This invention relates generally to controlling a set of semi-active actuators, and more particularly to controlling the set of semi-active actuators to minimize vibration in an elevator system.
Vibration reduction in mechanical systems is important for a number of reasons, including safety and energy efficiency of the systems. Particularly, vibration in various transportation systems is directly related to ride quality and safety of passengers, and, thus, should be minimized. For example, vertical vibration in vehicles can be controlled by active or passive vibration reduction systems, which are generally referred as suspension systems. Similarly, the vibration induced during an operation of an elevator system can be minimized.
The elevator system typically includes a car, a frame, a roller guide assembly, and guide rails. The roller guides act as a suspension system to minimize the vibration of the elevator car. The car and roller guides are mounted on the frame. The car and frame move along the guide rail as constrained by the guide rollers. There are two principal disturbances which contribute to the levels of vibration in the car: (1) rail-induced forces which are transmitted to the car through the rail guides due to rail irregularities, and (2) direct-car forces such as produced by wind buffeting the building, passenger load distribution or motion.
Some methods, e.g., a method described in U.S. Pat. No. 5,544,721, U.S. Pat. No. 5,329,077, compensate for irregularity of the guide rail in the elevator system to improve the ride comfort. However, the method measures the irregularity of the guide rail with sensors, which is expensive. Also, for the complex elevators systems, controlling the elevator car based only on the horizontal irregularities of the rails can be ineffective.
Specifically, controlling vibration of the elevator car of the elevator system is complicated by the difficulties in determining a state of the elevator system during its operation. Therefore, various systems for controlling lateral vibration of the elevator cars use simple control logic to determine the damping force compensating the disturbance according to detected vibration level. For example, a system described in U.S. Pat. No. 7,909,141 schedules the damping coefficient of a damper according to the travel speed of the elevator car. The resultant control system is not optimal, because the travel speed of the elevator only partially reflects the characteristics of the disturbance. Other methods require various sensors to implement a sophisticated control. For example, a control system described in U.S. Pat. No. 8,011,478 requires position sensors and accelerometers. Such method is expensive.
It is an objective of some embodiments of an invention to provide a system and a method for controlling a set of semi-active actuators arranged in an elevator system to compensate for a set of disturbances on an elevator car in a horizontal direction. It is a further objective of some embodiments, to provide such system and method that optimizes the control of the semi-active actuators while minimizing a number of sensors for measuring parameters of an operation of the system. Various embodiments of the invention determine a control policy of the semi-active actuators. To minimize the number of measured parameters, some embodiments determine a control policy based on a parameter representing the vibration of the system. An example of the parameter is an acceleration signal indicative of the acceleration of an elevator frame or an elevator car in the elevator system. Accordingly, some embodiments decrease the cost of the control by using, during the operation of the elevator system, only the measurements of the accelerometer.
Some embodiments determine the control policy based on a model of the elevator system. The embodiments take advantage of another realization that a set of semi-active actuators can be controlled uniformly and thus a model of the elevator system can be simplified based on that uniformity. Accordingly, some embodiments represent the elevator system as a model of a virtual elevator system having a single virtual semi-active actuator arranged to compensate for a virtual disturbance.
The virtual semi-active actuator represents the set of semi-active actuators. For example, a compensative force of the virtual semi-active actuator represents compensative forces of the set of semi-active actuators. Similarly, the virtual disturbance represents a combination of the set of disturbances. Such realization allows defining the control policy for the virtual semi-active actuator, and controlling uniformly each actuator of the set of semi-active actuators according to the control policy of the virtual semi-active actuator.
However, even after the simplification based on the virtual system, it can be difficult to explicitly derive the optimal control policy due to difficulties in measuring disturbances or other parameters of the virtual system caused by the virtual disturbance, such as a displacement between ends of the virtual semi-active actuator or a relative velocity and position between the ends of the virtual semi-active actuator. On the other hand, the knowledge of the disturbance in time domain renders the state of the elevator system observable, i.e., determinable. The knowledge of the state and the disturbance allows implementing various advanced control methods, such as receding moving horizon and sub-optimal control methods, to minimize the vibration of the elevator car effectively.
Some embodiments are based on another realization that virtual vibration can be determined in advance using the model of the virtual elevator system and an acceleration signal indicative of a horizontal acceleration of the elevator car. For example, one embodiment augments the model with the virtual disturbance and a time derivative of the virtual disturbance as state variables and inverts the augmented model to determine a relationship between a second order time derivative of the virtual disturbance and the acceleration signal. Based on this relationship and the measurements of the acceleration signal the virtual disturbance can be determined.
Accordingly, various embodiments receive values of the acceleration signal measured at different vertical positions of the elevator car during an operation of the elevator system without usage of the set of actuators and determine, based on the model and the values of the acceleration signal, the vertical profile of the virtual disturbance. The vertical profile maps values of the virtual disturbance to corresponding vertical positions of the elevator car.
During operation of the elevator car, the disturbance profile of the virtual disturbance can be used to determine the virtual disturbance for the operation. For example, one embodiment determines the virtual disturbance during the operation of the elevator car using a motion profile of a movement of the elevator car during the operation and the disturbance profile of the virtual disturbance. The disturbance profile is predetermined and stored in a memory accessible by a processor of a control system. The motion profile of a position of the elevator car can be, e.g., determined by a motion controller of the elevator system. Such embodiment can be advantageous because allows to incorporate future disturbance in the control policy.
The model, the disturbance profile and an acceleration signal indicative of a horizontal acceleration of the elevator car during the operation can be used to determine a state of the elevator system. In turn, the knowledge of the state of the elevator system can be used to control semi-active actuators. For example, one embodiment controls each actuator of the set of semi-active actuators based on the state of the elevator system and according to a control policy of the virtual semi-active actuator.
Accordingly, one embodiment discloses a method for controlling a set of semi-active actuators arranged in an elevator system to minimize a vibration of an elevator car caused by a set of disturbances on the elevator car in a horizontal direction. The method includes representing the elevator system with a model of a virtual elevator system having a single virtual semi-active actuator arranged to compensate a virtual disturbance proportional to a sum of disturbances from the set of disturbances, wherein a compensative force of the virtual semi-active actuator is proportional to a sum of compensative forces of the set of semi-active actuators; determining the virtual disturbance during an operation of the elevator car using a motion profile of position of the elevator car during the operation and a disturbance profile of the virtual disturbance; determining a state of the elevator system using the model of the virtual elevator system, the virtual disturbance and a signal indicative of a horizontal acceleration of the elevator car during the operation; and controlling each actuator of the set of semi-active actuators based on the state of the elevator system and according to a control policy of the virtual semi-active actuator. Steps of the method are performed by a processor.
Another embodiment discloses a system for controlling a set of semi-active actuators arranged in an elevator system to compensate for a set of disturbances. The system includes a sensor for determining an acceleration signal indicative of a horizontal acceleration of the elevator car during an operation of the elevator system; a processor for determining, based on a model of a virtual elevator system and an acceleration signal, a disturbance profile of a virtual disturbance representing the set of disturbances, wherein the model of the virtual elevator system includes a single virtual semi-active actuator having a compensative force proportional to a sum of compensative forces of the set of semi-active actuators and arranged to compensate for the virtual disturbance proportional to a sum of disturbances from the set of disturbances, and wherein the acceleration signal is measured at different vertical positions of the elevator car during the operation of the elevator system without usage of the set of actuators; and a controller for controlling each actuator of the set of semi-active actuators according to a control policy of the virtual semi-active actuator using the disturbance profile of the virtual disturbance and the acceleration signal measured during the operation of the elevator car with usage of the set of actuators.
Various embodiments of an invention disclose a system and a method to control an elevator system having semi-active actuators. Some embodiments are directed to a suspension system subject to at least one external disturbance in a direction of a disturbance, and at least one semi-active actuator is controlled to minimize the vibration of one of masses induced by the corresponding disturbances.
For clarity purposes, this disclosure focuses on the control method of a system using semi-active actuators to minimize vibration induced by disturbances in one direction, and the system is subject to external disturbances in that direction. A control method to minimize vibration in multiple directions can be derived by generalizing the disclosed control method.
Given a set of disturbances and a set of semi-active actuators, some embodiments of the invention represent the system as a model of a virtual system having a single virtual semi-active actuator arranged to compensate a virtual disturbance. For example, a compensative force of the virtual semi-active actuator represents compensative forces of the set of semi-active actuators, and the virtual disturbance represents a combination of the set of disturbances. In various embodiments, such representation is based on assumption of uniformity of the semi-active actuators, i.e., all semi-active actuators are exactly the same, perform, and are controlled in a similar way.
In various embodiments of the invention, control of semi-active actuators is derived according to an optimal control theory and is based on the model of the system. In some embodiments, the model of the system is represented by a model of a virtual system. For example, one embodiment controls uniformly each actuator of the set of semi-active actuators according to an optimal control policy of the virtual semi-active actuator. Specifically, some embodiments are based on a realization that it is advantageous to control the set of actuators according to the optimal control policy that optimizes parameter of operation of the system.
The disturbances affect the movement of masses in one direction. One virtual disturbance in a specific direction represents the combined effect of all relevant disturbances on the movement of the masses in that direction. Similarly, a virtual actuator corresponding to a virtual disturbance in a specific direction accounts for the effect of all relevant semi-active actuators on the masses in that specific direction. For example, a compensative force of the virtual semi-active actuator can be determined as a function of sum compensative forces of the set of semi-active actuators.
Sensors 103 measure a signal indicating an operational status of the system 101. Given the model of the virtual system, a pre-determined disturbance profile 107, a motion profile, and the measured signal, a disturbance module 104 determines a virtual disturbance 109 of the virtual system. The disturbance profile 107 is determined offline and stored in memory for online use to reconstruct the virtual disturbance 109 corresponding to a real operation of the physical system. Given the virtual disturbance 109, a state estimator 105 determines a state 110 of the virtual system. The state includes a set of variables characterizing the behavior of the virtual system during operation. A control signal 131 is determined by a controller 106 according to various control policies of the virtual semi-active actuator. The control signal can vary either the voltage or current. The control signal 131 can be directly outputted to the semi-active actuators 112, or indirectly via amplifiers.
As shown in
For example, in some embodiment each semi-active actuator is a semi-active damper having a controlled damping coefficient ui, 1≦i≦4. Assuming that all semi-active actuators are controlled uniformly, the physical system is minimized to a virtual system with a virtual disturbance 212 and the virtual semi-active actuator 211. Particularly, the virtual disturbance is a sum of four disturbances, and denoted as
The virtual semi-active actuator has a controlled damping coefficient of
For the embodiment with all the semi-active actuators having the same controlled damping coefficients, the virtual semi-active actuator has a controlled damping coefficient ū=4u1, and the virtual disturbance is
Without loss of generality, all k semi-active actuators, a type of damping device, are applied on the same mass m with a displacement x. Hence, the ith semi-active actuator generates a compensating force of fi=ui({dot over (x)}−{dot over (w)}i) where ui is the controlled damping coefficient of the ith semi-active actuator. The compensating forces of the set of semi-active actuators are
where the dots above the variables indicate derivatives.
In one embodiment, the semi-active actuators perform uniformly, and the semi-active actuators have the same controlled damping coefficients, the compensating forces of all semi-active actuators is
based on which a virtual semi-active actuator generates the same compensating force as all k semi-active actuators can be determined. For example, the controlled damping coefficient of the virtual semi-active actuator is ku, the virtual relative velocity of the virtual semi-active actuator is
and the virtual disturbance is
Referring back to
A semi-active actuator is installed between one end of the rotation arm and the base. The semi-active actuator generates a force based on a relative lateral movement between the rotation arm and the frame. This force can remove the energy transferred to the frame, and thus damp the vibration of the frame. Consequently, the vibration of the elevator car is minimized.
According to various embodiments of the invention, the elevator system also includes a sensor 310 for measuring a parameter representing a vibration level of the elevator car during the operation of the elevator system. For example, an acceleration of the elevator car reflects the ride comfort that passengers feel, thus the sensor 310 can be an accelerometer for measuring an acceleration of the elevator frame 303 or for measuring directly the acceleration of the elevator car 304. In some embodiments, the semi-active actuators 306 are controlled, e.g., by a controller 410, according to the control policy based on the measured signal during the operation of the elevator system. In one embodiment, the acceleration of the elevator frame is measured to reduce the number of sensors and the cost of the system.
In one embodiment, the roller guide assembly includes a linear/rotary theological actuator arranged between the base and the rotation arm as shown in
In the case of the MR actuator, the controller can selectively turn the MR actuators ON or OFF in response to the vibrations, and output the corresponding signal to the amplifier. To turn the MR actuator ON, the amplifier outputs an electric current to the coil of the MR actuator. The coil current establishes the required magnetic field to increase the viscosity of MR fluids inside the housing of the MR actuator, thus change the damping coefficient of the MR actuator. To turn the MR actuator OFF, no current is output by the amplifier, thus the damping coefficient of the MR actuator is minimal. In another embodiment, the MR actuator can be turned on continuously, i.e. the controller continuously adjust the damping coefficient of the MR actuator.
There are numerous variations configuration of assembling semi-active actuators with the elevator system. In one embodiment, one semi-active actuator is installed for each roller. Considering the purpose of the semi-active suspension to minimize the acceleration of the floor of the elevator car, the semi-active actuators installed on the lower roller guide assembly play major impact on the achievable vibration reduction performance. Hence, another embodiment uses six semi-active actuators over the two lower roller guides. Further reduction of the number of semi-active actuators is possible. For example, one embodiment uses only four semi-active actuators, two over the lower center rollers, one over the lower left front roller, and one over the lower right front roller. Another embodiment is to use two semi-active actuators: one over a lower center roller to damp left-to-right movement, and the other over a lower front or back roller to damp front-to-back movement.
In one embodiment satisfying the aforementioned symmetry condition, the elevator suspension includes eight semi-active actuators, i.e., one semi-active actuator is installed on the center roller of each roller guide, and one semi-active actuator is installed on the front roller of each roller guide. Even if the symmetry condition is not strictly satisfied, for some embodiments, the established virtual system by simplification can still represent the physical system fairly well when the physical system is close to symmetry. Methods taught here should not be limited to applications in physical systems satisfying the symmetry condition.
For example, one embodiment is directed to teach the control method of the semi-active scheme for the full elevator system, where eight semi-active actuators are installed on four roller guides, i.e., one semi-active actuator for each center roller, and one semi-active actuator for each front roller. An example of the configuration of the semi-active actuator on a roller of an elevator is shown in
x-axis
y-axis
z-axis
x-axis movement of the car and the frame
y-axis rotation of the car and the frame
y-axis rotation of the ith rotation arm
The car and frame movement in the right-to-left direction or in x-axis, and the car and frame movement in the back-to-forth direction or in Y-axis are decoupled. One embodiment considers the control method for semi-active actuators to minimize the vibration of the elevator in the right-to-left direction.
The control method can be implemented by the controller 410 based on the parameter representing an acceleration of the elevator car measured by the sensor 310. The controller controls the set of semi-active actuators according to various control policies of a virtual semi-active actuator representing the set of actuators, as discussed later.
The elevator car can be subject to various forces result from the interaction with the frame. These forces can include the spring and damping forces resulting from support rubbers between the car and the frame, which is denoted by a lumped force fcx, and written as
f
c
x
=k
c
x(xc−xf+lxy(θxy−θfy))+bcx({dot over (x)}c−{dot over (x)}f+lcy({dot over (θ)}cy−{dot over (θ)}fy))).
Similarly, the rotation of the car around the y-axis is induced by the lumped torque, corresponding to the lumped force fcx, denoted by
T
c
x
=l
c
y
f
c
x.
The translational movement of the frame including the frame and all roller guides in x-axis is subject to the forces from its interaction with the car and the guide rails, all of which are type of spring and damping forces. The lumped spring and compensating force result from the roller gums of four center rollers is denoted by fgx and written as
where fsxi represents the spring and damping forces result from the roller gum of the ith center roller. Hence the dynamics of the frame translation in the right-to-left direction is
where p2xi is an appropriate constant.
The roller is subject to the torque corresponding to forces result from the interaction between the roller gum and the guide rail, which is denoted by
The torque, around the pivot arms, corresponding to the spring and damping forces of the roller spring, is denoted by
The torque corresponding to the compensating force of semi-active actuators is
The dynamics of the elevator including the translation and rotation of the car and the frame in the right-to-left direction, and the rotation of the center rollers around their pivots are
wherein p3xi are constant, and Iry is the inertial of the rotation arm and center roller with respect to the pivot.
In one embodiment, the coupling terms p2xi{umlaut over (θ)}ryi and p2xi{umlaut over (x)}f are ignored because the rest terms in the dynamics is dominant. Thus, the physical system model represented by Equations (8-11) can be simplified by considering
p
2
xi=0,p2xi=0.
The virtual system is determined by manipulating the dynamics of the physical system. With the assumption that all semi-active actuator perform uniformly, the summation of Equation (11) for 1≦i≦4 is
which allows the definition of a virtual semi-active actuator with a damping coefficient
a virtual disturbance
and a corresponding virtual relative velocity
Thus, the virtual system is derived and shown in
Based on the virtual system model, constraints on the virtual semi-active actuator, and the optimal control theory, the embodiment determines the optimal control policy for minimizing the vibration of the elevator car in the right-to-left direction as
where φ(x,y,t) is the state function, x represents a vector of co-state and state variables, including translational displacements and velocities of the car and the frame, angular displacement and velocity of the rotation arms, y denotes the measured signal from sensor 103, and t represents the dependence on the virtual disturbance.
A control method for the disclosed semi-active suspension of the elevator uses the approximation of the state function φ(x,y,t) of state and co-state of the system and the function of displacement {dot over (θ)}ry or the virtual relative velocity.
Some embodiments approximate the values of the state function and the function of displacement in the optimal control policy. The approximation of these functions is dependent on the measurements. Particularly, the approximation of the function of displacement is also related to the configuration of the semi-active actuators.
{circumflex over (θ)}ry(t)=ŵx(t)−{circumflex over (x)}f(t),
where ŵx denotes an estimated virtual disturbance, and {circumflex over (x)}f denotes an estimated translational displacement of the frame along the right-to-left direction. The forth filter processes the acceleration signal to produce the estimated translational displacement 617, of the frame along the right-to-left direction {circumflex over (x)}f. Summation of signals 616 and 617 gives the estimated virtual disturbance ŵx.
In one embodiment shown in
In one embodiment, four semi-active actuators are installed on all four center rollers to minimize the vibration in the x-axis. This embodiment designs the first and second filters on the basis of the virtual system given by Equations (8), (10), and (12). Assuming that the semi-active actuators perform the same action, the model of the virtual relative position, denoted by
where ux=uix for 1≦i≦4 is the controlled damping coefficient of the virtual semi-active actuator. The dynamics of the virtual relative position is described by a linear time varying differential equation depending on the virtual relative position, the virtual relative velocity, the virtual control, and the torque from the roller gum Tgx. Given the variable Tgx and the dynamics of the virtual relative position (13), the second filter for estimating the virtual relative position is determined as follows
wherein z1 denotes the estimated virtual relative position, z2 denotes the estimated virtual relative velocity, Iry is an inertial of a rotation arm with respect to a pivot, L is a length between the pivot and an actuator force point, ux is a viscous damping coefficient of the virtual semi-active actuator, h1 is a height between the pivot and a roller spring, b1 is a damping coefficient of the roller spring, k1 is a stiffness of the roller spring, and Tgx represents a torque around the pivot. The output of the second filter z2 approximates the virtual relative velocity {dot over (θ)}ry. The approximate value of the virtual relative velocity z2 converges exponentially to the true value of the virtual relative velocity {dot over (θ)}ry. The approximate value of the virtual relative position z1 converges exponentially to the true value of the virtual relative position θry.
In another embodiment, only two semi-active actuators are installed on two out of four center rollers to minimize the vibration in the x-axis. This embodiment designs the second filter on the basis of the virtual system, and the second filter is similar to the filter of the previous embodiment.
The value of Tgx can be obtained by using the output of the first filter. For example, one embodiment assumes that translational and angular accelerations of the frame are measured. The car dynamics in Equations (8)-(9) are rearranged to estimate the car accelerations from the measured frame accelerations
m
c
{umlaut over (x)}
c
+k
c
x(xc+lcyθcy)+bcx({dot over (x)}c+lcy{dot over (θ)}cy)=kcx(xf+lcyθfy)+bcx({dot over (x)}f+lcy{dot over (θ)}fy),
I
c
y{umlaut over (θ)}cy+lcykcx(xc+lcyθcy)+lcybcx({dot over (x)}c+lcy{dot over (θ)}cy)=lcykcx(xf+lcyθfy)+lcybcx({dot over (x)}f+lcy{dot over (θ)}fy). (14)
The Laplace transformation of Equation (14) is
(Mcs2+Bcs+Kc)Xc(s)=(Bcs+Kc)Xf(s),
where Xc(s)=[xc(s),θcy(s)] is the Laplace transformation of [xc,θcy], and Xf(s)=[xf(s),θfy(s)] is the Laplace transformation of [xf,θfy], s is a complex frequency, and Mc, Bc, Kc are appropriate matrices. The car accelerations can be estimated by filtering the frame accelerations through the following first filter whose transfer function is given by
G
c(s)=(Mcs2+Bcs+Kc)−1(Bcs+Kc).
According to the estimation of the car accelerations, the value of the lumped force fcx is known. Thus the value of the lumped force from the roller gum fgx can be computed according to equation (10), which implies the value of the torque Tgx. Thus the second filter is designed.
One embodiment of the first filter further simplifies the estimation of the value of the torque Tgx. This embodiment only measures the translational acceleration of the frame, e.g., along the x-axis. As disclosed above, the estimation of the acceleration of the elevator car along x-axis requires the knowledge of frame's translational acceleration along x-axis and rotational acceleration around y axis. The rotational dynamics of the car and the frame can be decoupled from the translational dynamics due to its negligible effect, and Equation (14) is simplified as
m
c
{umlaut over (x)}
c
+k
c
x
x
c
+b
c
x
{dot over (x)}
c
=k
c
x
x
f
+b
c
x
{dot over (x)}
f. (15)
From Equation (15), the car acceleration in x-axis can be estimated as the output of the following first filter whose input is the frame acceleration in x-axis
The G(s) is the transfer function of the first filter whose input is translational acceleration of the elevator frame in, e.g., right to left direction, and the output is the estimated translational acceleration of the elevator car in, e.g., right to left direction. Also, s is a complex frequency, mc is a mass of the elevator car, kcx is a weighted stiffness of a car-hold dumper, and bcx is a weighted damping of car-hold dumper. Given the estimated car acceleration, the value of the lumped force from the roller gum fgx can be computed according to Equation (10), which implies the value of the torque Tgx. The virtual relative position and velocity can be approximated by the same second filter. Accordingly, the vibration of the elevator car is minimized based only on the measurement of the acceleration.
m
c
{umlaut over (x)}
c
+f
c
x=0, (16)
(mf+mr){umlaut over (x)}f−fcx+fgx=0, (17)
I
r
y{umlaut over (θ)}ry+Tgx+Tyx+Tux=0, (18)
{dot over (ξ)}7=ξ8,
{dot over (τ)}8=v (19)
y={umlaut over (x)}
f. (20)
where ξ7, ξ8 represent the virtual disturbance and its time derivative respectively, and v represents the second order time derivative of the virtual disturbance. The augmented virtual system has only one unknown external input function v: the second order time derivative of the virtual disturbance.
In one embodiment, the virtual semi-active actuator is switched off, and the augmented virtual system is linear time invariant. A transfer function of the augmented virtual system, denoted by
can be computed by applying Laplace transformation to the input v and output y of the augmented virtual system, has zero-poles cancellation, after which all zeros and poles are located at the left half complex plane. The augmented virtual system is invertible, thus is inverted to produce an inverted augmented virtual system 722 whose transfer function is given by
Based on the inverted augmented virtual system, the first band-pass filter can be determined as a copy of the inverted augmented virtual system whose input is the measured acceleration signal, and the output is the estimated second order time derivative of the virtual disturbance 733.
A copy of the inverted augmented virtual system means that the first band-pass filter has the exactly the same transfer function as the inverted augmented virtual system. The estimated second order time derivative of the virtual disturbance 733 exponentially converges to the second order time derivative of the virtual disturbance.
The second band-pass filter is designed to approximate a double integrator such that the estimated virtual disturbance can be reliably reconstructed from the estimated second order time derivative of the virtual disturbance 733. The design of the second band-pass filter to approximate a double integrator is straightforward for those skilled in the art. The method to design the first band-pass filter relies on Laplace transformation of the augmented virtual system which has to be linear time invariant. The transfer function of the augmented virtual system may not exist if the virtual semi-active actuator is switched ON and OFF over time, which means the augmented virtual system is time varying. The method teaches above still works for this case without the use of transfer function if one has a good model of the virtual semi-active actuator, thus the compensative force generated by the virtual semi-active is a known signal and its effect on the output can be removed to produce a new output which only depends on the virtual disturbance.
For example, by treating the compensative force F(t) of the virtual semi-active actuator as a known input, the augmented virtual system is linear time invariant and the Laplace transformation of its output is given by
Y(s)=Gvy(s)V(s)+Gyu(s)F(s),
where F(s) is the Laplace transformation of the compensative force of the virtual semi-active actuator, and Gyu is the transfer function from the compensative force to the output. One can redefine a new output
Some embodiments are based on a realization that it is beneficial to first run the elevator with semi-active actuators in the OFF position such that the virtual system is subject to forces due to the virtual disturbance only, and the Laplace transformation of the augmented virtual system is always possible. This embodiment minimizes difficulty of dealing with various uncertainties simultaneously. Letting the semi-active actuators in ON position however does not prevent the application of the method with having high fidelity knowledge about the semi-active actuators.
Given the estimated virtual disturbance and the estimated full state of the virtual system, various control policies are designed and implemented by various embodiments. Advantageously, the advance knowledge of the virtual disturbance coupled with the state estimation allows to implement various advanced control policies, which otherwise are difficult to implement.
In one embodiment, given the model of the virtual system 102, a control policy of the virtual semi-active actuator is defined 902 based on principles of the optimal control theory 940. For example, the control policy 902 optimizes a cost function 920 representing an operation of the virtual system, such that a function of a parameter of operation 930, e.g., a two norm of the mass acceleration, is optimized, e.g., minimized. The cost function is subject to various constraints 925, such as constraints on the semi-active actuators, for instance maximal and minimal damping coefficients.
The structure 904 of the control policy 902 of the virtual semi-active actuator in the virtual system can be determined, e.g., by applying the minimum principle of the optimal control theory. For example, when the virtual semi-active actuator is a damper with an adjustable viscous damping coefficient, the optimal control policy for determining a control signal ū for controlling the actuators has the following structure
where φ({circumflex over (x)},y,t) is a state function 903, {circumflex over (x)} is the estimated state of the virtual system, y is the signals from sensors, υ is the virtual relative velocity of the virtual semi-active actuator or the function of displacement 905, bmax is the maximal damping coefficient of the virtual semi-active actuator, and bmin is the minimal damping coefficient of the virtual semi-active actuator.
In another embodiment, wherein the semi-active actuators are dampers which generate damping forces directly, the optimal control policy has the following structure
wherein fmax is the maximal damping force of the virtual semi-active actuator, and fmin is the minimal damping force of the virtual semi-active actuator.
where α is constant corresponding to the dominant resonant frequency of the elevator, {dot over (ŵ)}(t) is the estimated time derivative of the virtual disturbance. Similarly for a semi-active actuator generating forces directly, a control policy implemented in the switch controller 961 can take the form of the following
In the system 1000, w is a vibration source or the external disturbance 1010, m1 and m2 represent masses of an elevator car 1030 and an elevator frame 1020, respectively, k1 1025 and b1 1035 are the lumped stiffness and damping of support rubbers between the car and the frame, k2 1045 and b2 1055 are the stiffness and damping of springs between the frame and the guide rail, x1 and x3 are the horizontal displacements 1040 and 1050 of the car and the frame respectively, and x2={dot over (x)}1 and x4={dot over (x)}3 are the horizontal velocities of the car and the frame, respectively.
The model as expressed in Equation (1) of the disturbed mass-spring-damping system can be written as
where u is the controlled damping coefficient of the semi-active actuator, and y represents the measured parameter of operation, i.e., the acceleration of the frame. The control signal u is designed to minimize the car acceleration {umlaut over (x)}1. Because there is only one disturbance, the physical semi-active actuator is the virtual semi-active actuator, and the virtual disturbance is the physical disturbance. Thus the system model based on equation (1) also represents the virtual system model. For the automotive suspension case, the car suspension is modeled similarly but the movement of masses is in the vertical direction, and the guide rail is replaced with the road.
This embodiment uses the sensors 103 to measure only frame acceleration, i.e. the parameter of operation is the frame acceleration, i.e., y={dot over (x)}4, thus the true values of the state x and the relative velocity {dot over (η)}=x4−{dot over (w)} are not measured. Due to an inherent observability issue with the acceleration measurement, this embodiment considers an approximate optimal control according to
where {dot over ({circumflex over (η)} is the approximation of the function of displacement {dot over ({circumflex over (η)}. One variation of the embodiment uses the following approximate optimal control
where c1 and c2 are constant, {umlaut over ({circumflex over (x)}1 is the estimated car acceleration, and {circumflex over (x)}4 is the estimated velocity of the frame.
Corresponding to
Given the virtual system model expressed in Equation (1), treating the measured signal y as a known variable, and denoting the virtual relative position η, the dynamics of the virtual relative position can be derived as follows
where the car acceleration {dot over (x)}2 can be estimated by the first filter
The first filter (22) processes the frame acceleration as its input, and outputs the estimation of the car acceleration. The output of the first filter (22), denoted by {dot over ({circumflex over (x)}2, converges to the true value of the car acceleration {dot over (x)}2. With the estimated car acceleration, the dynamics of the virtual relative position (21) is described by a linear time varying first order differential equation whose right hand side is a function of the virtual relative position, and known variables including the measured signal, and the estimated car acceleration.
The second filter estimates the virtual relative velocity of the virtual actuator according to
where {circumflex over (η)} is the estimation of the virtual relative position, and z denotes the estimation of the virtual relative velocity, or the approximation of the value of the function of displacement. The second filter provide asymptotic approximation of the function of displacement, i.e., the output of the second filter converges to the true value of the function of displacement as time goes infinity, and the convergent speed is exponential.
The filters disclosed herein provide a globally exponentially convergent estimation of the relative velocity and the car acceleration. This approach can be readily employed to estimate the relative velocity between the car and the frame, thus when the semi-active actuator is placed between the car and the frame, the disclosed control method is also applicable.
The fifth filter 615 for the system 1000 can be determined by following the procedure taught above. The model of the system 1000 is augmented to include the virtual disturbance and its first order time derivative as two extra state variables. The augmented virtual system is written as follow
where v={umlaut over (w)} is the second order time derivative of the virtual disturbance, x5=w and x6={dot over (w)} is the first order time derivative of the virtual disturbance. Treating the second order time derivative as external unknown input and letting u=0 for simplicity, a transfer function from the external unknown input to the measured signal y can be computed and denoted as
where Y(s), V(s) are the Laplace transformation of signal y(t), v(t) respectively. The transfer function has two zero-pole cancellations, but it does not affect the reconstruction of the external unknown input. A transfer function of the inverted augmented virtual system can be readily obtained by inverting the transfer function Gv(s). Thus the band-pass filter 1 has a transfer function as follows
The external unknown input can be reconstructed as
{circumflex over (v)}(t)=Gbpf1(s)*Y(s)
where * denotes the convolution.
The above-described embodiments of the present invention can be implemented in any of numerous ways. For example, the embodiments may be implemented using hardware, software or a combination thereof. When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers. Such processors may be implemented as integrated circuits, with one or more processors in an integrated circuit component. Though, a processor may be implemented using circuitry in any suitable format.
Further, it should be appreciated that a computer may be embodied in any of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop computer, minicomputer, or a tablet computer. Such computers may be interconnected by one or more networks in any suitable form, including as a local area network or a wide area network, such as an enterprise network or the Internet. Such networks may be based on any suitable technology and may operate according to any suitable protocol and may include wireless networks, wired networks or fiber optic networks.
Also, the various methods or processes outlined herein may be coded as software that is executable on one or more processors that employ any one of a variety of operating systems or platforms. Additionally, such software may be written using any of a number of suitable programming languages and/or programming or scripting tools, and also may be compiled as executable machine language code or intermediate code that is executed on a framework or virtual machine.
In this respect, the invention may be embodied as a non-transitory computer-readable medium or multiple computer readable media, e.g., a computer memory, compact discs (CD), optical discs, digital video disks (DVD), magnetic tapes, and flash memories. The terms “program” or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of the present invention as discussed above.
Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
Also, the embodiments of the invention may be embodied as a method, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Although the invention has been described by way of examples of preferred embodiments, it is to be understood that various other adaptations and modifications can be made within the spirit and scope of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/471,312, filed on May 14, 2012, the disclosure of which being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13471312 | May 2012 | US |
Child | 13772980 | US |