A fluidized catalytic cracking (FCC) process converts high-molecular weight hydrocarbon fractions of petroleum crude oils to usable products (e.g., gasoline) with the aid of a catalyst in a reactor. High temperature flue gas (e.g., 650° C. to 790° C.) may be produced from the FCC process and passed through a FCC expander to extract and convert energy from the flue gas into mechanical work that may be used to drive process machinery. Although the flue gas is typically processed through multiple stages of separation, an undesirable amount of catalyst particulate typically remains entrained in the flue gas and is passed through the FCC expander.
Accordingly, the high temperatures, corrosive nature, and erosive tendency of the hot, catalyst particulate laden flue gas may cause rapid deterioration by erosion or corrosion of the rotating and stationary components of the FCC expander, including but not limited to, the inlet, the rotor assembly including the rotor disc and blades, and the stator assembly. In particular, the rim of the rotor disc and the respective roots of the rotor blades attached to the rotor disc are susceptible to catalyst build up during operation. This region of the FCC expander is also subject to turbulent and complex flows. Cooling steam may be introduced into the fore, or upstream, side of the cavity in which the rotor disc is disposed, and sealing steam or air may be discharged into the cavity on the aft, or downstream, side of the cavity. Hot, corrosive, and catalyst particulate laden flue gas may be drawn into the cavity, thereby mixing with the cooling steam and contacting the rotor disc proximal the roots of the rotor blades. Additionally, the catalyst may separate from the flue gas and may be deposited on the roots of the rotor blade and on and under the rim of the rotor disc. Corrosion may thus occur, causing the penetration of corrosion spikes into the base material of the rotor blades and rotor disc. Further, mixing of the hot flue gas with the cooling steam increases the temperature of the cooling steam and makes it less effective at cooling the rotor blades and disc, thereby resulting in increased metal temperatures. Such deposits, erosion, corrosion, and/or increased metal temperatures may lead to the reduced reliability and, in some cases, failure of the FCC expander.
Proposed solutions to the deposition, erosion, corrosion, and/or increased metal temperatures have included additional process equipment for the removal of the catalyst particulate entrained in the flue gas, selection of more corrosion resistant materials for the construction of FCC expander components, the use of coatings to improve the corrosion resistance of the base materials of the FCC expander, and the use of additional cooling steam. Each of these proposed solutions have been shown to be effective; however, certain drawbacks are present in each of these proposed solutions. For example, economic considerations may not allow for the additional cost of certain corrosion resistant materials or coating. In addition, the operation of the FCC expander may limit the thickness of the coating, thereby limiting the selection of coating depending on the base material employed. Also, the additional process equipment utilized to further separate the catalyst particulate from the flue gas may enlarge the footprint of the plant or facility, which may be limited in certain environments. Further, the use of additional cooling steam may increase the cost of utility steam consumption and the likelihood of erosion of the rotor disc and rotor blades.
What is needed, therefore, is an improved system and method for cooling the FCC expander components while reducing the erosion and corrosion of the FCC expander components subjected to hot, catalyst particulate laden flue gas produced from the FCC process.
Embodiments of the disclosure may provide a system for cooling a rotor assembly disposed within a cavity of an expander fluidly coupled with a cooling source. The system may include an annular body disposed on a rim of a rotor disc of the rotor assembly. The rotor disc may be configured to rotate about a center axis of the expander. An outer radial surface of the rotor disc may define a plurality of slots circumferentially about the center axis. The annular body may include a first axial portion including a plurality of axial ribs disposed on and circumferentially about the rim of the rotor disc, each axial rib and an adjacent axial rib forming an axial slot therebetween. The annular body may also include a radial portion extending radially outward from the first axial portion and spaced from the rotor disc forming an annular gap therebetween. The annular gap and the axial slots may form at least one fluid passageway fluidly coupling the cooling source and the rotor assembly. The annular body may further include a second axial portion extending axially from the radial portion and including a plurality of teeth having a saw tooth configuration. The system may also include a plurality of seal members. Each seal member may be disposed between respective platforms of adjacent rotor blades, each rotor blade including a root fitted in a respective slot of the plurality of slots. Each seal member may be configured to substantially prevent a flue gas flowing though the expander from entering the cavity.
Embodiments of the disclosure may further provide an expander for a fluid catalytic cracking process. The expander may include a housing defining a cavity and a flow path. The cavity may be configured to fluidly communicate with a cooling source, and the flow path may be configured to flow therethrough a flue gas produced by the fluid catalytic cracking process. The expander may also include a rotor disc disposed in the cavity and configured to rotate about a center axis within the housing. The rotor disc may include a rim and a plurality of rotor blades mounted circumferentially about a periphery of the rotor disc, each rotor blade including a root and an airfoil separated by a platform. The expander may further include an annular ring disposed on the rotor disc and defining at least one fluid passageway fluidly coupling the roots and the cooling source. The annular ring may be configured to substantially prevent mixing of the flue gas with a coolant provided by the cooling source and flowing through the at least one fluid passageway and contacting the at least one root. The expander may also include a plurality of seal members. Each seal member may be disposed between respective platforms of adjacent rotor blades and configured to substantially prevent the flue gas flowing though the flow path from mixing with the coolant.
Embodiments of the disclosure may further provide a method for cooling a rotor assembly of an expander receiving flue gas produced from a fluid catalytic cracking process. The method may include fluidly coupling a coolant source to a cavity defined in a housing of the expander. The rotor assembly may include a rotor disc disposed within the cavity and a plurality of rotor blades mounted circumferentially about an outer radial surface of the rotor disc. Each of the rotor blades may include a root and an airfoil separated by a platform. The method may also include disposing an annular ring on a rim of the rotor disc. The annular ring may define at least one fluid passageway fluid coupling the coolant source and the roots. The method may further include disposing a seal member between the platforms of a pair of adjacent rotor blades, and directing coolant from the coolant source through the cavity, the at least one fluid passageway, and the roots. The coolant may cool the rotor assembly and substantially prevent the mixing of the coolant and the flue gas flowing though the expander.
The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term “or” is intended to encompass both exclusive and inclusive cases, i.e., “A or B” is intended to be synonymous with “at least one of A and B,” unless otherwise expressly specified herein.
As used herein, the terms “fore” and “upstream,” on the one hand, and the terms “aft” and “downstream,” on the other hand, are used interchangeably and are intended to indicate positions and directions relative to the principal direction of gas flow over a turbomachine rotor blade airfoil. Thus as will be appreciated by those skilled in the art, in an expander the fore and upstream positions of a rotor and a rotor blade will be at a higher static pressure than the aft and downstream positions. In either case, however, there is a possibility for leakage flow to occur between adjacent blade platforms or between a cavity and flow path, and it is the minimization of such leakage flow to which one or more embodiments of the present disclosure is directed.
As used herein, the term “substantially prevent” means to prevent to a measurable extent, but not necessarily to completely prevent.
Example embodiments disclosed herein provide systems and methods for cooling one or more components of a rotor assembly of an expander receiving flue gas produced from a fluid catalytic cracking (FCC) process. The systems and methods provided herein may also substantially prevent the corrosion and/or erosion of the one or more components of the rotor assembly caused by the hot, catalyst particulate laden flue gas produced from the FCC process. Further, the systems and methods provided herein may substantially prevent the turbulent flow frequently caused by the mixture of the flue gas with a coolant stream provided by a coolant source fluidly coupled to the expander.
In at least one embodiment, the FCC process may convert high-molecular weight hydrocarbon fractions of petroleum crude oils (feedstock) to usable products (e.g., gasoline) with the aid of a catalyst in a reactor (not shown). In operation, the catalyst attaches to and breaks down or “cracks” the vaporized hydrocarbon carbon molecules into smaller molecules via contact and mixing with a powdered catalyst in a catalyst riser (not shown). The hydrocarbon vapors may fluidize the powdered catalyst, and the mixture thereof may flow to the reactor, where the catalyst may be separated from the hydrocarbon product. The separated catalyst may be fed to a regenerator (not shown) where oxygen is reacted with the carbon, and the carbon is burnt off the catalyst. Accordingly, heat is generated and the products of combustion form the flue gas which is carried away from the regenerator towards the expander. Solid catalyst particulate is entrained in the flue gas and the multi-phase mixture is passed through separation stages (e.g., cyclones and/or separators—not shown). Accordingly, a majority of the catalyst is separated from the flue gas in the separation stages. The regenerated catalyst may be returned to the reactor, and the flue gas may be fed to one or more additional separation stages (e.g., cyclones and/or separators—not shown) to remove additional catalyst. The flue gas may then be fed to an expander for power recovery.
As shown in
As illustrated in
The rotor assembly 118 may include a rotor disc 128 disposed in the cavity 104 and axially spaced from the stator assembly 116. The rotor disc 128 may be coupled to or integral with a rotary shaft 130 of the expander 100 and thus configured to rotate therewith about the center axis 124. The rotor disc 128 may include a hub 132 defining a bore and a rim 134 positioned radially outward from the hub 132 adjacent the periphery or outer radial surface 136 (more clearly seen in
The rotor assembly 118 may further include a plurality of rotor blades 140 attached to the rotor disc 128 and configured to rotate about the center axis 124 in response to contact from the flue gas (arrow F) exiting the stator vanes 120. Each rotor blade 140 may include a root 142 (more clearly seen in
In at least one embodiment, the expander 100 may be a multistage expander including a first stage as disclosed above with one or more succeeding stages. In at least one embodiment, a power generator (not shown) may be coupled with the expander 100 via the rotary shaft 130 and configured to convert the rotational energy into electrical energy. The electrical energy may be transferred or delivered from the power generator to an electrical grid (not shown) via a power outlet (not shown) coupled therewith. In another embodiment, a compressor, pump, or other process component (not shown) may be coupled with the expander 100 via the rotary shaft 130 and driven by the expander 100.
Referring now to
In an exemplary embodiment, the annular ring 148 may include an axial member or portion 150 connected to and spaced radially inward from another axial member or portion 152 by a radial member or portion 154. The axial member 150 may include a radial inner surface 156 and a radial outer surface 158. A plurality of axial ribs 160 may extend from the inner radial surface 156 and may be configured to be disposed on the rim 134, and in addition, disposed circumferentially about the rim 134 of the rotor disc 128. Each axial rib 160 and an adjacent axial rib 160 may form an axial slot 162 therebetween. The axial ribs 160 may be spaced equidistantly from one another thereby forming substantially equal axial slots 162, or in another embodiment, the spacing between axial ribs 160 may differ between at least two pairs of adjacent axial ribs 160.
The radial member 154 may extend radially outward from the axial member 150 and may include an upstream surface 164 (most clearly seen in
As illustrated most clearly in
As shown in
In an exemplary embodiment, the annular ring 148 may be constructed with and/or coated with a corrosion and/or erosion resistant material. In another embodiment, at least one of the annular ring 148, at least a portion of the rotor disc 128, and at least a portion of the rotor blades 140 may be coated with a corrosion and/or erosion resistant material. In an exemplary embodiment, the corrosion and/or erosion resistant material may be SDG-2207 manufactured by Praxair Surface Technologies of Houston, Tex.
As disposed on and coupled to the rotor disc 128, the annular ring 148 and the rotor disc 128 may define one or more fluid passageways 188 configured to fluidly couple the coolant source 112 with each of the roots 142. In an exemplary embodiment, the one or more fluid passageways 188 may be defined by the axial slots 162 and the annular gap 186 between the radial member 154 of the annular ring 148 and the rotor disc 128. The one or more fluid passageways 188 may fluidly couple the cooling source 112 and the roots 142 of the plurality of rotor blades 140, thereby providing a pathway for the coolant (arrow C) to contact the respective roots 142 of the plurality of rotor blades 140 while the annular ring 148 shields the roots 142 and flow of coolant (arrow C) from the flue gas (arrow F) passing through the flow path 106. In another embodiment, the downstream surface 166 of the annular ring 148 may include the plurality of radial ribs 168, and each of the radial ribs 168 may be circumferentially aligned with a respective axial rib 160 such that each radial slot 170 may be circumferentially aligned with a respective axial slot 162 to form a respective fluid passageway 188 bounded by the rotor disc 128, such that each fluid passageway 188 may fluidly couple the cooling source 112 and at least one root 142 of the plurality of rotor blades 140. Accordingly, the annular ring 148 may be configured to substantially prevent mixing of the flue gas (arrow F) with the coolant (arrow C) provided by the cooling source 112 and flowing through the plurality of fluid passageways 188 and contacting the respective roots 142.
Referring now to
In an exemplary embodiment, the seal member 192 may be or include a sealing wire disposed in a groove formed between the respective platforms 146 of the adjacent rotor blades 140, as shown in
In another embodiment, the seal member may include a sealing strip (not shown) formed in a C-shape and configured to be inserted between respective platforms 146 of adjacent rotor blades 140. As formed, the sealing strip may include a planar section bounded by opposing curved sections. A slot (not shown) may be formed in respective facing side surfaces 196 of the platforms 146 of the adjacent rotor blades 140. The planar section of the sealing strip may be disposed in each slot of the adjacent platforms 146, thereby closing and sealing the axial gap 190 between the platforms 146 of the adjacent rotor blades 140, and thus, substantially preventing an amount of flue gas (arrow F) flowing though the flow path 106 in the expander 100 from contacting the respective roots 142 and/or entering the cavity 104.
In another embodiment, as illustrated in
As shown in
Turning now to an exemplary operation of the expander 100 with reference to
As the flue gas passing though the expander 100 may be a hot, particulate laden flue gas produced from the FCC process, the expander 100 may receive a coolant (arrow C) from a cooling source 112 fluidly coupled with the cavity 104 defined by the expander 100. The coolant (arrow C) may be provided to cool the rotor assembly 118 and other components in thermal communication with the flue gas (arrow F). The annular ring 148 may be mounted on the rim 134 of the rotor disc 128 of the rotor assembly and may be configured to direct the coolant flow over at least a portion of the rotor assembly 118 via one or more fluid passageways 188 defined by the annular ring 148 and may be further configured to further substantially prevent mixing of the flue gas (arrow F) and the coolant (arrow C). Further, as disposed on the rotor disc 128, the annular ring 148 may provide a shield or barrier for the roots 142 from contact with the flue gas (arrow F). In an exemplary embodiment, the labyrinth seal 202 may be integral with or coupled with the inner stator ring 126 and disposed adjacent the annular ring 148, thereby forming a sealing relationship therewith and substantially preventing mixing of the flue gas (arrow F) and the coolant (arrow C). A seal member 192, 292 may be disposed between respective platforms 146 of adjacent rotor blades 140 to seal the axial gap 190 formed therebetween.
The annular ring may define at least one fluid passageway fluidly coupling the coolant source and the roots. The annular ring may include a first axial portion having a plurality of axial ribs disposed on and circumferentially about the rim of the rotor disc. Each axial rib and an adjacent axial rib may form an axial slot therebetween. The annular ring may also include a radial portion extending radially outward from the first axial portion. In one embodiment, the radial portion may include a plurality of radial ribs positioned circumferentially about a center axis of the expander. Each radial rib and an adjacent radial rib may form a radial slot therebetween. The annular ring may further include a second axial portion extending axially from the radial portion and including a plurality of teeth having a saw-tooth configuration.
The method 300 may further include disposing a seal member between the platforms of a pair of adjacent rotor blades, as at 306, and directing coolant from the coolant source through the cavity, the at least one fluid passageway, and the roots, where the coolant cools the rotor assembly and substantially prevents the mixing of the coolant and the flue gas flowing though the expander, as at 308. The seal member may include a sealing wire disposed in a groove formed between the respective platforms of the adjacent rotor blades. In another embodiment, the method 300 may also include disposing a labyrinth seal adjacent the annular ring, the labyrinth seal coupled to a stator vane assembly of the expander and configured to substantially prevent coolant from entering the flow path and mixing with the flue gas.
It should be appreciated that all numerical values and ranges disclosed herein are approximate valves and ranges, whether “about” is used in conjunction therewith. It should also be appreciated that the term “about,” as used herein, in conjunction with a numeral refers to a value that is +/−5% (inclusive) of that numeral, +/−10% (inclusive) of that numeral, or +/−15% (inclusive) of that numeral. It should further be appreciated that when a numerical range is disclosed herein, any numerical value falling within the range is also specifically disclosed.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims the benefit of U.S. Provisional Patent Application having Ser. No. 62/290,759, which was filed Feb. 3, 2016. The aforementioned patent application is hereby incorporated by reference in its entirety into the present application to the extent consistent with the present application.
Number | Name | Date | Kind |
---|---|---|---|
5472313 | Quinones | Dec 1995 | A |
6022190 | Schillinger | Feb 2000 | A |
6508623 | Shiozaki et al. | Jan 2003 | B1 |
8137072 | Kim | Mar 2012 | B2 |
8162598 | Liang | Apr 2012 | B2 |
8348615 | Bluck et al. | Jan 2013 | B2 |
8371127 | Durocher et al. | Feb 2013 | B2 |
8480353 | Koyabu et al. | Jul 2013 | B2 |
8814518 | Harris, Jr. et al. | Aug 2014 | B2 |
8894352 | Berrong et al. | Nov 2014 | B2 |
8973371 | King et al. | Mar 2015 | B2 |
8992168 | Norris et al. | Mar 2015 | B2 |
9011078 | Winn et al. | Apr 2015 | B2 |
9033666 | Bosco | May 2015 | B2 |
9140133 | Hagan et al. | Sep 2015 | B2 |
9151226 | Zimmerman et al. | Oct 2015 | B2 |
9169729 | Xu | Oct 2015 | B2 |
9260979 | Lee et al. | Feb 2016 | B2 |
20060213202 | Fukutani | Sep 2006 | A1 |
20150204245 | Marasco et al. | Jul 2015 | A1 |
20170044908 | Griffin | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2679770 | Jan 2014 | EP |
2014120135 | Aug 2014 | WO |
Entry |
---|
PCT International Search Report and Written Opinion dated Apr. 12, 2017 corresponding to PCT Application PCT/US2017/0163413 filed Feb. 3, 2017. |
Number | Date | Country | |
---|---|---|---|
20170218770 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62290759 | Feb 2016 | US |