The present disclosure relates generally to engine control, and, more particularly, to engine and propeller control in aircraft.
A propeller-driven aircraft powerplant consists of two principal and distinct components: an engine and a propeller. An engine control system is used to modulate the power output of the engine, for example by controlling fuel flow to the engine. The power output from the engine is principally used to drive the propeller. Similarly, a propeller control system is used to modulate the thrust produced by the propeller, for example by changing a propeller rotational speed and/or a propeller blade pitch.
In traditional propeller-driven aircraft, each of the engine control system and the propeller control system is operated by a pilot or other operator using a respective lever for each of the powerplant components. Thus, a throttle lever is used to set a desired engine power output and a condition lever is used to set a desired propeller rotational speed and blade pitch angle, thereby modulating the thrust output. However, the presence of multiple levers for each principal powerplant component can lead to additional workload for the pilot. As such, there is room for improvement.
In accordance with a broad aspect, there is provided a method for controlling a propeller-driven aircraft, the aircraft powered by at least one engine having at least one propeller associated therewith. The method comprises at an engine controller for the at least one engine, receiving at least one control input for the at least one engine, determining, based on the at least one control input, a setpoint for a rotational speed of the at least one propeller, and outputting, to a propeller controller for the at least one propeller, a control signal comprising instructions to adjust the rotational speed of the at least one propeller to the setpoint.
In some embodiments, receiving the at least one control input comprises receiving a lever position for a throttle lever associated with the at least one engine.
In some embodiments, the setpoint is determined from a mapping of the rotational speed of the at least one propeller as a function of the lever position.
In some embodiments, receiving the at least one control input comprises receiving a power rating selection from a rating panel associated with the at least one engine.
In some embodiments, the setpoint is determined from a mapping of the rotational speed of the at least one propeller as a function of the power rating selection.
In some embodiments, the control signal is output to the propeller controller as a synthesized control lever angle signal derived from the at least one control input.
In accordance with another broad aspect, there is provided a system for controlling a propeller-driven aircraft, the aircraft powered by at least one engine having at least one propeller associated therewith. The system comprises a propeller controller for the at least one propeller, and an engine controller for the at least one engine, the engine controller comprising at least one processing unit and at least one non-transitory computer-readable memory having stored thereon program instructions executable by the at least one processing unit for receiving at least one control input for the at least one engine, determining, based on the at least one control input, a setpoint for a rotational speed of the at least one propeller, and outputting, to the propeller controller, a control signal comprising instructions to adjust the rotational speed of the at least one propeller to the setpoint.
In some embodiments, the program instructions are executable by the at least one processing unit for receiving the at least one control input comprising receiving a lever position for a throttle lever associated with the at least one engine.
In some embodiments, the program instructions are executable by the at least one processing unit for determining the setpoint a mapping of the rotational speed of the at least one propeller as a function of the lever position.
In some embodiments, the program instructions are executable by the at least one processing unit for receiving the at least one control input comprising receiving a power rating selection from a rating panel associated with the at least one engine.
In some embodiments, the program instructions are executable by the at least one processing unit for determining the setpoint from a mapping of the rotational speed of the at least one propeller as a function of the power rating selection.
In some embodiments, the program instructions are executable by the at least one processing unit for outputting the control signal to the propeller controller as a synthesized control lever angle signal derived from the at least one control input.
In accordance with yet another broad aspect, there is provided a non-transitory computer readable medium having stored thereon program code executable by at least one processor for receiving, at an engine controller for at least one engine powering a propeller-driven aircraft, at least one control input for the at least one engine, determining, at the engine controller, based on the at least one control input, a setpoint for a rotational speed of at least one propeller associated with the at least one engine, and outputting, at the engine controller, to a propeller controller for the at least one propeller, a control signal comprising instructions to adjust the rotational speed of the at least one propeller to the setpoint.
Features of the systems, devices, and methods described herein may be used in various combinations, in accordance with the embodiments described herein.
Reference is now made to the accompanying figures in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
With reference to
Operation of the engine 110 and of the propeller 120 can be regulated by a pilot or other operator by way of various powerplant controls. Traditionally, a turbopropeller-driven aircraft is provided with a throttle lever (also referred to as a power lever), which is used to regulate the output power of the engine 110, and a condition lever, which is used to regulate the propeller rotational speed and blade pitch angle thereby modulating thrust produced by the propeller 120. For instance, traditionally, the aircraft can include one throttle lever and one condition lever per powerplant 100. For example, a twin turbopropeller aircraft having two separate powerplants 100 can have two throttle levers and two condition levers.
As will be discussed further below, the present disclosure considers to replace the traditional condition lever by a control input (also referred to herein as a synthesized condition lever angle (CLA)) that is derived by a controller of the engine 110 and which corresponds to a setpoint defining the rotational governing speed of the propeller 120. The synthesized CLA (i.e. the setpoint) is transmitted by the engine controller to a controller of the propeller 140 so that the propeller governing speed can be set accordingly. In this manner, the traditional condition lever input may be eliminated.
With reference to
The throttle lever 202 provides to the PCS 200 a lever position (also referred to herein as a lever angle), for example based on the angle of the lever 202 vis-à-vis a predetermined reference position. The lever position is indicative of a requested engine power for the engine 110. In addition, in some embodiments, the cockpit controls 204 include buttons, switches, dials, or other discrete-type input mechanisms which may be located on or proximate the throttle lever 202 and which can provide additional input to the PCS 200. For example, the discrete-type input mechanisms can provide information regarding the propeller reference speed, fuel on/off, propeller feather/unfeather, and the like. The lever position, and optionally the additional input from the cockpit controls 204, can be provided to the PCS 200 using any suitable signalling protocol and over any suitable communication medium. In some embodiments, the PCS 200 receives the lever position and the additional input via one or more wires, either as a digital signal or as an electrical analog signal. In other embodiments, the throttle lever 202 can communicate the lever position and the cockpit controls 204 can communicate the additional input to PCS 200 over one or more wireless transmission protocols.
PCS 200 includes an engine controller 210 and a propeller controller 220, which both use information from the throttle lever 202, and optionally additional input from the cockpit controls 204, as will be discussed further below. In some embodiments, the engine controller 210 is implemented as a dual-channel full-authority digital engine control (FADEC). In other embodiments, the engine controller 210 is implemented as two separate single-channel FADECs. Additionally, in some embodiments, the propeller controller 220 is implemented as a dual-channel propeller electronic control (PEC) unit, or as two single-channel PEC units, or any suitable combination thereof. In some embodiments, the additional inputs provided by the cockpit controls 204 can be provided via one or more engine interface cockpit units.
For the sake of simplicity, a single PCS 200 controlling operation of a single powerplant 100 is described and illustrated herein. It should however be understood that this is for illustrative purposes only and that the present disclosure considers aircraft having multiple powerplants, and accordingly multiple PCS configured to perform similar operations to PCS 200. For example, a twin turbopropeller aircraft having two separate powerplants as in 100 and two PCS as in 200 may apply, each PCS configured to control operation of a respective powerplant and to receive input from a given throttle lever as in 202. Still, other embodiments may apply. It should therefore be understood that the PCS 200 may include any suitable number of engine-controller-and-propeller-controller pairs.
The engine controller 210 is indeed configured for receiving the lever position from the throttle lever 202, and optionally the additional input from the cockpit controls 204. The lever position and the additional input can be transmitted from the throttle lever 202 and from the cockpit controls 204 to the engine controller 210 in any suitable fashion and using any suitable communication protocol, as discussed above. The engine controller 210 then processes the lever position from the throttle lever 202, and any additional input from the cockpit controls 204, to determine the requested engine output power for the engine 110. Based on the requested engine output power, the engine controller 210 produces an engine control signal which is sent to the engine 110 to control the operation of the engine 110 so as to achieve the requested engine output power. In some embodiments, the engine control signal modulates a flow of fuel to the engine 110. In other embodiments, the engine control signal alters the operation of a gear system of the engine 110. Still other types of engine operation control are considered.
The engine controller 210 is also configured for processing the lever position from the throttle lever 202, and any additional input from the cockpit controls 204, to determine a setpoint (also referred to herein as a governing setpoint or a synthesized CLA) for the rotational governing speed of the propeller 120. This governing setpoint is then transmitted by the engine controller 210 to the propeller controller 220 to cause the propeller controller 220 to adjust the rotational governing speed of the propeller 120 to the governing setpoint. The propeller controller 220 is also configured for receiving the lever position directly from the throttle lever 202, in any suitable fashion and using any suitable communication protocol, as discussed above, or as sent through the engine controller 210 to the propeller controller 220. The lever position is then used by the propeller controller 220 to set a minimum allowed blade pitch angle when in flight, as a function of the lever position. The lever position is also used by the propeller controller 220 to allow for transition into and out of reverse pitch when operating on the ground, for taxiing and landing. By regulating the rotational governing speed and blade pitch angle of the propeller 120, the propeller controller 220 can in turn convert the requested engine output power into thrust.
Referring now to
The curve 304 provides an indication of the governing setpoint to be defined by the engine controller 210 at any given lever position in order in order to set a specific propeller speed. In the embodiment illustrated in
In some embodiments, the lever position has a plurality of transition points (also referred to herein as breakpoints), at which requested propeller governing speeds change. The breakpoints may align with aircraft flight modes or phases, or with certain emergency conditions. It can be seen that, in the example of
Referring now to
In one embodiment, below the GI gate 404, the propeller governing speed setpoint may be determined as a function of the lever position (labelled “Power Lever Angle” in
In one embodiment, the engine controller 210 may set the propeller governing speed setpoint to a predetermined value (e.g., 100 degrees) at all times. In one embodiment, this may be achieved by selecting an override option 414 on the rating selection panel 402. In another embodiment, the governing speed setpoint may be set to the predetermined value (e.g., 100 degrees) when the lever position is above a propeller speed override (NP O/R) position 416, between a rating detent position 418 and a maximum takeoff (MTO)/go-around (GA) position 420. Setting the governing speed setpoint at 100 degrees may be desirable under certain flight conditions, such as icing, where the higher rotational speed promotes the shedding of ice on the propeller blades. Also, for multiple powerplant aircraft and in the case where one engine is inoperative, it may be desired to set the propeller governing speed setpoint at 100% to achieve the highest thrust capability. This may however be at the expense of lower noise and vibration and more efficient power to thrust conversion afforded by operating at low propeller speeds.
Referring back to
The memory 504 may comprise any suitable known or other machine-readable storage medium. The memory 504 may comprise non-transitory computer readable storage medium, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. The memory 504 may include a suitable combination of any type of computer memory that is located either internally or externally to device, for example random-access memory (RAM), read-only memory (ROM), electro-optical memory, magneto-optical memory, erasable programmable read-only memory (EPROM), and electrically-erasable programmable read-only memory (EEPROM), Ferroelectric RAM (FRAM) or the like. Memory 504 may comprise any storage means (e.g., devices) suitable for retrievably storing machine-readable instructions 406 executable by processing unit 502.
With reference to
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure.
Various aspects of the systems and methods described herein may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments. Although particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects. The scope of the following claims should not be limited by the embodiments set forth in the examples, but should be given the broadest reasonable interpretation consistent with the description as a whole.