oxygen content of ambient air or the compressed working fluid exiting the compressor. Although effective at increasing the overall efficiency of the power plant while also reducing undesirable emissions, recirculating the exhaust gases through the combustor increases the complexity of the combustor design. In addition, the low oxygen content of the recirculated exhaust gases may create flame instabilities in the combustor and/or prematurely quench the combustion. Therefore, an improved system and method for recirculating exhaust gases to control the oxygen emissions from the gas turbine would be useful.
Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One embodiment of the present invention is a system for controlling oxygen emissions from a gas turbine. The system includes a combustor that produces combustion gases, a plenum downstream from the combustor that receives the combustion gases from the combustor, and a turbine downstream from the plenum that receives the combustion gases from the plenum and produces an exhaust. A compressor downstream from the turbine receives the exhaust and produces a compressed exhaust. A compressed exhaust plenum downstream from the compressor provides fluid communication to the combustor and the plenum.
Another embodiment of the present invention is a system for controlling oxygen emissions from a gas turbine. The system includes a first compressor that produces a compressed working fluid, a plurality of combustors downstream from the first compressor that the compressed working fluid from the first compressor and produce combustion gases, an annular plenum downstream from the combustors that receives the combustion gases from the combustors, and a turbine downstream from the annular plenum that receives the combustion gases from the annular plenum and produces an exhaust. A second compressor downstream from the turbine receives the exhaust and produces a compressed exhaust. A compressed exhaust plenum downstream from the second compressor receives the compressed exhaust from the second compressor and provides a flow of the compressed exhaust to the combustors and to the annular plenum.
The present invention may also include a method for controlling oxygen emissions from a gas turbine. The method includes flowing an exhaust from a turbine and increasing the pressure of the exhaust to produce a compressed exhaust. The method further includes flowing a first portion of the compressed exhaust to an inlet of a combustor and flowing a second portion of the compressed exhaust to a plenum between the turbine and the combustor.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Various embodiments of the present invention include a system and method for recirculating exhaust gases to control oxygen emissions from a gas turbine. In particular embodiments of the present invention, a compressor supplies one or more combustors in the gas turbine with a compressed working fluid, and a portion of recirculated exhaust gas is supplied to a head end of one or more combustors to combine with fuel and the compressed working fluid at near-stoichiometric conditions. The remainder of the recirculated exhaust gas may be supplied to a plenum between the one or more combustors and a turbine. Dividing eh recirculated exhaust gas between the head end and the plenum simplifies the complexity in the head end design, reduces flame instability in the combustor, and/or prevents premature flame quenching while still controlling the oxygen emissions of the gas turbine.
The heat recovery system 14 may be retrofitted or added to existing gas turbines to increase the overall thermodynamic efficiency of the gas turbine while also reducing oxygen emissions. The heat recovery system 14 may include, for example, a heat exchanger 32, such as a steam generator, a steam turbine 34, and a condenser 36. The heat exchanger 32 or steam generator may be located downstream from the turbine 20, and exhaust gases 38 from the turbine 20 may flow through the steam generator 32 to produce steam 40. The steam turbine 34 may be located downstream of the steam generator 32, and the steam 40 from the steam generator 32 expands in the steam turbine 34 to produce work. The condenser 36 may be located downstream of the steam turbine 34 and upstream of the steam generator 32 to condense the steam 40 exiting the steam turbine 34 into condensate 42 which is returned to the steam generator 32. One or more condensate pumps 44 between the condenser 36 and the steam generator 32 are in fluid communication with the steam generator 32 to provide the condensate 42 from the condenser 36 to the steam generator 32.
As shown in
The second compressor 48 produces a compressed exhaust 52 having substantially lower oxygen levels than the ambient air 21 entering the first compressor 16 or the compressed working fluid 22 exiting the first compressor 16. In particular embodiments, the oxygen content of the compressed exhaust 52 may be approximately 50%, 75%, or 90% less than the oxygen content of the ambient air 21 entering the first compressor 16 or compressed working fluid 22 exiting the first compressor 16. The second compressor 48 supplies the compressed exhaust 52 to a compressed exhaust plenum 54 downstream from the second compressor 48.
As shown in
The embodiments shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.