System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine

Information

  • Patent Grant
  • 9784185
  • Patent Number
    9,784,185
  • Date Filed
    Thursday, April 26, 2012
    12 years ago
  • Date Issued
    Tuesday, October 10, 2017
    7 years ago
Abstract
A system for cooling a gas turbine with an exhaust gas provided by the gas turbine generally includes an exhaust gas recirculation system including an exhaust gas scrubber. The exhaust gas recirculation system is disposed downstream from the gas turbine and may receive at least a portion of the exhaust gas provided by the gas turbine. The system may also include a moisture separator located downstream from the exhaust gas recirculation system, and a cooling circuit configured to connect to one or more cooling circuit inlets. The one or more cooling circuit inlets may provide fluid communication between the cooling circuit and the gas turbine.
Description
FIELD OF THE INVENTION

The present invention relates to a system and a method for cooling a gas turbine with an exhaust gas provided by the gas turbine.


BACKGROUND OF THE INVENTION

Modern gas turbines generally operate at extremely high temperatures. In addition, various components of a gas turbine, such as rotor support bearings, generate high temperatures due to friction forces and/or loads placed upon the gas turbine. As a result, high thermal stresses may significantly limit the mechanical life of the gas turbine. Therefore, it is necessary to provide a cooling medium to the gas turbine to prevent overheating and premature failure of the various components. Current methods for cooling and/or sealing the gas turbine include flowing a working fluid, such as compressed air and/or steam, to the various components of the gas turbine. Although current methods are generally effective, there is a growing concern over the long-term effects of Nitrous Oxides (hereinafter NOx), Carbon Dioxide (hereinafter “CO2”), Carbon Monoxide (hereinafter CO) and Sulfur Oxides (hereinafter SOx) emissions on the environment. The allowable levels of NOx and SOx that may be emitted by a gas turbine are heavily regulated. As a result, operators of gas turbines desire methods of effectively cooling the gas turbine while reducing the levels of NOx and SOx emitted.


Exhaust gas recirculation (EGR) generally involves recirculating a portion of the emitted exhaust through an inlet portion of the gas turbine where it is mixed with a working fluid, such as air, prior to combustion. This process facilitates the removal and sequestration of the emitted NOx, SOx, and concentrated CO2 levels, thereby reducing the net emission levels. However, impurities and/or moisture within the exhaust gas prevent utilizing a simple re-circulating loop to reduce the CO2, SOx, and NOx. As a result, turbine fouling, corrosion, and accelerated wear of internal gas turbine components would result from introducing the exhaust gas directly to the gas turbine for combustion and/or for use as a cooling medium. Therefore, the diverted exhaust gas should be treated prior to ingestion into the gas turbine. In addition, significant amounts of condensable vapors exist in the exhaust gas stream. These vapors usually contain a variety of constituents such as water vapor, acids, aldehydes, hydrocarbons, sulfur, and chlorine compounds. Left untreated, these constituents will accelerate corrosion and the fouling of the internal components, if allowed to enter the gas turbine through one or more cooling circuits of the gas turbine.


For the foregoing reasons, there is a need for a system that treats the recirculated exhaust gas stream to minimize the impact of harmful constituents within the exhaust gas stream and that flows the treated recirculated exhaust stream to at least a portion of the gas turbine for cooling and/or sealing.


BRIEF DESCRIPTION OF THE INVENTION

Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.


One embodiment of the present invention is a system for cooling a gas turbine with an exhaust gas provided by the gas turbine. The system generally includes an exhaust gas recirculation system including an exhaust gas scrubber. The exhaust gas recirculation system is disposed downstream from the gas turbine and may receive at least a portion of the exhaust gas provided by the gas turbine. The system may also include a moisture separator located downstream from the exhaust gas recirculation system, and a cooling circuit configured to connect to one or more cooling circuit inlets. The one or more cooling circuit inlets may provide fluid communication between the cooling circuit and the gas turbine.


Another embodiment of the present invention is a gas turbine. The gas turbine generally includes a compressor and a combustion section downstream from the compressor. A turbine may be positioned downstream from the combustion section, where the turbine may provide an exhaust gas stream to an exhaust gas recirculation system positioned downstream from the turbine. The exhaust gas recirculation system may receive at least a portion of the exhaust gas stream from the turbine. A moisture separator may be located downstream from the exhaust gas recirculation system. The gas turbine may further include a cooling circuit downstream from the moisture separator, and one or more cooling circuit inlets downstream from the cooling circuit, where the one or more cooling circuit inlets may provide fluid communication between the cooling circuit and at least a portion of the gas turbine.


The present invention may also include a method for cooling the gas turbine with the exhaust stream flowing from the gas turbine. The method may include flowing the exhaust stream into an exhaust gas recirculation system, treating the exhaust gas stream flowing through the exhaust gas recirculation system, flowing the exhaust stream from the exhaust gas recirculation system through a moisture separator, flowing the exhaust stream from the moisture separator into a cooling circuit, and flowing the exhaust stream from the cooling circuit into at least one cooling circuit inlet of the gas turbine.


Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:



FIG. 1 is a schematic illustration of a gas turbine and a system for cooling a gas turbine according to at least one embodiment of the present invention; and



FIG. 2 is a schematic illustration of a portion of the system as shown in FIG. 1 according to at least one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to present embodiments of the invention; one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.


Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.


Certain terminology is used herein for the convenience of the reader only and is not to be taken as a limitation on the scope of the invention. For example, words such as “upper,” “lower,” “left,” “right,” “front”, “rear” “top”, “bottom”, “horizontal,” “vertical,” “upstream,” “downstream,” “fore”, “aft”, and the like merely describe the configuration shown in the Figures. In addition, the terms “upstream” and “downstream” refer to the relative location of components in a fluid pathway. For example, component A is upstream from component B if a fluid flows from component A to component B. Conversely, component B is downstream from component A if component B receives a fluid flow from component A.


Indeed, the element or elements of an embodiment of the present invention may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise.


The present invention has the technical effect of reducing the levels of NOx, SOx, concentrated CO2, moisture content, and other harmful constituents, all of which may be within a portion of the exhaust of a gas turbine, and utilizing the exhaust stream as a cooling medium to be supplied back into the gas turbine. As a result, the gas turbine may generally operate substantially within emissions guidelines without largely affecting reliability and/or availability of the gas turbine.


Various embodiments of the present invention include a system and method for cooling a gas turbine with a recirculated turbine exhaust stream. The recirculated exhaust stream may be used for cooling and/or sealing various portions of the gas turbine. The system generally includes an exhaust gas recirculation system configured to receive at least a portion of the exhaust gas stream provided by the turbine, a moisture separator downstream from the exhaust gas recirculation system and one or more cooling circuits downstream from the moisture separator. The one or more cooling circuits may be configured to connect to the gas turbine at one or more cooling circuit inlet connections. In particular embodiments, the one or more cooling circuit inlets may provide fluid communication between the system and one or more shaft bearing assemblies, to an exhaust frame, to the turbine, to a bearing tunnel or any combination thereof. A cooling circuit may provide cooling fluid and/or sealing fluid.


In operation, the turbine produces an exhaust stream of combustion byproducts where at least a portion of the exhaust stream is received by the exhaust gas recirculation system. This portion of the exhaust gas stream is herein referred to as the “recirculating exhaust stream”. The recirculating exhaust stream may be treated as it flows through the exhaust gas recirculation system. For example, but not limiting of, the recirculating exhaust stream may be cooled and/or scrubbed of CO, CO2, SOx, or other contaminants which may be corrosive to the gas turbine. The treated recirculating exhaust stream may then flow downstream to the moisture separator where moisture carried over from the exhaust gas recirculation system may be removed from the treated recirculating exhaust stream. In particular embodiments, the recirculating exhaust stream may flow downstream from the moisture separator and into a compressor where the pressure of the recirculating exhaust stream may be increased. The treated recirculating exhaust stream may then flow into the one or more cooling circuits where it may be reintroduced to the gas turbine through the one or more cooling circuit inlets. The present invention may be applied to a variety of turbo-machines that produce a gaseous fluid, such as, but not limiting of, a heavy duty gas turbine; an aero-derivative gas turbine; or the like (hereinafter referred to as “gas turbine”). An embodiment of the present invention may be applied to either a single gas turbine or a plurality of gas turbines. An embodiment of the present invention may be applied to a gas turbine operating in a simple cycle or a combined cycle configuration.



FIG. 1 is a schematic illustrating a system for cooling a gas turbine 10 with a recirculated turbine exhaust stream in accordance with at least one embodiment of the present invention. As shown, a gas turbine 10 generally includes a compressor 12 having an inlet 14 at the upstream end of the compressor 12. A compressor shaft 16 extends axially through at least a portion of the compressor 12. A compressor bearing assembly 18 may at least partially support at least a portion of the compressor shaft 16. The compressor bearing assembly 18, also known in the industry as the “N1 bearing assembly” or as the “forward bearing assembly” generally includes one or more bearings designed to support the weight of the compressor shaft 16, to accommodate for thermal growth and/or contraction of the compressor shaft 16, and to allow for the high rotational speeds of the compressor shaft 16 during operation of the gas turbine 10. For example, but not limiting of, the compressor bearing assembly 18 may include a journal bearing, a loaded thrust bearing, an unloaded thrust bearing or any combination thereof. The compressor bearing assembly 18 may include an inner housing 20 that is at least partially sealed to contain pressurized oil that reduces friction and heat within the compressor bearing assembly 18. The compressor bearing assembly 18 may also include one or more fluid circuits 22 that at least partially surround the inner housing 20 and provide a flow path for a cooling and/or a sealing medium such as, but not limiting of, a recirculated exhaust gas to flow at least partially through the compressor bearing assembly 18. It should be known to one of ordinary skill in the art that the gas turbine 10 may include multiple bearing assemblies which may be configured as described above in relation to the compressor bearing assembly 18. In operation of the gas turbine 10, a working fluid 24 such as, but not limiting of, air flows into the compressor inlet 14, is compressed by the compressor 12 and is then discharged to a combustion system 26. A fuel 28 such as, but not limiting of, natural gas is mixed with at least a portion of the compressed working fluid 24 to form a combustible mixture 30. The combustible mixture 30 is ignited and burned within the combustion system 26 to provide high-energy combustion gases 32 which flow into a turbine 34.


The turbine 34 may be at least partially surrounded by a turbine casing 36. A rotor shaft 38 may extend at least partially through the turbine 34 and may support one or more rotor disks 40 that extend generally radially outward from the rotor shaft 38. In particular embodiments, the rotor shaft 38 and the compressor shaft 16 may be at least partially coupled by a mid-span bearing assembly 42. The mid-span bearing assembly 42 generally includes one or more bearings designed to support the weight of the compressor shaft 16 and/or the rotor shaft 38, to accommodate for thermal growth and/or contraction of the compressor shaft 16 and/or the rotor shaft 38 and to allow for the high rotational speeds of the compressor shaft 16 and/or the rotor shaft 38 during operation of the gas turbine 10. For example but not limiting of, the mid-span bearing assembly 42 may include a journal bearing, a loaded thrust bearing, an unloaded thrust bearing or any combination thereof. In particular gas turbine 10 configurations, a single shaft (not illustrated) may extend through the gas turbine 10, thereby replacing the compressor shaft 16 and the rotor shaft 38. In this case, the mid-span bearing assembly 42 may provide support to the single shaft at a point generally downstream from the compressor 12. The mid-span bearing assembly 42 may include an inner housing 44 that is at least partially sealed to contain pressurized oil that reduces friction and heat within the mid-span bearing assembly 42. The mid-span bearing assembly 42 may also include one or more fluid circuits 46 that at least partially surround the inner housing 44 and that provides a flow path for a cooling and/or a sealing medium such as, but not limiting of, a recirculating exhaust gas, to flow at least partially through the mid-span bearing assembly 42.


Each of the one or more rotor disks 40 may support a plurality of turbine blades 48 attached circumferentially around the rotor disks 40. Each rotor disk 40 and corresponding plurality of turbine blades 48 may form a stage 50 of the turbine blades 48. In addition, the turbine 34 may include one or more stages 52 of stationary vanes 54 that alternate between the one or more stages 50 of turbine blades 48. The turbine 34 may also include one or more fluid passages 56 formed between the rotor disks 40, through the stationary vanes 54, through the turbine blades 48 or any combination thereof. A rotor shaft bearing assembly 58 may provide support to an aft end of the rotor shaft 38. The rotor shaft bearing assembly 58, also known in the industry as the “N2 bearing assembly” or the “aft bearing assembly” generally includes one or more bearings designed to support the weight of the rotor shaft 38, to accommodate for thermal growth and/or contraction of the rotor shaft 38 and to allow for the high rotational speeds of the rotor shaft 38 during operation of the gas turbine 10. For example but not limiting of, the rotor shaft bearing assembly 58 may include a journal bearing, a loaded thrust bearing, an unloaded thrust bearing or any combination thereof. The rotor shaft bearing assembly 58 may include an inner housing 60 that is at least partially sealed to contain pressurized oil. The pressurized oil may reduce friction and heat within the rotor shaft bearing assembly 58. The rotor shaft bearing assembly 58 may also include one or more fluid circuits 62 that at least partially surround the inner housing 60 and that provide a flow path for a cooling and/or a sealing medium such as, but not limiting of, a recirculated exhaust gas, to flow at least partially through the rotor shaft bearing assembly 58.


In the turbine 34, a portion of the energy of the hot gases is imparted to the one or more turbine blade stages 50 causing the rotor shaft 38 to turn, thereby converting the energy from the hot gases into mechanical work. At least a portion of the mechanical work produced may be used to drive the compressor 12 through the compressor shaft 16, with the remainder being available for driving a load, such as a generator (not illustrated). As the hot gases exit the turbine 34, an exhaust stream 64 flows downstream to an exhaust duct 66 that is at least partially supported and/or formed by an exhaust frame 68. As a result, the hot gases may heat the exhaust duct 66. Therefore, one or more fluid circuits 70 may extend at least partially through the exhaust frame 68 to provide a flow path for a cooling and/or a sealing medium such as, but not limiting of, a recirculated exhaust gas, to flow through at least a portion of the exhaust frame 68. As the exhaust stream 64 exits the exhaust duct 66, at least a portion of the exhaust stream 64, herein referred to as the “recirculating exhaust stream 72”, may be diverted to the system for cooling the gas turbine, herein referred to as “the system 100”.


The system 100 generally includes an exhaust gas recirculation system 102 generally downstream from the turbine 34, a moisture separator 104 downstream from the exhaust gas recirculation system 102 and one or more cooling circuits 106 downstream from the moisture separator 104. The exhaust gas recirculation system 102, as illustrated in FIG. 1, may comprise at least one flow modulation device 108 and at least one scrubber 110. The at least one flow modulation device 108 may apportion the total exhaust stream 64 between a non-recirculated exhaust stream 74 and the recirculating exhaust stream 72. The at least one flow modulation device 108 may be of any size and fabricated of any material capable of withstanding the physical properties, such as, but not limiting of, a flow rate of about 10000 Lb/hr to about 50000000 Lb/hr and a temperature of about 100 F to about 1500 F. The recirculating exhaust stream 72 may flow downstream of the at least one flow modulation device 108 to an inlet portion of the at least one scrubber 110.


A scrubber system (hereinafter “scrubber 110”) is generally considered as an air pollution control device that may remove particulates and/or other emissions from industrial exhaust streams. A scrubber may use a “scrubbing process”, or the like, generally involving a liquid or dry substance to “scrub” unwanted pollutants from a gas stream. In particular embodiments of the present invention, the at least one scrubber 110 may perform various functions after receiving the recirculating exhaust stream 72. For example, but not limiting of, the at least one scrubber 110 may lower the temperature of the recirculating exhaust stream 72 to a range of about 60 degrees Fahrenheit to about 200 degrees Fahrenheit. The at least one scrubber 110 may also remove at least a portion of a plurality of constituents (not illustrated) within the recirculating exhaust stream 72, from a first level to a second level. The constituents may include for example, but not limiting of, water vapor, acids, aldehydes, hydrocarbons, or combinations thereof. In alternate embodiments, the scrubber may be disposed upstream from the flow modulation device 108. In this manner, the entire exhaust gas stream 64 flowing from the turbine exhaust duct 66 may flow into the scrubber 110 and then into the flow modulation device 108 where it can be portioned as needed.


Although a generally basic exhaust gas recirculation system 102 is described and illustrated in FIG. 1, it should be known by one of ordinary skill in the art that the exhaust recirculation system 102 may have a variety of components in any sequential order which may cool and/or otherwise treat the recirculating exhaust stream 72 before flowing the recirculating exhaust stream 72 to the moisture separator 104. For example, but not limiting of, as shown in FIG. 2, the exhaust gas recirculation system 102 described above may further include any one or any combination in any sequential order of the following components: at least one downstream heat exchanger 210 located downstream of the at least one scrubber 110 and upstream of the moisture separator 104, at least one upstream heat exchanger 220 located upstream of the at least one scrubber 110, at least one injector 230, and/or at least one wet electrostatic precipitator 240. In addition or in the alternative, the exhaust gas recirculation system 102 may also include a heat recovery system (not illustrated) that receives at least a portion of the recirculating exhaust stream 72 and/or the non-recirculating exhaust stream 74 to generate steam.


In particular embodiments, as shown in FIG. 1, after the scrubbing process the recirculating exhaust stream 72 may flow downstream to the moisture separator 104. The moisture separator 104 may include any type of device known in the art for removing at least a portion of liquid droplets, moisture and/or humidity from a fluid stream. For example, but not limiting of, the moisture separator 104 may be a panel type, a single stage, a multi-stage, a cellular drift type, a coalescer, a de-mister, a desiccant, triethylene glycol, or any combination thereof. The moisture separator 104 may at least partially dry the recirculating exhaust stream 72 by removing droplets of liquid, such as water, oil or other forms of moisture from the recirculating exhaust stream 72 that may have carried over from the scrubbing process.


After the recirculating exhaust stream 72 is at least partially dried in the moisture separator 104, the recirculating exhaust stream 72 may then flow downstream to the one or more cooling circuits 106. The one or more cooling circuits 106 may generally include one or more fluid conduits 112. The one or more fluid conduits 112 may be configured to connect to the gas turbine 10 at one or more cooling circuit inlets 114 disposed at various locations of the gas turbine 10. For example, but not limiting of, the one or more fluid conduits 112 may include one or more fluid couplings (not illustrated) or fluid fittings (not illustrated) that are complementary to one or more fluid couplings or fluid fittings of the one or more cooling circuit inlets 114. In addition or in the alternative, the one or more fluid conduits 112 may be bolted, welded, screwed or connected to the cooling circuit inlets 114 in any manner known in the art for making a fluid connection between a fluid source and a fluid receiver, such as, but not limiting of, the one or more cooling circuits 112 and the one or more cooling circuit inlets 114.


In particular embodiments, the one or more cooling circuits 106 may include a flow distribution header 116 that is in fluid communication with the moisture separator 104. The flow distribution header 116 may include one or more outlets 118. The one or more fluid conduits 112 may be connected to the one or more outlets 118. The flow distribution header 116 may also include one or more valves (not illustrated) and/or controls (not illustrated) for directing and/or diverting the recirculating exhaust stream 72 to or from the one or more outlets 118. In this manner, the system 100 may flow the recirculating exhaust stream 72 to one or to multiple of the one more fluid conduits 112 during operation of the gas turbine 10. As a result, when connected to the one or more cooling circuit inlets 114, the system may supply the recirculating exhaust stream 72 to a single cooling circuit inlet 114 or to multiple cooling circuit inlets 114 as necessary to cool various portions of the gas turbine individually or simultaneously.


In addition or in the alternative, at least one of the one or more cooling circuits 106 may include one or more compressors 120 upstream and/or downstream from the moisture separator 104. The one or more compressors 120 may include any compressor that can compress the recirculating exhaust stream 72, thereby raising the pressure of the recirculating exhaust stream 72. For example, but not limiting of, the one or more compressors may include an axial compressor, a rotary compressor or a blower. In this manner, the pressure of the recirculating exhaust stream 72 may be increased so as to flow the recirculating exhaust stream 72 through the system 100 and into the one or more cooling circuit inlets 114.


In particular embodiments of the present invention, the one or more cooling circuit inlets 114 of the gas turbine 10 may provide fluid communication to one or more components and/or areas of the gas turbine 10. For example, but not limiting of, the one or more cooling circuit inlets 114 may provide fluid communication between the one or more cooling circuits 106 to one or any combination of the following; the compressor shaft bearing assembly 18, the mid-span bearing assembly 42, the rotor shaft bearing assembly 58, the one or more fluid passages 56 extending through the turbine 34 or the one or more fluid passages 70 extending at least partially through exhaust frame 68. In addition or in the alternative, the recirculated exhaust gas may flow into the combustor for additional cooling. In this manner, the recirculating exhaust stream may flow from the turbine exhaust duct 66, through the system 100 and through one or more of the cooling circuit inlets 114 in order to provide an effective and less corrosive cooling and/or sealing medium to the gas turbine 10.


One of ordinary skill in the art will readily appreciate from the teachings herein that the various embodiments shown and described with respect to FIGS. 1-2 may also provide a method for cooling the gas turbine 10 with at least a portion of the exhaust stream 64 flowing from the gas turbine 10. The method may include flowing the exhaust stream 64 into the exhaust gas recirculation system 102 and treating the exhaust gas stream 72 flowing through the exhaust gas recirculation system 102. For example, but not limiting of, “treating” may include lowering the temperature and/or scrubbing the exhaust stream 72 of SOx and other undesirable constituents. The method may also include flowing the exhaust stream 72 from the exhaust gas recirculation system 102 through a moisture separator 104 where liquid droplets may be removed from the exhaust stream 72. The method further includes flowing the exhaust stream 72 from the moisture separator 104 into a cooling circuit 106, and then flowing the exhaust stream 72 from the cooling circuit 106 into at least one of the one or more cooling circuit inlets 114 of the gas turbine 10. In addition, the method may further include flowing the exhaust stream 72 through the one or more cooling circuit inlets 114 and into the one or more bearing assemblies such as, but not limiting of, the compressor shaft bearing assembly 18, the mid-span bearing assembly 42, the rotor shaft bearing assembly 58 or any combination thereof. The method may also include flowing the exhaust stream 72 from the moisture separator 104 through the cooling circuit 106 compressor 120 at a first pressure and flowing the exhaust stream 72 from the cooling circuit 106 compressor 120 at a second pressure higher than the first pressure, into the one or more cooling circuit inlets 114.


This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other and examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims
  • 1. A system, comprising: an exhaust gas path configured to receive at least a portion of an exhaust gas provided by a gas turbine;an exhaust gas scrubber fluidly coupled to the exhaust gas path;a moisture separator fluidly coupled to the exhaust gas path; anda cooling circuit fluidly coupled to the exhaust gas path downstream from the exhaust gas scrubber and the moisture separator, wherein the cooling circuit is configured to fluidly couple to a plurality of cooling paths through the gas turbine, wherein the plurality of cooling paths is separate from a working fluid path through the gas turbine, wherein the cooling circuit comprises a flow distribution header and a compressor fluidly coupled to the flow distribution header, wherein the compressor is separate from the flow distribution header, and the flow distribution header is configured to distribute the exhaust gas to the plurality of cooling paths through the gas turbine, and wherein the flow distribution header comprises at least one setting that enables simultaneous distribution of the exhaust gas to at least two cooling paths of the plurality of cooling paths.
  • 2. The system of claim 1, comprising an electrostatic precipitator, or an injector, or a combination thereof, fluidly coupled to the exhaust gas path.
  • 3. The system of claim 1, comprising a first heat exchanger fluidly coupled to the exhaust gas path upstream from the exhaust gas scrubber, or a second heat exchanger fluidly coupled to the exhaust gas path downstream from the exhaust gas scrubber, or a combination of the first heat exchanger and the second heat exchanger.
  • 4. The system of claim 1, wherein the plurality of cooling paths is disposed between rotor disks, through stationary vanes, through turbine blades, or any combination thereof.
  • 5. The system of claim 1, wherein the plurality of cooling paths is fluidly coupled to a bearing assembly.
  • 6. The system of claim 5, wherein the bearing assembly comprises a compressor bearing assembly, or a turbine bearing assembly, or an intermediate bearing assembly disposed between the compressor and turbine bearing assemblies.
  • 7. The system of claim 1, wherein the plurality of cooling paths is disposed through an exhaust frame, and the exhaust frame is disposed about an exhaust duct.
  • 8. The system of claim 1, comprising the gas turbine having a compressor, a combustor, and a turbine.
  • 9. The system of claim 8, comprising an exhaust gas recirculation (EGR) system fluidly coupled to the exhaust gas path.
  • 10. The system of claim 9, wherein the EGR system is configured to recirculate a first portion of the exhaust gas into an intake of the compressor of the gas turbine, the cooling circuit is configured to route a second portion of the exhaust gas into the plurality of cooling paths through the gas turbine, and the plurality of cooling paths is separate from the working fluid path through the compressor, the combustor, and the turbine of the gas turbine.
  • 11. A system, comprising: a gas turbine comprising a working fluid path through a compressor, a combustor, and a turbine, wherein the gas turbine comprises two or more cooling paths outside of the working fluid path;an exhaust gas treatment system configured to remove one or more contaminants from an exhaust gas of combustion products to produce a treated exhaust gas; anda cooling circuit configured to route at least a first portion of the treated exhaust gas toward the two or more cooling paths;a flow distribution header coupled to the cooling circuit and to the two or more cooling paths, wherein the flow distribution header is configured to receive the first portion of the treated exhaust gas from the cooling circuit, wherein the flow distribution header is configured to route the first portion of the treated exhaust gas to the two or more cooling paths, and wherein the flow distribution header comprises at least a first setting configured to enable simultaneous distribution of the first portion of the treated exhaust gas to at least two cooling paths of the two or more cooling paths; andan additional compressor fluidly coupled with the flow distribution header, separate from the flow distribution header, disposed upstream of the flow distribution header, and configured to supply the exhaust gas to the flow distribution header after compressing the exhaust gas in the additional compressor.
  • 12. The system of claim 11, wherein the system is configured to route at least a second portion of the treated exhaust gas to an intake into the compressor.
  • 13. The system of claim 11, comprising an exhaust gas recirculation (EGR) system having an exhaust flow path from the turbine to the compressor.
  • 14. The system of claim 11, wherein the two or more cooling paths are disposed between rotor disks, through stationary vanes, through turbine blades, or any combination thereof.
  • 15. The system of claim 11, wherein the two or more cooling paths are disposed through an exhaust frame, and the exhaust frame is disposed about an exhaust duct.
  • 16. The system of claim 11, wherein the exhaust gas treatment system comprises a scrubber, a moisture separator, or a combination thereof.
  • 17. The system of claim 11, wherein the one or more contaminants comprise materials that are corrosive to the gas turbine.
  • 18. A method, comprising: flowing one or more working fluids through a working fluid path through a compressor, a combustor, and a turbine of a gas turbine;outputting an exhaust gas of combustion products from the gas turbine;treating the exhaust gas to remove one or more contaminants from the exhaust gas to produce a treated exhaust gas;routing at least a first portion of the treated exhaust gas toward two or more cooling paths through the gas turbine outside of the working fluid path;receiving, via a flow distribution header, the first portion of the treated exhaust gas at a first pressure and simultaneously distributing the first portion of the treated exhaust gas to the two or more cooling paths at a second pressure, wherein the second pressure is less than or equal to the first pressure; andcooling at least one of a bearing assembly, a turbine vane, a turbine blade, a rotor disk, or an exhaust frame via a flow of the first portion of the treated exhaust gas through the two or more cooling paths.
  • 19. The method of claim 18, comprising routing at least a second portion of the treated exhaust gas to an intake into the compressor.
  • 20. The method of claim 18, wherein treating comprises removing moisture and corrosive materials from the exhaust gas to produce the treated exhaust gas.
US Referenced Citations (688)
Number Name Date Kind
2488911 Hepburn et al. Nov 1949 A
2884758 Oberle May 1959 A
3631672 Gentile et al. Jan 1972 A
3643430 Emory et al. Feb 1972 A
3705492 Vickers Dec 1972 A
3841382 Gravis, III et al. Oct 1974 A
3949548 Lockwood, Jr. Apr 1976 A
4018046 Hurley Apr 1977 A
4043395 Every et al. Aug 1977 A
4050239 Kappler et al. Sep 1977 A
4066214 Johnson Jan 1978 A
4077206 Ayyagari Mar 1978 A
4085578 Kydd Apr 1978 A
4092095 Straitz, III May 1978 A
4101294 Kimura Jul 1978 A
4112676 DeCorso Sep 1978 A
4117671 Neal et al. Oct 1978 A
4133567 McGann Jan 1979 A
4160640 Maev et al. Jul 1979 A
4165609 Rudolph Aug 1979 A
4171349 Cucuiat et al. Oct 1979 A
4204401 Earnest May 1980 A
4222240 Castellano Sep 1980 A
4224991 Sowa et al. Sep 1980 A
4236378 Vogt Dec 1980 A
4253301 Vogt Mar 1981 A
4271664 Earnest Jun 1981 A
4344486 Parrish Aug 1982 A
4345426 Egnell et al. Aug 1982 A
4352269 Dineen Oct 1982 A
4380895 Adkins Apr 1983 A
4399652 Cole et al. Aug 1983 A
4414334 Hitzman Nov 1983 A
4434613 Stahl Mar 1984 A
4435153 Hashimoto et al. Mar 1984 A
4442665 Fick et al. Apr 1984 A
4445842 Syska May 1984 A
4479484 Davis Oct 1984 A
4480985 Davis Nov 1984 A
4488865 Davis Dec 1984 A
4498288 Vogt Feb 1985 A
4498289 Osgerby Feb 1985 A
4528811 Stahl Jul 1985 A
4543784 Kirker Oct 1985 A
4548034 Maguire Oct 1985 A
4561245 Ball Dec 1985 A
4569310 Davis Feb 1986 A
4577462 Robertson Mar 1986 A
4602614 Percival et al. Jul 1986 A
4606721 Livingston Aug 1986 A
4613299 Backheim Sep 1986 A
4637792 Davis Jan 1987 A
4651712 Davis Mar 1987 A
4653278 Vinson et al. Mar 1987 A
4681678 Leaseburge et al. Jul 1987 A
4684465 Leaseburge et al. Aug 1987 A
4753666 Pastor et al. Jun 1988 A
4762543 Pantermuehl et al. Aug 1988 A
4817387 Lashbrook Apr 1989 A
4858428 Paul Aug 1989 A
4895710 Hartmann et al. Jan 1990 A
4898001 Kuroda et al. Feb 1990 A
4946597 Sury Aug 1990 A
4976100 Lee Dec 1990 A
5014785 Puri et al. May 1991 A
5044932 Martin et al. Sep 1991 A
5073105 Martin et al. Dec 1991 A
5084438 Matsubara et al. Jan 1992 A
5085274 Puri et al. Feb 1992 A
5098282 Schwartz et al. Mar 1992 A
5123248 Monty et al. Jun 1992 A
5135387 Martin et al. Aug 1992 A
5141049 Larsen et al. Aug 1992 A
5142866 Yanagihara et al. Sep 1992 A
5147111 Montgomery Sep 1992 A
5154596 Schwartz et al. Oct 1992 A
5183232 Gale Feb 1993 A
5195884 Schwartz et al. Mar 1993 A
5197289 Glevicky et al. Mar 1993 A
5238395 Schwartz et al. Aug 1993 A
5255506 Wilkes et al. Oct 1993 A
5265410 Hisatome Nov 1993 A
5271905 Owen et al. Dec 1993 A
5275552 Schwartz et al. Jan 1994 A
5295350 Child Mar 1994 A
5304362 Madsen Apr 1994 A
5325660 Taniguchi et al. Jul 1994 A
5332036 Shirley et al. Jul 1994 A
5344307 Schwartz et al. Sep 1994 A
5345756 Jahnke et al. Sep 1994 A
5355668 Weil Oct 1994 A
5359847 Pillsbury et al. Nov 1994 A
5361586 McWhirter et al. Nov 1994 A
5388395 Scharpf et al. Feb 1995 A
5394688 Amos Mar 1995 A
5402847 Wilson et al. Apr 1995 A
5444971 Holenberger Aug 1995 A
5457951 Johnson Oct 1995 A
5458481 Surbey et al. Oct 1995 A
5468270 Borszynski Nov 1995 A
5490378 Berger et al. Feb 1996 A
5542840 Surbey et al. Aug 1996 A
5566756 Chaback et al. Oct 1996 A
5572862 Mowill Nov 1996 A
5581998 Craig Dec 1996 A
5584182 Althaus et al. Dec 1996 A
5590518 Janes Jan 1997 A
5628182 Mowill May 1997 A
5634329 Andersson et al. Jun 1997 A
5638675 Zysman et al. Jun 1997 A
5640840 Briesch Jun 1997 A
5657631 Androsov Aug 1997 A
5680764 Viteri Oct 1997 A
5685158 Lenahan et al. Nov 1997 A
5709077 Beichel Jan 1998 A
5713206 McWhirter et al. Feb 1998 A
5715673 Beichel Feb 1998 A
5724805 Golomb et al. Mar 1998 A
5725054 Shayegi et al. Mar 1998 A
5740786 Gartner Apr 1998 A
5743079 Walsh et al. Apr 1998 A
5765363 Mowill Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5771868 Khair Jun 1998 A
5819540 Massarani Oct 1998 A
5832712 Ronning et al. Nov 1998 A
5836164 Tsukahara et al. Nov 1998 A
5839283 Dobbeling Nov 1998 A
5850732 Willis et al. Dec 1998 A
5894720 Willis et al. Apr 1999 A
5901547 Smith et al. May 1999 A
5924275 Cohen et al. Jul 1999 A
5930990 Zachary et al. Aug 1999 A
5937634 Etheridge et al. Aug 1999 A
5950417 Robertson, Jr. et al. Sep 1999 A
5956937 Beichel Sep 1999 A
5968349 Duyvesteyn et al. Oct 1999 A
5974780 Santos Nov 1999 A
5992388 Seger Nov 1999 A
6016658 Willis et al. Jan 2000 A
6032465 Regnier Mar 2000 A
6035641 Lokhandwala Mar 2000 A
6062026 Woollenweber et al. May 2000 A
6079974 Thompson Jun 2000 A
6082093 Greenwood et al. Jul 2000 A
6089855 Becker et al. Jul 2000 A
6094916 Puri et al. Aug 2000 A
6101983 Anand et al. Aug 2000 A
6148602 Demetri Nov 2000 A
6170264 Viteri et al. Jan 2001 B1
6183241 Bohn et al. Feb 2001 B1
6201029 Waycuilis Mar 2001 B1
6202400 Utamura et al. Mar 2001 B1
6202442 Brugerolle Mar 2001 B1
6202574 Liljedahl et al. Mar 2001 B1
6209325 Alkabie Apr 2001 B1
6216459 Daudel et al. Apr 2001 B1
6216549 Davis et al. Apr 2001 B1
6230103 DeCorso et al. May 2001 B1
6237339 Åsen et al. May 2001 B1
6247315 Marin et al. Jun 2001 B1
6247316 Viteri Jun 2001 B1
6248794 Gieskes Jun 2001 B1
6253555 Willis Jul 2001 B1
6256976 Kataoka et al. Jul 2001 B1
6256994 Dillon, IV Jul 2001 B1
6263659 Dillon, IV et al. Jul 2001 B1
6266954 McCallum et al. Jul 2001 B1
6269882 Wellington et al. Aug 2001 B1
6276171 Brugerolle Aug 2001 B1
6282901 Marin et al. Sep 2001 B1
6283087 Isaksen Sep 2001 B1
6289677 Prociw et al. Sep 2001 B1
6298652 Mittricker et al. Oct 2001 B1
6298654 Vermes et al. Oct 2001 B1
6298664 Åsen et al. Oct 2001 B1
6301888 Gray, Jr. Oct 2001 B1
6301889 Gladden et al. Oct 2001 B1
6305929 Chung et al. Oct 2001 B1
6314721 Mathews et al. Nov 2001 B1
6324867 Fanning Dec 2001 B1
6332313 Willis et al. Dec 2001 B1
6345493 Smith et al. Feb 2002 B1
6360528 Brausch et al. Mar 2002 B1
6363709 Kataoka et al. Apr 2002 B2
6367258 Wen Apr 2002 B1
6370870 Kamijo et al. Apr 2002 B1
6374591 Johnson Apr 2002 B1
6374594 Kraft et al. Apr 2002 B1
6383461 Lang May 2002 B1
6389814 Viteri et al. May 2002 B2
6405536 Ho et al. Jun 2002 B1
6412278 Matthews Jul 2002 B1
6412302 Foglietta Jul 2002 B1
6412559 Gunter et al. Jul 2002 B1
6418725 Maeda et al. Jul 2002 B1
6429020 Thornton et al. Aug 2002 B1
6449954 Bachmann Sep 2002 B2
6450256 Mones Sep 2002 B2
6461147 Sonju et al. Oct 2002 B1
6467270 Mulloy et al. Oct 2002 B2
6470682 Gray, Jr. Oct 2002 B2
6477859 Wong et al. Nov 2002 B2
6484503 Raz Nov 2002 B1
6484507 Pradt Nov 2002 B1
6487863 Chen et al. Dec 2002 B1
6499990 Zink et al. Dec 2002 B1
6502383 Janardan et al. Jan 2003 B1
6505567 Anderson et al. Jan 2003 B1
6505683 Minkkinen et al. Jan 2003 B2
6508209 Collier, Jr. Jan 2003 B1
6523349 Viteri Feb 2003 B2
6532745 Neary Mar 2003 B1
6539716 Finger et al. Apr 2003 B2
6584775 Schneider et al. Jul 2003 B1
6598398 Viteri et al. Jul 2003 B2
6598399 Liebig Jul 2003 B2
6598402 Kataoka et al. Jul 2003 B2
6606861 Snyder Aug 2003 B2
6612291 Sakamoto Sep 2003 B2
6615576 Sheoran et al. Sep 2003 B2
6615589 Allam et al. Sep 2003 B2
6622470 Viteri et al. Sep 2003 B2
6622645 Havlena Sep 2003 B2
6637183 Viteri et al. Oct 2003 B2
6644041 Eyermann Nov 2003 B1
6655150 Åsen et al. Dec 2003 B1
6668541 Rice et al. Dec 2003 B2
6672863 Doebbeling et al. Jan 2004 B2
6675579 Yang Jan 2004 B1
6684643 Frutschi Feb 2004 B2
6694735 Sumser et al. Feb 2004 B2
6698412 Dalla Betta Mar 2004 B2
6702570 Shah et al. Mar 2004 B2
6722436 Krill Apr 2004 B2
6725665 Tuschy et al. Apr 2004 B2
6731501 Cheng May 2004 B1
6732531 Dickey May 2004 B2
6742506 Grandin Jun 2004 B1
6743829 Fischer-Calderon et al. Jun 2004 B2
6745573 Marin et al. Jun 2004 B2
6745624 Porter et al. Jun 2004 B2
6748004 Jepson Jun 2004 B2
6752620 Heier et al. Jun 2004 B2
6767527 Åsen et al. Jul 2004 B1
6772583 Bland Aug 2004 B2
6790030 Fischer et al. Sep 2004 B2
6805483 Tomlinson et al. Oct 2004 B2
6810673 Snyder Nov 2004 B2
6813889 Inoue et al. Nov 2004 B2
6817187 Yu Nov 2004 B2
6820428 Wylie Nov 2004 B2
6821501 Matzakos et al. Nov 2004 B2
6823852 Collier, Jr. Nov 2004 B2
6824710 Viteri et al. Nov 2004 B2
6826912 Levy et al. Dec 2004 B2
6826913 Wright Dec 2004 B2
6838071 Olsvik et al. Jan 2005 B1
6851413 Tamol, Sr. Feb 2005 B1
6868677 Viteri et al. Mar 2005 B2
6886334 Shirakawa May 2005 B2
6887069 Thornton et al. May 2005 B1
6899859 Olsvik May 2005 B1
6901760 Dittmann et al. Jun 2005 B2
6904815 Widmer Jun 2005 B2
6907737 Mittricker et al. Jun 2005 B2
6910335 Viteri et al. Jun 2005 B2
6923915 Alford et al. Aug 2005 B2
6939130 Abbasi et al. Sep 2005 B2
6945029 Viteri Sep 2005 B2
6945052 Frutschi et al. Sep 2005 B2
6945087 Porter et al. Sep 2005 B2
6945089 Barie et al. Sep 2005 B2
6946419 Kaefer Sep 2005 B2
6969123 Vinegar et al. Nov 2005 B2
6971242 Boardman Dec 2005 B2
6981358 Bellucci et al. Jan 2006 B2
6988549 Babcock Jan 2006 B1
6993901 Shirakawa Feb 2006 B2
6993916 Johnson et al. Feb 2006 B2
6994491 Kittle Feb 2006 B2
7007487 Belokon et al. Mar 2006 B2
7010921 Intile et al. Mar 2006 B2
7011154 Maher et al. Mar 2006 B2
7015271 Bice et al. Mar 2006 B2
7032388 Healy Apr 2006 B2
7040400 de Rouffignac et al. May 2006 B2
7043898 Rago May 2006 B2
7043920 Viteri et al. May 2006 B2
7045553 Hershkowitz May 2006 B2
7053128 Hershkowitz May 2006 B2
7056482 Hakka et al. Jun 2006 B2
7059152 Oakey et al. Jun 2006 B2
7065953 Kopko Jun 2006 B1
7065972 Zupanc et al. Jun 2006 B2
7074033 Neary Jul 2006 B2
7077199 Vinegar et al. Jul 2006 B2
7089743 Frutschi et al. Aug 2006 B2
7096942 de Rouffignac et al. Aug 2006 B1
7097925 Keefer Aug 2006 B2
7104319 Vinegar et al. Sep 2006 B2
7104784 Hasegawa et al. Sep 2006 B1
7124589 Neary Oct 2006 B2
7137256 Stuttaford et al. Nov 2006 B1
7137623 Mockry Nov 2006 B2
7143572 Ooka et al. Dec 2006 B2
7143606 Tranier Dec 2006 B2
7146969 Weirich Dec 2006 B2
7147461 Neary Dec 2006 B2
7148261 Hershkowitz et al. Dec 2006 B2
7152409 Yee et al. Dec 2006 B2
7162875 Fletcher et al. Jan 2007 B2
7168265 Briscoe et al. Jan 2007 B2
7168488 Olsvik et al. Jan 2007 B2
7183328 Hershkowitz et al. Feb 2007 B2
7185497 Dudebout et al. Mar 2007 B2
7194869 McQuiggan et al. Mar 2007 B2
7197880 Thornton et al. Apr 2007 B2
7217303 Hershkowitz et al. May 2007 B2
7225623 Koshoffer Jun 2007 B2
7237385 Carrea Jul 2007 B2
7284362 Marin et al. Oct 2007 B2
7299619 Briesch Nov 2007 B2
7299868 Zapadinski Nov 2007 B2
7302801 Chen Dec 2007 B2
7305817 Blodgett et al. Dec 2007 B2
7305831 Carrea et al. Dec 2007 B2
7313916 Pellizzari Jan 2008 B2
7318317 Carrea Jan 2008 B2
7343742 Wimmer et al. Mar 2008 B2
7353655 Bolis et al. Apr 2008 B2
7357857 Hart et al. Apr 2008 B2
7363756 Carrea et al. Apr 2008 B2
7363764 Griffin et al. Apr 2008 B2
7381393 Lynn Jun 2008 B2
7401577 Saucedo et al. Jul 2008 B2
7410525 Liu et al. Aug 2008 B1
7416137 Hagen et al. Aug 2008 B2
7434384 Lord et al. Oct 2008 B2
7438744 Beaumont Oct 2008 B2
7467942 Carroni et al. Dec 2008 B2
7468173 Hughes et al. Dec 2008 B2
7472550 Lear, Jr. et al. Jan 2009 B2
7481048 Harmon et al. Jan 2009 B2
7481275 Olsvik et al. Jan 2009 B2
7482500 Johann et al. Jan 2009 B2
7485761 Schindler et al. Feb 2009 B2
7488857 Johann et al. Feb 2009 B2
7490472 Lynghjem et al. Feb 2009 B2
7491250 Hershkowitz et al. Feb 2009 B2
7492054 Catlin Feb 2009 B2
7493769 Jangili Feb 2009 B2
7498009 Leach et al. Mar 2009 B2
7503178 Bucker et al. Mar 2009 B2
7503948 Hershkowitz et al. Mar 2009 B2
7506501 Anderson et al. Mar 2009 B2
7513099 Nuding et al. Apr 2009 B2
7513100 Motter et al. Apr 2009 B2
7516626 Brox et al. Apr 2009 B2
7520134 Durbin et al. Apr 2009 B2
7523603 Hagen et al. Apr 2009 B2
7536252 Hibshman, II et al. May 2009 B1
7536873 Nohlen May 2009 B2
7540150 Schmid et al. Jun 2009 B2
7559977 Fleischer et al. Jul 2009 B2
7562519 Harris et al. Jul 2009 B1
7562529 Kuspert et al. Jul 2009 B2
7566394 Koseoglu Jul 2009 B2
7574856 Mak Aug 2009 B2
7591866 Bose Sep 2009 B2
7594386 Narayanan et al. Sep 2009 B2
7610752 Dalla Betta et al. Nov 2009 B2
7610759 Yoshida et al. Nov 2009 B2
7611681 Kaefer Nov 2009 B2
7614352 Anthony et al. Nov 2009 B2
7618606 Fan et al. Nov 2009 B2
7631493 Shirakawa et al. Dec 2009 B2
7634915 Hoffmann et al. Dec 2009 B2
7635408 Mak et al. Dec 2009 B2
7637093 Rao Dec 2009 B2
7644573 Smith Jan 2010 B2
7650744 Varatharajan et al. Jan 2010 B2
7654320 Payton Feb 2010 B2
7654330 Zubrin et al. Feb 2010 B2
7655071 De Vreede Feb 2010 B2
7670135 Zink et al. Mar 2010 B1
7673454 Saito et al. Mar 2010 B2
7673685 Huntley Shaw et al. Mar 2010 B2
7674443 Davis Mar 2010 B1
7677309 Shaw et al. Mar 2010 B2
7681394 Haugen Mar 2010 B2
7682597 Blumenfeld et al. Mar 2010 B2
7690204 Drnevich et al. Apr 2010 B2
7691788 Tan et al. Apr 2010 B2
7695703 Sobolevskiy et al. Apr 2010 B2
7717173 Grott May 2010 B2
7721543 Massey et al. May 2010 B2
7726114 Evulet Jun 2010 B2
7734408 Shiraki Jun 2010 B2
7739864 Finkenrath et al. Jun 2010 B2
7749311 Saito et al. Jul 2010 B2
7752848 Balan et al. Jul 2010 B2
7752850 Laster et al. Jul 2010 B2
7753039 Harima et al. Jul 2010 B2
7753972 Zubrin et al. Jul 2010 B2
7762084 Martis et al. Jul 2010 B2
7763163 Koseoglu Jul 2010 B2
7763227 Wang Jul 2010 B2
7765810 Pfefferle Aug 2010 B2
7788897 Campbell et al. Sep 2010 B2
7789159 Bader Sep 2010 B1
7789658 Towler et al. Sep 2010 B2
7789944 Saito et al. Sep 2010 B2
7793494 Wirth et al. Sep 2010 B2
7802434 Varatharajan et al. Sep 2010 B2
7815873 Sankaranarayanan et al. Oct 2010 B2
7815892 Hershkowitz et al. Oct 2010 B2
7819951 White et al. Oct 2010 B2
7824179 Hasegawa et al. Nov 2010 B2
7827778 Finkenrath et al. Nov 2010 B2
7827794 Pronske et al. Nov 2010 B1
7841186 So et al. Nov 2010 B2
7845406 Nitschke Dec 2010 B2
7846401 Hershkowitz et al. Dec 2010 B2
7861511 Chillar et al. Jan 2011 B2
7874140 Fan et al. Jan 2011 B2
7874350 Pfefferle Jan 2011 B2
7875402 Hershkowitz et al. Jan 2011 B2
7882692 Pronske et al. Feb 2011 B2
7886522 Kammel Feb 2011 B2
7895822 Hoffmann et al. Mar 2011 B2
7896105 Dupriest Mar 2011 B2
7906304 Kohr Mar 2011 B2
7909898 White et al. Mar 2011 B2
7914749 Carstens et al. Mar 2011 B2
7914764 Hershkowitz et al. Mar 2011 B2
7918906 Zubrin et al. Apr 2011 B2
7921633 Rising Apr 2011 B2
7922871 Price et al. Apr 2011 B2
7926292 Rabovitser et al. Apr 2011 B2
7931712 Zubrin et al. Apr 2011 B2
7931731 Van Heeringen et al. Apr 2011 B2
7931888 Drnevich et al. Apr 2011 B2
7934926 Kornbluth et al. May 2011 B2
7942003 Baudoin et al. May 2011 B2
7942008 Joshi et al. May 2011 B2
7943097 Golden et al. May 2011 B2
7955403 Ariyapadi et al. Jun 2011 B2
7966822 Myers et al. Jun 2011 B2
7976803 Hooper et al. Jul 2011 B2
7980312 Hill et al. Jul 2011 B1
7985399 Drnevich et al. Jul 2011 B2
7988750 Lee Aug 2011 B2
8001789 Vega et al. Aug 2011 B2
8029273 Paschereit et al. Oct 2011 B2
8036813 Tonetti et al. Oct 2011 B2
8038416 Ono et al. Oct 2011 B2
8038746 Clark Oct 2011 B2
8038773 Ochs et al. Oct 2011 B2
8046986 Chillar et al. Nov 2011 B2
8047007 Zubrin et al. Nov 2011 B2
8051638 Aljabari et al. Nov 2011 B2
8061120 Hwang Nov 2011 B2
8062617 Stakhev et al. Nov 2011 B2
8065870 Jobson et al. Nov 2011 B2
8065874 Fong et al. Nov 2011 B2
8074439 Foret Dec 2011 B2
8080225 Dickinson et al. Dec 2011 B2
8083474 Hashimoto et al. Dec 2011 B2
8097230 Mesters et al. Jan 2012 B2
8101146 Fedeyko et al. Jan 2012 B2
8105559 Melville et al. Jan 2012 B2
8110012 Chiu et al. Feb 2012 B2
8117825 Griffin et al. Feb 2012 B2
8117846 Wilbraham Feb 2012 B2
8127558 Bland et al. Mar 2012 B2
8127936 Liu et al. Mar 2012 B2
8127937 Liu et al. Mar 2012 B2
8133298 Lanyi et al. Mar 2012 B2
8166766 Draper May 2012 B2
8167960 Gil May 2012 B2
8176982 Gil et al. May 2012 B2
8191360 Fong et al. Jun 2012 B2
8191361 Fong et al. Jun 2012 B2
8196387 Shah et al. Jun 2012 B2
8196413 Mak Jun 2012 B2
8201402 Fong et al. Jun 2012 B2
8205455 Popovic Jun 2012 B2
8206669 Schaffer et al. Jun 2012 B2
8209192 Gil et al. Jun 2012 B2
8215105 Fong et al. Jul 2012 B2
8220247 Wijmans et al. Jul 2012 B2
8220248 Wijmans et al. Jul 2012 B2
8220268 Callas Jul 2012 B2
8225600 Theis Jul 2012 B2
8226912 Kloosterman et al. Jul 2012 B2
8240142 Fong et al. Aug 2012 B2
8240153 Childers et al. Aug 2012 B2
8245492 Draper Aug 2012 B2
8245493 Minto Aug 2012 B2
8247462 Boshoff et al. Aug 2012 B2
8257476 White et al. Sep 2012 B2
8261823 Hill et al. Sep 2012 B1
8262343 Hagen Sep 2012 B2
8266883 Dion Ouellet et al. Sep 2012 B2
8266913 Snook et al. Sep 2012 B2
8268044 Wright et al. Sep 2012 B2
8281596 Rohrssen et al. Oct 2012 B1
8316665 Mak Nov 2012 B2
8316784 D'Agostini Nov 2012 B2
8337613 Zauderer Dec 2012 B2
8347600 Wichmann et al. Jan 2013 B2
8348551 Baker et al. Jan 2013 B2
8371100 Draper Feb 2013 B2
8372251 Goller et al. Feb 2013 B2
8377184 Fujikawa et al. Feb 2013 B2
8377401 Darde et al. Feb 2013 B2
8388919 Hooper et al. Mar 2013 B2
8397482 Kraemer et al. Mar 2013 B2
8398757 Iijima et al. Mar 2013 B2
8409307 Drnevich et al. Apr 2013 B2
8414694 Iijima et al. Apr 2013 B2
8424282 Vollmer et al. Apr 2013 B2
8424601 Betzer-Zilevitch Apr 2013 B2
8436489 Stahlkopf et al. May 2013 B2
8453461 Draper Jun 2013 B2
8453462 Wichmann et al. Jun 2013 B2
8453583 Malavasi et al. Jun 2013 B2
8454350 Berry et al. Jun 2013 B2
8475160 Campbell et al. Jul 2013 B2
8539749 Wichmann et al. Sep 2013 B1
8567200 Brook et al. Oct 2013 B2
8616294 Zubrin et al. Dec 2013 B2
8627643 Chillar et al. Jan 2014 B2
20010000049 Kataoka et al. Mar 2001 A1
20010029732 Bachmann Oct 2001 A1
20010045090 Gray, Jr. Nov 2001 A1
20020043063 Kataoka et al. Apr 2002 A1
20020053207 Finger et al. May 2002 A1
20020069648 Levy et al. Jun 2002 A1
20020187449 Doebbeling et al. Dec 2002 A1
20030005698 Keller Jan 2003 A1
20030131582 Anderson et al. Jul 2003 A1
20030134241 Marin et al. Jul 2003 A1
20030221409 McGowan Dec 2003 A1
20040006994 Walsh et al. Jan 2004 A1
20040068981 Siefker et al. Apr 2004 A1
20040166034 Kaefer Aug 2004 A1
20040170559 Hershkowitz et al. Sep 2004 A1
20040223408 Mathys et al. Nov 2004 A1
20040238654 Hagen et al. Dec 2004 A1
20050028529 Bartlett et al. Feb 2005 A1
20050144961 Colibaba-Evulet et al. Jul 2005 A1
20050197267 Zaki et al. Sep 2005 A1
20050229585 Webster Oct 2005 A1
20050236602 Viteri et al. Oct 2005 A1
20060112675 Anderson et al. Jun 2006 A1
20060158961 Ruscheweyh et al. Jul 2006 A1
20060183009 Berlowitz et al. Aug 2006 A1
20060196812 Beetge et al. Sep 2006 A1
20060248888 Geskes Nov 2006 A1
20070000242 Harmon et al. Jan 2007 A1
20070044475 Leser et al. Mar 2007 A1
20070044479 Brandt et al. Mar 2007 A1
20070089425 Motter et al. Apr 2007 A1
20070107430 Schmid et al. May 2007 A1
20070144747 Steinberg Jun 2007 A1
20070231233 Bose Oct 2007 A1
20070234702 Hagen et al. Oct 2007 A1
20070245736 Barnicki Oct 2007 A1
20070249738 Haynes et al. Oct 2007 A1
20070272201 Amano et al. Nov 2007 A1
20080000229 Kuspert et al. Jan 2008 A1
20080006561 Moran et al. Jan 2008 A1
20080010967 Griffin et al. Jan 2008 A1
20080034727 Sutikno Feb 2008 A1
20080038598 Berlowitz et al. Feb 2008 A1
20080047280 Dubar Feb 2008 A1
20080066443 Frutschi et al. Mar 2008 A1
20080115478 Sullivan May 2008 A1
20080118310 Graham May 2008 A1
20080127632 Finkenrath et al. Jun 2008 A1
20080155984 Liu et al. Jul 2008 A1
20080178611 Ding Jul 2008 A1
20080202123 Sullivan et al. Aug 2008 A1
20080223038 Lutz et al. Sep 2008 A1
20080250795 Katdare Oct 2008 A1
20080251234 Wilson Oct 2008 A1
20080290719 Kaminsky et al. Nov 2008 A1
20080309087 Evulet et al. Dec 2008 A1
20090000762 Wilson Jan 2009 A1
20090025390 Christensen et al. Jan 2009 A1
20090038247 Taylor et al. Feb 2009 A1
20090056342 Kirzhner Mar 2009 A1
20090064653 Hagen et al. Mar 2009 A1
20090071166 Hagen et al. Mar 2009 A1
20090107141 Chillar et al. Apr 2009 A1
20090117024 Weedon et al. May 2009 A1
20090120087 Sumser et al. May 2009 A1
20090157230 Hibshman, II et al. Jun 2009 A1
20090193809 Schroder et al. Aug 2009 A1
20090205334 Aljabari et al. Aug 2009 A1
20090218821 ElKady et al. Sep 2009 A1
20090223227 Lipinski et al. Sep 2009 A1
20090229263 Ouellet et al. Sep 2009 A1
20090235637 Foret Sep 2009 A1
20090241506 Nilsson Oct 2009 A1
20090255242 Paterson et al. Oct 2009 A1
20090262599 Kohrs et al. Oct 2009 A1
20090284013 Anand Nov 2009 A1
20090301054 Simpson et al. Dec 2009 A1
20090301099 Nigro Dec 2009 A1
20100003123 Smith Jan 2010 A1
20100018218 Riley et al. Jan 2010 A1
20100058732 Kaufmann et al. Mar 2010 A1
20100115960 Brautsch et al. May 2010 A1
20100126176 Kim May 2010 A1
20100126906 Sury May 2010 A1
20100135776 Chillar et al. Jun 2010 A1
20100162703 Li et al. Jul 2010 A1
20100170253 Berry et al. Jul 2010 A1
20100180565 Draper Jul 2010 A1
20100300102 Bathina et al. Dec 2010 A1
20100310439 Brok et al. Dec 2010 A1
20100322759 Tanioka Dec 2010 A1
20100326084 Anderson et al. Dec 2010 A1
20110000221 Minta et al. Jan 2011 A1
20110000671 Hershkowitz et al. Jan 2011 A1
20110036082 Collinot Feb 2011 A1
20110048002 Taylor et al. Mar 2011 A1
20110048010 Balcezak et al. Mar 2011 A1
20110072779 ELKady et al. Mar 2011 A1
20110088379 Nanda Apr 2011 A1
20110110759 Sanchez et al. May 2011 A1
20110126512 Anderson Jun 2011 A1
20110138766 ELKady et al. Jun 2011 A1
20110162353 Vanvolsem et al. Jul 2011 A1
20110205837 Gentgen Aug 2011 A1
20110226010 Baxter Sep 2011 A1
20110227346 Klenven Sep 2011 A1
20110232545 Clements Sep 2011 A1
20110239653 Valeev et al. Oct 2011 A1
20110265447 Cunningham Nov 2011 A1
20110300493 Mittricker et al. Dec 2011 A1
20120023954 Wichmann Feb 2012 A1
20120023955 Draper Feb 2012 A1
20120023956 Popovic Feb 2012 A1
20120023957 Draper et al. Feb 2012 A1
20120023958 Snook et al. Feb 2012 A1
20120023960 Minto Feb 2012 A1
20120023962 Wichmann et al. Feb 2012 A1
20120023963 Wichmann et al. Feb 2012 A1
20120023966 Ouellet et al. Feb 2012 A1
20120031581 Chillar et al. Feb 2012 A1
20120032810 Chillar et al. Feb 2012 A1
20120085100 Hughes et al. Apr 2012 A1
20120096870 Wichmann et al. Apr 2012 A1
20120119512 Draper May 2012 A1
20120131925 Mittricker et al. May 2012 A1
20120144837 Rasmussen et al. Jun 2012 A1
20120185144 Draper Jul 2012 A1
20120192565 Tretyakov et al. Aug 2012 A1
20120247105 Nelson et al. Oct 2012 A1
20120260660 Kraemer et al. Oct 2012 A1
20130086916 Oelfke et al. Apr 2013 A1
20130086917 Slobodyanskiy et al. Apr 2013 A1
20130091853 Denton et al. Apr 2013 A1
20130091854 Gupta et al. Apr 2013 A1
20130104562 Oelfke et al. May 2013 A1
20130104563 Oelfke et al. May 2013 A1
20130125554 Mittricker et al. May 2013 A1
20130125555 Mittricker et al. May 2013 A1
20130232980 Chen et al. Sep 2013 A1
20130269310 Wichmann et al. Oct 2013 A1
20130269311 Wichmann et al. Oct 2013 A1
20130269355 Wichmann et al. Oct 2013 A1
20130269356 Butkiewicz et al. Oct 2013 A1
20130269357 Wichmann et al. Oct 2013 A1
20130269358 Wichmann et al. Oct 2013 A1
20130269360 Wichmann et al. Oct 2013 A1
20130269361 Wichmann et al. Oct 2013 A1
20130269362 Wichmann et al. Oct 2013 A1
20130283808 Kolvick Oct 2013 A1
20140000271 Mittricker et al. Jan 2014 A1
20140000273 Mittricker et al. Jan 2014 A1
20140007590 Huntington et al. Jan 2014 A1
20140013766 Mittricker et al. Jan 2014 A1
20140020398 Mittricker et al. Jan 2014 A1
Foreign Referenced Citations (21)
Number Date Country
2231749 Sep 1998 CA
2645450 Sep 2007 CA
0770771 May 1997 EP
2119892 Nov 2009 EP
776269 Jun 1957 GB
2117053 Oct 1983 GB
WO9906674 Feb 1999 WO
WO9963210 Dec 1999 WO
WO2007068682 Jun 2007 WO
WO2008142009 Nov 2008 WO
WO2011003606 Jan 2011 WO
WO2012003489 Jan 2012 WO
WO2012128928 Sep 2012 WO
WO2012128929 Sep 2012 WO
WO2012170114 Dec 2012 WO
PCTRU2013000162 Feb 2013 WO
PCTUS13036020 Apr 2013 WO
WO2013147632 Oct 2013 WO
WO2013147633 Oct 2013 WO
WO2013155214 Oct 2013 WO
WO2013163045 Oct 2013 WO
Non-Patent Literature Citations (53)
Entry
PCT Written Opinion of PCT/US2013/037466 mailed Aug. 1, 2013.
Cho, J. H. et al. (2005) “Marrying LNG and Power Generation,” Energy Markets; 10, 8; ABI/INFORM Trade & Industry, 5 pgs.
Corti, A. et al. (1988) “Athabasca Mineable Oil Sands: The RTR/Gulf Extraction Process Theoretical Model of Bitumen Detachment,” 4th UNITAR/UNDP Int'l Conf. on Heavy Crude and Tar Sands Proceedings, v.5, paper No. 81, Edmonton, AB, Canada, 4 pgs.
Vanda, R. et al. (2007) “Utilizing Air Based Technologies as Heat Source for LNG Vaporization,” presented at the 86th Annual convention of the Gas Processors of America (GPA 2007), San Antonio, TX; 13 pgs.
Rosetta, M. J. et al. (2006) “Integrating Ambient Air Vaporization Technology with Waste Heat Recovery—A Fresh Approach to LNG Vaporization,” presented at the 85th annual convention of the Gas Processors of America (GPA 2006), Grapevine, Texas, 22 pgs.
Ahmed, S. et al. (1998) “Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels,” 1998 Fuel Cell Seminar, Nov. 16-19, 1998, 7 pgs.
Air Separation Technology Ion Transport Membrane—Air Products 2008.
Air Separation Technology Ion Transport Membrane—Air Products 2011.
Anderson, R. E. (2006) “Durability and Reliability Demonstration of a Near-Zero-Emission Gas-Fired Power Plant,” California Energy Comm., CEC 500-2006-074, 80 pgs.
Baxter, E. et al. (2003) “Fabricate and Test an Advanced Non-Polluting Turbine Drive Gas Generator,” U. S. Dept. of Energy, Nat'l Energy Tech. Lab., DE-FC26-00NT 40804, 51 pgs.
Bolland, O. et al. (1998) “Removal of CO2 From Gas Turbine Power Plants Evaluation of Pre- and Postcombustion Methods,” SINTEF Group, 1998, www.energy.sintef.no/publ/xergi/98/3/art-8engelsk.htm, 11 pgs.
BP Press Release (2006) “BP and Edison Mission Group Plan Major Hydrogen Power Project for California,” Feb. 10, 2006, www.bp.com/hydrogenpower, 2 pgs.
Bryngelsson, M. et al. (2005) “Feasibility Study of CO2 Removal From Pressurized Flue Gas in a Fully Fired Combined Cycle—The Sargas Project,” KTH—Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 9 pgs.
Clark, Hal (2002) “Development of a Unique Gas Generator for a Non-Polluting Power Plant,” California Energy Commission Feasibility Analysis, P500-02-011F, Mar. 2002, 42 pgs.
Comparison of Ion Transport Membranes—Fourth Annual Conference on Carbon Capture and Sequestration DOE/NETL; May 2005.
Ciulia, Vincent. About.com. Auto Repair. How the Engine Works. 2001-2003.
Cryogenics. Science Clarified. 2012. http://www.scienceclarified.com/Co-Di/Cryogenics.html.
Defrate, L. A. et al. (1959) “Optimum Design of Ejector Using Digital Computers” Chem. Eng. Prog. Symp. Ser., 55 ( 21) pp. 46.
Ditaranto, M. et al. (2006) “Combustion Instabilities in Sudden Expansion Oxy-Fuel Flames,” ScienceDirect, Combustion and Flame, v.146, Jun. 30, 2006, pp. 493-51.
Elwell, L. C. et al. (2005) “Technical Overview of Carbon Dioxide Capture Technologies for Coal-Fired Power Plants,” MPR Associates, Inc., Jun. 22, 2005, 15 pgs.
Eriksson, Sara. Licentiate Thesis 2005, p. 22. KTH—“Development of Methane Oxidation Catalysts for Different Gas Turbine Combustor Concepts.” The Royal Institute of Technology, Department of Chemical Engineering and Technology, Chemical Technology, Stockholm Sweden.
Ertesvag, I. S. et al. (2005) “Energy Analysis of a Gas-Turbin Combined-Cycle Power Plant With Precombustion CO2 Capture,” Elsivier, 2004, pp. 5-39.
Evulet, Andrei T. et al. “Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture” ASME J. Engineering for Gas Turbines and Power, vol. 131, May 2009.
Evulet, Andrei T. et al. “On the Performance and Operability of GE's Dry Low Nox Combustors utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture” Energy Procedia I 2009, 3809-3816.
http://www.turbineinletcooling.org/resources/papers/CTIC—WetCompression—Shepherd—ASMETurboExpo2011.pdf, Jun. 2011.
Luby, P. et al. (2003) “Zero Carbon Power Generation: IGCC as the Premium Option,” Powergen International, 19 pgs.
MacAdam, S. et al. (2008) “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” Clean Energy Systems, Inc. 6 pgs.
Morehead, H. (2007) “Siemens Global Gasification and IGCC Update,” Siemens, Coal-Gen, Aug. 3, 2007, 17 pgs.
Reeves, S. R. (2001) “Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project,” SPE 71749,10 pgs.
Reeves, S. R. (2003) “Enhanced Coalbed Methane Recovery,” SPE 101466-DL, 8 pgs.
Richards, G. A. et al. (2001) “Advanced Steam Generators,” National Energy Technology Laboratory, 7 pgs.
Snarheim, D. et al. (2006) “Control Design for a Gas Turbine Cycle With CO2 Capture Capabilities,” Modeling, Identification and Control, vol. 00, 10 pgs.
Ulfsnes, R. E. et al. (2003) “Investigation of Physical Properties for CO2/H2O Mixtures for use in Semi-Closed O2/CO2 Gas Turbine Cycle With CO2-Capture,” Department of Energy and Process Eng., Norwegian Univ. of Science and Technology, 9 pgs.
vanHemert, P. et al. (2006) “Adsorption of Carbon Dioxide and a Hydrogen-Carbon Dioxide Mixture,” Intn'l Coalbed Methane Symposium (Tuscaloosa, AL) Paper 0615, 9 pgs.
Zhu, J. et al. (2002) “Recovery of Coalbed Methane by Gas Injection,” SPE 75255, 15 pgs.
U.S. Appl. No. 13/596,684, filed Aug. 28, 2012, Slobodyanskiy et al.
U.S. Appl. No. 14/066,579, filed Oct. 29, 2013, Huntington et al.
U.S. Appl. No. 14/066,551, filed Oct. 29, 2013, Minto.
U.S. Appl. No. 14/144,511, filed Dec. 30, 2013, Thatcher et al.
U.S. Appl. No. 14/067,559, filed Oct. 30, 2013, Lucas John Stoia et al.
U.S. Appl. No. 14/067,679, filed Oct. 30, 2013, Elizabeth Angelyn Fadde et al.
U.S. Appl. No. 14/067,714, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al.
U.S. Appl. No. 14/067,726, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al.
U.S. Appl. No. 14/067,731, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al.
U.S. Appl. No. 14/067,739, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al.
U.S. Appl. No. 14/067,797, filed Oct. 31, 2013, Anthony Wayne Krull et al.
U.S. Appl. No. 14/066,488, filed Oct. 29, 2013, Pramod K. Biyani et al.
U.S. Appl. No. 14/135,055, filed Dec. 19, 2013, Pramod K. Biyani et al.
U.S. Appl. No. 14/067,844, filed Oct. 30, 2013, John Farrior Woodall et al.
U.S. Appl. No. 14/067,486, filed Oct. 30, 2013, Huntington et al.
U.S. Appl. No. 14/067,537, filed Oct. 30, 2013, Huntington et al.
U.S. Appl. No. 14/067,552, filed Oct. 30, 2013, Huntington et al.
U.S. Appl. No. 14/067,563, filed Oct. 30, 2013, Huntington et al.
Related Publications (1)
Number Date Country
20130283808 A1 Oct 2013 US