The invention relates generally to electrical machines, such as electric generators and/or electric motors. Particularly, this invention relates to cooling in such electrical machines.
Electric machines such as, but not limited to, Interior Permanent Magnet, hereafter referred to as IPM, motors or generators have been widely used in a variety of applications including aircraft, automobiles and industrial usage. IPM machines are currently being developed for use in hybrid automotive applications. A demand for lightweight and high power density IPM machines has resulted in the design of higher speed motors and generators to maximize the power to weight ratios. Hence, the trend is increasing acceptance of IPM machines offering high machine speed, high power density, and reduced mass and cost.
Electric machines generally have a closed housing and a small air gap between the stator and the rotor. On three-phase machines of the known art, the housing is closed for maintenance reasons and is provided with fins on the outside to discharge heat. As the power of electrical machines increases, such cooling systems are no longer able to discharge a sufficient amount of heat.
Such a problem exists to a particular degree with drive axles in which one or more electrical machines are installed. As a result of which, the electrical machines reach high steady-state temperatures. In machines realized in the form of industrial trucks that are operated in multiple-shift operations, for example, thermal overloads can occur in the problem zones in the vicinity of the bearings and the sealing devices of the electrical machines. This can lead to the failure of the sealing devices or of the bearings. In comparison to air cooling systems, liquid cooling systems are significantly more efficient and make it possible to discharge a large amount of heat. So, to achieve the same power output, the size of the electrical machine can be reduced, or for an electrical machine of the same size, the power output can be increased.
On three-phase machines, liquid cooling systems are known in which a system of tubes to cool the stator is located on the outer jacket. However, an external cooling system to cool the entire three-phase machine is difficult and expensive to construct. Electrical machines with an internal liquid cooling system are also known in which the rotor runs under oil, although that causes increased churning losses.
Accordingly, there is a need for an improved cooling system for electrical machines.
In accordance with an embodiment of the invention, a segmented cooling system for an electric machine is provided. The segmented cooling system includes multiple cooling subsystems coupled to respective multiple stator segments in the electric machine, wherein the multiple cooling subsystems are configured to direct fluid flow towards one or more regions of interest within the respective plurality of stator segments.
In accordance with another embodiment of the invention, an electric machine is provided. The electric machine includes a stator including multiple stator segments coupled to a respective multiple cooling subsystems; wherein the multiple cooling subsystems is configured to direct fluid flow towards one or more regions of interest within the respective multiple stator segments. The electric machine also includes a rotor including a rotor core, wherein the rotor is disposed concentrically either inside or outside of the stator.
In accordance with another embodiment of the invention, a method of assembly of an electric machine is provided. The method includes coupling multiple segmented cooling subsystems with each of a respective multiple stator segments to form multiple cooled stator segments. The method also includes attaching the multiple cooled stator segments to form a cooled stator assembly of the electric machine. The method further includes attaching the cooled stator assembly to a rotor assembly.
In accordance with yet another embodiment of the invention, a method for cooling regions of interest in an electric machine is provided. The method includes coupling multiple cooling subsystems with respective multiple stator segments in the electric machine. The method also includes directing fluid flow via the multiple cooling subsystems towards the regions of interest within the multiple stator segments.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
As discussed in detail below, embodiments of the invention include a system and method for cooling in electric machines. The system includes a segmented cooling system integrated within stator segments. As used herein, the term ‘segmented cooling system’ refers to individual cooling systems coupled to each of the stator segments in the electric machine. In one embodiment, the segmented cooling system includes baffles. In another embodiment, the segmented cooling system includes an impingement system. In yet another embodiment, the segmented cooling system may be introduced between the stator bars. Such a cooling arrangement enables pre-assembly of the stator segments and the cooling system and further linking of multiple such modules of stator segments and cooling systems to form an integrated stator. It should be noted that the cooling concepts described are applicable to all types of electrical machines with segmented stator structures and fractional-slot concentrated windings.
Turning to the drawings,
Each of the stator segments 56 are coupled to respective cooling subsytems 14. The cooling subsystems 14 may also be referred to as ‘segmented cooling subsytems’. The various embodiments of the segmented cooling subsystems 14 are described below in
The tooth tips 36 shown in the exemplary embodiments of the invention discussed herein show flared tooth tips, which are desirable for increasing machine power density. However, the tooth tips can have any shape or size suitable to the application. It should be noted that the segmented cooling subsystem 14 may be employed on other known configurations of the segmented stator assembly 56.
The cooling channels 134 may be integral to the segmented cooling subsystem 114. In one embodiment, the cooling channel 134 directs airflow. In another embodiment, the cooling channel 134 directs liquid flow, such as, oil flow. Such a cooling arrangement provides cooling to the endwindings 77 and the regions 142 between the stator segments 56. In one embodiment, the cooling channels 134 including radial ducts 136 may solely be provided. In another embodiment, the cooling channels 134 including radial ducts 136 in combination with the cooling subsystem 114 is provided. Non-limiting examples of a coolant fluid may include air, water, ethylene glycol, propylene glycol and oil. In one embodiment, the segmented radial ducts 136 may be solely provided. In another embodiment, the segmented radial ducts 136 may be provided in combination with the segmented cooling channels 134.
Electrical machines including segmented cooling subsystems coupled with multiple stator segments, as described above, may be employed in a variety of applications. One of them includes aviation applications, such as in aircraft engines. Particularly, the electrical machines may be a generator used for generating supplemental electrical power from a rotating member, such as a low pressure (LP) turbine spool, of a turbofan engine mounted on an aircraft. The electrical machines can also be used for other non-limiting examples such as traction applications, wind and gas turbines, starter-generators for aerospace or automotive applications, industrial applications and appliances.
The various embodiments of an electrical machine including a segmented cooling system described above thus provide a way to provide efficient cooling that allows for an electrical machine with high power density, reliability and fault tolerance. The segmented cooling system in combination with segmented stator segments allows for manufacturing of smaller size electric machines with desirable power density. The technique also allow for a much simpler and convenient assembly. Furthermore, the techniques and systems provide an innovative thermal management arrangement and also allow for highly efficient electrical machines.
Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. For example, the use of an impingement cooling system described with respect to one embodiment can be adapted for use with a cooling channel with radial ducts described with respect to another. Similarly, the various features described, as well as other known equivalents for each feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.