The field of the present invention relates to vertical semi-continuous casting, with direct cooling, and in particular the prevention of risks associated with the casting of a product (plate or billet) in a mold (or ingot mold).
The invention relates more particularly to a system for the continuous control of vertical semi-continuous casting, with direct cooling, in particular an aluminum alloy, for manufacturing one or more products.
Plates for rolling and extrusion billets are typically manufactured by casting in a mold, or ingot mold, vertical and positioned on a casting table above a casting pit or well.
The mold is rectangular in the case of plates or cylindrical in the case of billets, with open ends, with the exception of the bottom end closed at the start of the casting by a bottom block that moves downwards by means of a lowerator during the casting of the plate or billet, the top end being intended for the metal feed.
At the start of the casting process, the bottom block is in its highest position in the mold. The casting begins with a filling step, consisting of pouring the molten metal into a mold. During any one casting, a plurality of molds may be filled at the same time. It is important for the filling to be done homogeneously in the molds. As from a certain quantity of metal poured, the metal begins to be cooled, typically by means of water, and the bottom block is lowered at a predetermined speed. This is the lowering step. The use of a deflector during the cooling step is advantageous for preventing the appearance of slits. This makes it possible in fact to reduce the temperature gradient within the solidified metal. The deflector makes it possible to stop the flow of cooling water at a certain distance from the molten-metal dispensing point. Typically the deflector is a rubber part that surrounds the mold. The solidified metal is then extracted through the bottom part of the mold and the plate or billet is thus formed. At the end of casting, the products are extracted from the pit; this is the mold stripping step.
This type of molding in which the metal extracted from the mold is cooled directly by the impact of a cooling liquid is known by the term semi-continuous casting, typically vertical, with direct cooling.
The semi-continuous casting method may present certain difficulties that it is necessary to be able to control. Among these difficulties, mention can be made of the problems of filling, surface defects, hanging problems and piercing problems.
At the start of the casting, it is essential to be capable of detecting any filling problem and to check the level of the metal in the mold in order to be able to stop the casting in the most appropriate way, if possible automatically. In the contrary case, this would constitute a significant risk from the point of view of safety by putting liquid metal in contact with the water cooling the product.
The solutions using automatic regulation of the metal level are impossible to implement in the case of charge casting. There is only one level sensor for all the flows, in general positioned in the central channel at the inlet to the dispenser. It is therefore not possible to differentiate the flows.
When the lowerator is started, the metal level is sometimes lower than the bottom of the central channel of the dispenser. The level sensor cannot therefore carry out any measurement.
The solutions based on the visual detection of metal level in each of the flows are tricky to implement since they require processing of the image recorded on each flow. The solutions based on the detection of the metal level by a sensor of the thermocouple type are ill suited to industrial implementation. Since the sensor has to react very quickly when it detects the liquid metal, it cannot be sheathed. It must therefore be changed before each new start since it is rapidly damaged by the liquid metal.
Once the casting has commenced and the filling takes place correctly, during the casting process, the external layer of the product solidifies and surrounds a part of the liquid metal not yet solidified. This non-solidified liquid metal part, also referred to as “sump” can extend over a long distance above the bottom of the mold. If the external layer of the solidified metal tears or is pierced, the liquid metal may flow through the breach. This is what is referred to as the phenomenon of metal piercing. The metal piercing phenomenon is a potentially dangerous phenomenon that may lead to risks of explosion, in particular with aluminum and the alloys thereof.
There exist a certain number of solutions for detecting piercing phenomena. Mention can be made of the U.S. Pat. No. 6,279,645 using a radiation-sensitive detector, positioned in the cooling zone: in the presence of molten metal, the infrared sensor detects temperature changes. The patent EP 1155762 proposes a system for stopping the flow of metal if a piercing phenomenon is detected. The stoppage takes place if a sacrificial element is destroyed.
It is however advantageous to act upstream of the piercing phenomenon and to detect phenomena that may give rise to it, in particular hanging phenomena, or surface defects.
The hanging phenomenon relates to the hanging of the product, which remains momentarily attached in the ingot mold and does not follow the movement of the lowerator on which the product bears during cooling thereof. Thus the product is no longer resting on its support, commonly referred to as a bottom block, and a greater and great distance is created between the bottom block, connected to the movement of the lowerator, and the sole of the product remains attached.
However, the occurrence of hanging constitutes a significant risk from the point of view of safety. This incident is in fact liable to degenerate into piercing, with discharge of liquid metal in the casting pit, either because the base of the product, since it is no longer cooled in the absence of contact with the bottom block, ends up by remelting, releasing liquid metal; or since abrupt detachment of the solidified product tears the cortical zone and releases liquid metal. The risk is even higher in the case of charge casting: because of the high metallostatic height, a piercing is liable to release a large quantity of metal.
It is therefore very important be capable of detecting hanging as soon as possible, so as to be able to manage it in the most appropriate fashion.
According to the prior art, the detection of hanging during plate casting with regulation of the metal level is based on monitoring the opening of the actuator: an actuator that remains closed for too long is an indication of hanging. However, this indication is sometimes ambiguous. Moreover, for all the other casting technologies (regulation of the level by nozzle/float or charge casting), it is not possible to use this type of detection. There is therefore a very great interest in developing an alternative system for detecting hangings.
It is also important to limit the risks of hanging upstream, by working in particular on the factors that are precursors of hanging. Observations have shown that the hanging of the cast product in an ingot mold occurs mainly during the start phase of the casting. The most frequent causes of this incident are ill-suited starting parameters, such as poor management of the camber in the case of a cast plate, or a defect in installation of the tooling, such as a defect in perpendicularity of the bottom block with respect to the ingot mold.
Finally, the solutions based on the visual detection of surface defects are tricky to implement: they require the installation of cameras in the particular atmosphere of the casting pit; the cameras must in particular be protected from moisture and any splashing of liquid metal. It is also necessary to provide a processing of the images recorded on each of the flows. This processing is made complicated by the presence of the cooling water on the surface of the products. It is moreover difficult to develop criteria making it possible to trigger the stoppage of the casting before defects degenerate into piercing. It is also important to detect very early indications of severe prolonged degradation of the surface state of the products since these defects are also liable to degenerate into piercing. When these defects persist with a certain level of gravity, it may then be advantageous to trigger a stoppage of the casting.
Thus the present invention aims to make casting safe through the control and detection of signs that are precursors of hanging, a filling defect and/or a surface defect and to stop the casting when the risks calling into question safety are high.
It is also important to be able to check the casting conditions concerning the centering of the bottom block and of the deflector with respect to the mold. This is because faulty positioning in one of these elements may lead to breakages of equipment, to premature wear of these elements or to casting difficulties of the hanging type or surface defect of the product. For example, faulty centering of the deflector with respect to the mold tends, during the descent of the bottom block and of the product, for these to interact with the deflector, which may then lead to damage to the deflector, or to jamming of the bottom block or to damage to the surface state of the product or to hanging thereof. Faulty centering of the bottom block for its part may lead to jamming thereof in the mold and consequently lead to hanging.
The present invention also aims to reveal defects in centering of the bottom block and/or of the deflector and thus to allow preventive maintenance in order to recenter these elements or to stop casting when the risks of hanging are too high.
To this end, the present invention proposes a system for controlling the carrying out of the manufacture of at least one product by vertical semi-continuous casting, with direct cooling, in particular aluminum alloy, in a fixed respective mold. Each product having a fixed mold. The control system comprises:
The present invention also relates to a method for controlling the manufacture of at least product by vertical semi-continuous casting with direct cooling, in particular an aluminum alloy, by a control system of the invention wherein
The manufacture of said product by vertical semi-continuous casting with direct cooling comprises a step of filling, descent and mold stripping.
Advantageously, the bottom block support comprises a support plate extending in a horizontal direction and configured to support the weighing cell. This configuration enables the bottom block to be supported on a horizontal surface so as to guarantee perfectly vertical casting. Preferably, the bottom block support comprises at least one holding member, substantially vertical, connected to the support plate. The holding member serves to connect the bottom block support and the weighing cell. In a mode preferred for the casting of billets, the holding member is positioned at the central part of the support plate.
Advantageously, the weighing cell is connected to the bottom block support by means of the member holding the support plate. The weighing cell comprises at least one balance, preferably two, three or four balances disposed regularly around an axis parallel to the vertical direction. This arrangement of the balances affords a reliable and reproducible recording of mass. Preferably, the balances are disposed regularly around a vertical axis, for example for a configuration of three balances they are disposed so as to define in pairs of angles of approximately 120°, so as to form an isostatic weighing cell.
Advantageously, the device comprises a protective cover serving to protect the weighing cell. The lateral walls of the protective cover protect the balances from any splashing during casting. This splashing may be liquid metal or water. The protective cover also provides thermal protection. In one possible configuration of the invention, the top part of the protective cover bears on the balance or balances; the weighing cell being housed in the protective cover.
According to an advantageous configuration of the invention, the weighing cell comprises at least one member extending in a substantially vertical direction. The member serves to position the bottom block with respect to the weighing cell in a substantially vertical direction. The member may also make it possible to position the protective cover with respect to the weighing cell in a substantially vertical direction. Advantageously, the member is a sheath, able to cover the holding member provided on the support plate.
Preferably, the bottom block comprises at least one housing. The housing cooperates with an end region of the member of the weighing cell and/or with the member holding the support plate in order to guarantee the positioning of the bottom block with respect to the weighing cell on a substantially vertical axis. The weighing cell being connected to the bottom block support, this also guarantees that the bottom block is properly positioned in order to provide vertical casting. The bottom block is thus held on a substantially vertical axis, corresponding substantially to the vertical casting axis by means of the housing that receives an end region of the member of the weighing cell, connected to the bottom block support. In this configuration, the bottom block is free to rotate about the axis of the member.
In order to prevent escape of the bottom block, in particular during the mold-stripping step, in the vertical direction, the bottom block is advantageously provided with at least one vertical holding means. The vertical holding means must not statically connect the bottom block to the weighing cell during the filling and descent step during casting. This vertical holding means is for example configured to be engaged in a groove provided on the end region of the member of the weighing cell.
Advantageously, the end region of the member of the weighing cell has a height less than the depth of the sheath housing of the bottom block.
Thus, in an advantageous configuration of the invention, the weighing cell connected to the bottom block support of the control system comprises at least one sheath extending in a vertical direction. The sheath is intended to cover the holding member provided on the support plate of the bottom block support. The end region of the sheath is configured to cooperate with the sheath housing of the bottom block so as to engage on and hold the bottom block in a substantially vertical direction.
In a configuration of the invention that is particularly advantageous for the casting of billets, the member of the weighing cell, the holding member provided on support plate of the bottom block support and the sheath housing of the bottom block are situated in a central position of the control system.
The method of the invention applies to products in the form of both plates and billets.
In one embodiment of the method, an interface makes it possible to display the variation in mass of the products over the course of time for each weighing cell. This can indicate and/or alert with regard to filling problems and/or surface defects and/or hanging problems according to changes in mass of the products measured over the course of time.
Preferably, in the case where more than one balance is integrated in the weighing cell, the processing unit calculates the average of the mass values measured by all these balances relating to each product. This average is considered to correspond to the mass of the product.
In another embodiment of the method, the interface may be replaced by an automatic controller or connected to an automatic controller.
The automatic controller may automatically interrupt the casting when the variation in mass of at least one product over the course of time is symptomatic of a filling problem, that is to say, once a period tc has elapsed after the start of the casting, when the mass of at least one product, that is to say the average of the mass values measured by all the balances relating to each product, is less than or equal to a threshold mass value Ms.
The automatic controller may also interrupt casting when the variation in mass of a product over the course of time is symptomatic of a hanging problem or surface defects, on the basis of criteria combining the amplitude and duration of these variations in mass. These predetermined conditions comprise a variation in mass determined over a given period of time.
The casting is interrupted by stopping the liquid-metal feed, in particular liquid aluminum alloy, in the spout providing the metal alloy in at least one flow provided on the bottom block support. The movement of the bottom block may also be interrupted by stopping the lowerator. Once secured, the casting device is made accessible to the operators, who can work on site in order to deal with the problem identified.
Thus the present invention relates to both a method and a device making it possible to control and protect the carrying out of multi-flow vertical casting of plates or billets. It is based on the continuous monitoring of the solidification of the product by means of balances installed on each of the bottom blocks, allowing:
Other aspects, aims and advantages of the present invention will appear more clearly from a reading of the following description of an embodiment thereof, given by way of non-limitative example and made with reference to the accompanying drawings. The figures are not necessarily to the scale of all the elements shown so as to improve legibility thereof. In the remainder of the description, for reasons of simplification, identical, similar or equivalent elements of the various embodiments bear the same numerical references.
As illustrated in
The setting curves also make it possible to monitor the filling of the casting: in this case, the signal processing algorithm consists of checking that, once the time tc has elapsed after the start of the casting, the average mass value calculated from the measurements made by the balances 9 for each weighing cell is greater than or equal to a threshold mass value Ms. In the contrary case, if at least one of the mass values is less than the threshold value Ms, the automatic controller automatically triggers a stoppage of casting, under optimum safety conditions for the personnel. The values of tc and Ms depend on the product cast and the casting conditions; they depend in particular on the format of the cast product, the diameter of the billet or the dimension of the plate in particular, the density of the product and the speed of casting. These values are sized so that, in the event of a filling defect in at least one flow, there is no risk of water/liquid metal contact when the lowerator starts.
It goes without saying that the invention is not limited to the embodiments described above by way of examples but that it comprises all technical equivalents and variants of the means described as well as combinations thereof.
Number | Date | Country | Kind |
---|---|---|---|
16 53135 | Apr 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/050773 | 4/3/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/174914 | 10/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3521696 | Lowman et al. | Jul 1970 | A |
4108237 | Brovman | Aug 1978 | A |
6279645 | McGlade et al. | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
1 155 762 | Nov 2001 | EP |
2 163 983 | Mar 1986 | GB |
57032864 | Feb 1982 | JP |
Entry |
---|
International Search Report, dated Jun. 16, 2017, corresponding to Application No. PCT/FR2017/050773. |
Number | Date | Country | |
---|---|---|---|
20190111476 A1 | Apr 2019 | US |