This application claims priority to Italian Patent Application No. 102022000005126 filed on Mar. 16, 2022, the disclosure of which is hereby incorporated by reference.
The present invention generally relates to a plant for manufacturing web-like paper material and, in particular, a system and a method for controlling process fluids in a plant for manufacturing web-like paper material.
As known, in the general paper production process, and in the tissue paper production process in particular, a step for drying the product being processed by evaporation must be carried out in order to extract the surplus water content thereof. The product to be desiccated, usually consisting of a fibrous slurry based on cellulose and diluted with water, is initially prepared in an appropriate forming equipment and it is therefore delivered to a subsequent drying and desiccating equipment after an intermediate under vacuum extraction step. At the inlet of the drying and desiccating equipment, the slurry which forms the paper sheet being processed contains a low dry part content, which can be equal to about 38%-50%. In other words, after the under vacuum extraction step the slurry may still contain up to 55% and more of water. Therefore, the under vacuum extraction step is not capable of eliminating all the water from the fibres of the slurry, which must therefore be removed by evaporation.
The finished product, typically but not exclusively consisting of tissue paper, requires a dry part content well higher than the values reported above, that is typically equal to about 94%-96%. Therefore, there clearly arises the need to extract from the fibrous slurry, in the drying step by evaporation, most of the residual water content thereof, in order to obtain a sufficiently dry continuous paper sheet. After the drying and desiccation step by evaporation, the paper sheet is stored in reels in order to be subsequently processed (so-called “converting” step) and, lastly, packaged for shipment and final retail sale.
The most common drying and desiccating equipment of the paper production plants, in particular tissue paper, comprise two separate drying devices, which however act simultaneously on the web-like paper material being processed, which is still in the state of fibrous slurry to be desiccated. A first drying device consists of one or more high-efficiency hoods, which blow hot air, at a temperature typically comprised between 300° C. and 650° C., onto the fibrous slurry being processed. Simultaneously with the blowing, the fibrous slurry being processed is placed in contact with the lateral surface of at least one steam-heated dryer, having a diameter usually ranging between about 1.5 m and about 6 m. This dryer, which is usually identified as “Yankee”, typically consists of a pressurised container made of cast iron. The container contains a process steam therein at a pressure usually ranging between about 4 bar G and about 10 bar G.
In many drying and desiccating equipment of the paper manufacturing plants, the hood is normally divided into two parts, that is a first half-hood or so-called wet half-hood, which is arranged at the inlet side of the fibrous slurry on the Yankee cylinder, and a second half-hood or so-called dry half-hood which is arranged at the outlet side of the fibrous slurry from the Yankee cylinder. These two half-hoods generally contribute to removing the fumes (usually identified as “mist”) coming from the fibrous slurry, given that each half-hood is provided with its own heat generator and with a line for extracting the fumes to be released into the atmosphere. Fume extraction is usually managed by only one fan which provides for suctioning fumes from the respective half-hood and releasing the fumes into the atmosphere using a single chimney. A plant for manufacturing web-like paper material according to the preamble of claim 1, provided with a drying and desiccating equipment which comprises a first wet half-hood and a second dry half-hood, is disclosed for example in document EP 3 795 743 A1.
In the presence of evaporating capacity margins of the drying equipment as a whole, so as to contain the specific thermal consumptions, there is proposed a variant process to the technical solution described above. This process variant provides for removing the whole of the fumes from only one of the two half-hoods. This process variant is defined as a “direct cascade hood”. The half-hood from which the fumes are removed is normally the wet half-hood, which is arranged at the inlet side of the fibrous slurry on the Yankee cylinder. The wet half-hood therefore receives the exhaust fumes of the dry half-hood, which is arranged at the outlet side of the fibrous slurry, from the Yankee cylinder.
In particular cases the reverse process, that is the extraction of the whole fumes from the dry half-hood, may be carried out after the latter has received the exhaust fumes of the wet half-hood. This reverse process is defined as “inverse cascade hood”.
In recent years, steel has been used instead of cast iron to manufacture the Yankee cylinder. Steel cylinders actually have a thermal exchange capacity greater than that of the cylinders made of cast iron. The steel cylinders also have construction diameters which can reach values greater than those of cylinders made of cast iron, these diameters being limited only by the difficulty of transporting the cylinders.
The use of steel cylinders has caused a significant increase in fumes coming from the fibrous slurry, given that the larger diameter of the cylinder allows to dry a greater amount of fibrous slurry within the same time unit. It should also be considered that the drying of the fibrous slurry becomes more complex as the grammage of the paper intended to be obtained starting from that determined fibrous slurry decreases. For example, as regards drying of fibrous slurry intended for manufacturing toilet paper, whose grammage if particularly low (equal to about 14-18 g/m2 on the winder), on steel cylinders, the amount of fumes is reduced by the maximum speed limit of the drying equipment. As a result, in this drying equipment, the evaporating contribution of the two half-hoods has decreased a lot and, in some cases, and now the hood has the sole function of extracting fumes.
In the drying equipment provided with steel cylinders having a large diameter, as regards low grammage of the paper intended to be obtained, the most appropriate technical solution would be to use the hood in direct cascade mode. However, in order to obtain the maximum flexibility of the plant, one does not necessarily have to give up the possibility of also using hood in reverse cascade mode.
Therefore, an object of the present invention is to provide a system and a method for controlling process fluids in a plant for manufacturing web-like paper material which are capable of overcoming the aforementioned drawback of the prior art in an extremely simple, cost-effective and particularly functional manner.
In detail, an object of the present invention is to provide a system and a method for controlling process fluids in a plant for manufacturing web-like paper material which allow, at discretion and/or depending on the manufacturing needs, to use the two half-hoods in direct cascade mode, in reverse cascade mode and even in the standard parallel operation mode.
This and other objects according to the present invention are attained by providing a system and a method for controlling process fluids in a plant for manufacturing web-like paper material as outlined in the independent claims. Further features of the invention are outlined by the dependent claims, which are an integral part of the present description.
The features and advantages of a system and a method for controlling process fluids in a plant for manufacturing web-like paper material according to the present invention will be more apparent from the following exemplifying and non-limiting description, with reference to the attached drawings in which the only FIGURE is a schematic view which shows both a part of the drying and desiccating equipment and a preferred embodiment of a system according to the present invention for controlling process fluids in a plant for manufacturing web-like paper material.
With reference to
In detail, the drying and desiccating equipment of the plant 10 comprises a first drying device, in turn comprising at least one rotary dryer 12 supplied with pressurised steam. The slurry of paper material adheres dynamically on the lateral surface of the dryer 12. Therefore, the cylinder 12 is of the so-called “Yankee” type and it is supplied with live steam at a predefined operating pressure, preferably comprised between about 4 bar G and about 10 bar G. Condensing on the inner surface of the Yankee cylinder 12, the steam transfers heat to the outer surface of the Yankee cylinder 12, that is the surface on which the slurry of paper material being dried adheres.
The drying and desiccating equipment of the plant 10 further comprises a second drying device, in turn comprising at least one hood 14, 16 which at least partially wraps the Yankee cylinder 12. The hood consists of a first half-hood 14 and at least one second half-hood 16 which are both capable of blowing high temperature dry air on the slurry of paper material wound on the lateral surface of the Yankee cylinder 12 and suctioning the hot and moist fumes released by the slurry of paper material. In detail, the first half-hood 14 is a so-called wet half-hood, which is arranged at the inlet side of the slurry of paper material on the Yankee cylinder 12, while the second half-hood 16 is a so-called dry half-hood, which is arranged at the outlet side of the slurry of paper material from the Yankee cylinder 12.
The drying and desiccating equipment of the plant 10 further comprises at least one first delivery circuit 18, designed to supply high temperature air to the first wet half-hood 14, and at least one second delivery circuit 20, designed to supply high temperature air to the second dry half-hood 16. As a result, there are provided for at least one first return circuit 22, designed for suctioning the fumes from the first wet half-hood 14, and at least one second return circuit 24, designed to suction the fumes from the second dry half-hood 16.
As shown in
Between the first return circuit 22 connected to the first wet half-hood 14 and the second return circuit 24 connected to the second dry half-hood 16 there is further interposed, upstream of the first interface duct 26, a second interface duct 32, also placed in fluid connection both with the first return circuit 22 and with the second return circuit 24. Along this second interface duct 32 there are installed a third flow regulating device 34 and a fourth flow regulating device 36. As shown by the arrows of
As shown in
Still with reference to
The pre-heated air is replenished in the first wet half-hood 14 through a first delivery duct 46, which is placed in fluid connection with the first delivery circuit 18 and with the first return circuit 22 and which is designed to send—to the first delivery duct 18—at least one part of the fumes which flow through the first return circuit 22 and at least one part of the air coming from the air supply duct 42. Similarly, pre-heated air is replenished in the second dry half-hood 16 through at least one second delivery circuit 48, which is placed in fluid connection with the second delivery duct and with the second return circuit 24 and which is designed to send—to the second delivery duct 20—at least one part of the fumes which flow through the second return circuit 24 and at least one part of the air coming from the air supply duct 42.
Between the first return circuit 22 and the first delivery duct 46 there is interposed at least one first fan 50, which is designed to transfer—to the first delivery duct 46 the air and/or fumes coming from the first return circuit 22. Between the first delivery duct 46 and the first delivery circuit 18 there is instead interposed at least one first heat generator 52, such as for example a burner, which is designed to heat both the air and fumes coming from the first delivery 46, and further air coming from the environment outside the plant 10 through a further air supply duct 58 (burner comburent air) which is placed in fluid connection with such first heat generator 52.
Between the second return circuit 24 and the second delivery circuit 48 there is also interposed at least one second fan 54, which is designed to transfer—to the second delivery duct 48—the air and/or the fumes coming from the second return circuit 24. Between the second delivery duct 48 and the second delivery circuit 20 there is therefore also interposed at least one second heat generator 56, such as for example a burner, which is designed to heat and dry the air and fumes coming from the second delivery duct 48, as well as further air coming from the environment outside the plant 10 through a further air supply duct 60 (burner comburent air) which is placed in fluid connection with such second heat generator 56.
According to the invention, between the first return circuit 22 connected to the first wet half-hood 14 and the second return circuit 24 connected to the second dry half-hood there is interposed at least one third interface duct 38. This third interface duct 38 is independent both from the first interface duct 26, on which there are installed the valves 28 and 30 for replenishing pre-heated air, and from the second interface duct 32, on which there are installed the valves 34 and 36 for extracting fumes.
Along the third interface duct 38 there is installed at least one fifth flow regulating device 40 which, as shown by the arrows of
This fifth flow regulating device 40 allows, whenever need arises, to transfer the fumes coming from the first return circuit 22 of the first wet half-hood 14, which is arranged at the inlet side of the slurry of paper material on the Yankee cylinder 12, on the second return circuit 24 connected to the second dry half-hood 16, which is arranged at the outlet side of the slurry of paper material from the Yankee cylinder 12. In this operating mode, the first heat generator 52, which is connected to the first wet half-hood 14 remains activated, while the second heat generator 56, which is connected to the second dry half-hood 16, may remain switched off. From the second dry half-hood 16, all the fumes, that is the one coming from both half-hoods 14 and 16, may be released into the atmosphere through the exhaust pipe 44 and an appropriate adjustment of the valves 34 and 36 for extracting fumes. Basically, this is the reverse cascade operating mode. However, the bidirectionality of the fifth flow regulating device 40 also allows to obtain the direct cascade operating mode.
Basically, the method for controlling process fluids in the plant 10 described up to now may selectively comprise the steps of:
Therefore, it has been observed that the system and the method for controlling process fluids in a plant for manufacturing web-like paper material according to the present invention attain the objects outlined above. The introduction of a specific bidirectional flow regulating device into the plant allows the plant to operate selectively according to three different working conditions of the half-hoods, ensuring maximum operating flexibility of the plant for all possible paper manufacturing grammage.
The system for controlling process fluids of the present invention thus conceived is in any case susceptible to various modifications and variants, all falling within the same inventive concept; furthermore, all details can be replaced by technically equivalent elements. Basically, the materials used as well as the shapes and dimensions may vary according to the technical needs.
Therefore, the scope of protection of the invention is defined by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
102022000005126 | Mar 2022 | IT | national |