The invention generally relates to a system and a method for correction of ophthalmic refractive errors and, more particularly, to a system and method for calculating a course of refractive treatment for correcting a refractive error.
Several techniques for correcting the vision of the eye have been proposed. The radial keratotomy technique provides slits in the cornea which allow the cornea to relax and reshape. The present techniques include photorefractive keratectomy (“PRK”), anterior lamellar keratectomy (“ALK”), laser in situ keratomileuses (“LASIK”), and thermal techniques such as laser thermal keratoplasty (“LTK”). All of these techniques strive to provide a relatively quick but lasting correction of vision.
WO 01/28477 A1 relates to a method and apparatus for multi-step correction of ophthalmic refractive errors. In a first step, gross decentrations of the refractive error are corrected, allowing the subsequent steps to be relatively symmetric in their treatment profile. After each step, the eye's refractive error is again measured, and the subsequent treatment is applied for the remaining error. With this known method, any biodynamic response which is observed after an initial step of treatment is taken into account for calculating the necessary treatment profile for correcting a residual refractive error.
U.S. Pat. No. 6,607,521 B2 relates to an apparatus for corneal surgery to correct a refractive error by ablating corneal tissue with a laser beam.
According to this known method, the step of hyperopic astigmatic correction and the step of myopic astigmatic correction are performed in combination to correct astigmatism. Thereafter, a step of spherical correction may be effected. These three steps may be followed by a fourth step for smoothing the laser irradiated surfaces.
This known method shall eliminate the need to obtain a hyperopic shift rate upon astigmatic correction as an empirical value and over correction or under correction in certain portions of the ablation zone.
The object underlying the present invention is to provide a system and a method for calculating a course of refractive treatment for correcting a refractive error of a patient's eye.
This object is solved with the features of the claims.
The present invention is based on the concept to combine at least a first treatment (in the following the main treatment) which provides an overcorrection of the intended correction with at least a second treatment (in the following a compensating treatment) which corrects said overcorrection. More specifically, according to a preferred embodiment of the invention, a myopic ablation pattern is combined with a hyperopic ablation pattern. The present invention has the advantage that post-operative spherical aberrations after a refractive laser treatment are controlled to a specific predetermined value, preferably minimum value. Known systems and methods providing a myopic ablation pattern often induce a negative spherical aberration. On the other hand, hyperopic treatment data show the opposite effect, i.e. they induce a positive spherical aberration. This change of the post-operative status of the eye having an increased spherical aberration can cause vision problems especially under conditions which cause the pupil to dilate, for example under dim light conditions. The patient's ability to see under such conditions can be severely limited. For example, a patient may not be able to drive a car by night. According to the present invention, this observed change in spherical aberration can be substantially reduced. Compared to other methods correcting for spherical aberration using wavefront measurement or topographic guided ablations, no additional information of the individual subject is necessary. A combination of both myopic and hyperopic ablation patterns can be used to adjust the post-op spherical aberration. For example, for a patient having a refraction of −4 dioptres, the following treatment may be provided. Based on this refractive diagnostic eye data, a computer system calculates a first treatment profile which provides a slight overcorrection. As an example, this treatment profile will correspond to a treatment for correcting −5 dioptres. The resulting overcorrection will be compensated for by a second treatment profile, in this case by a hyperopic treatment of +1 dioptres. Preferably, the hyperopic treatment will take place immediately after the end of the myopic ablation treatment.
Alternatively, the order of the first and second treatment can be changed. Thus, for the above example, a hyperopic treatment of +1 dioptres may by followed by a myopic treatment of −5 dioptres.
As a further alternative the first or main treatment may be divided in at least two main treatment sub-profiles. The second or compensating treatment may be divided in at least two compensating treatment sub-profiles. The main treatment may for example comprise sub-profiles m1, m2 . . . mx and the compensating treatment may comprise sub-profiles c1, c2, . . . cy. The treatment may be performed with an order of the sub-profiles as follows: m1, c1, m2, c2, . . . mx−1, cy, mx.
As another alternative the individual shots necessary for performing the main and the compensating profile are combined in one single shot file. Thus the over correction and under correction is performed as one unitary treatment.
The effect of the present invention on post-op spherical aberration can be adjusted or optimized by selecting the amount of initial overcorrection and the corresponding amount of secondary correction as well as the corresponding optical zone sizes.
According to the invention, the shot file for the first treatment is calculated with reference to a corresponding first optical zone and the shot file for the second treatment is calculated with reference to a corresponding second optical zone. Preferably, the size of the first optical zone is different from the size of the second optical zone. Most preferably, the size of the optical zone for performing a hyperopic treatment is smaller than the size of the optical zone for the myopic treatment.
The system and the method according to the present invention can be used for hyperopic and myopic corrections with or without a cylinder.
The present invention will be further described by way of the following examples and the drawings, in which:
A system for providing a course of refractive treatment for correcting a refractive error, in particular a spherical error generally comprises a computer system that receives refractive eye data from a refractive tool. This refractive tool may be a phoropter (not shown) for determining the refractive properties of a patient's eye. The computer system calculates at least the first and second treatment profile which is used in combination with a refractive surgical correction system for correcting refractive errors. Such a refractive surgical correction system is preferably an excimer laser eye surgery system which is used for ablating corneal tissue with a laser beam emitted from a laser source and delivered onto a cornea of a patient's eye with a light delivering optical system. The computer system C is generally a personal computer compatible with the IBM PC by International Business Machines, preferably including a high-powered processor. The laser system E can be a variety of systems, including the Keracor 217 by Technolas GmbH of Dornach, Germany. Generally, the computer system C runs the software which develops a course of treatment based on parameters provided by the physician as well as refractive data. It can employ a variety of algorithms, generally depending on the type of excimer laser system E. The excimer laser system E preferably employs a relatively large fixed spot size, for example, algorithms described in WO 96/11655 can be used to develop a course of treatment based on a first treatment profile for overcorrection and a second treatment profile for correcting the overcorrection.
The refractive diagnostic eye data may be described as shown in the following:
S/C/A
wherein S denotes the sphere in dioptres, C denotes the cylinder in dioptres and A denotes the axis of the astigmatism. Herein, the minus cylinder convention is used. More specifically, the S/C/A represent the respective input values for calculating the treatment profile for correction of a refractive error of a patient's eye.
The system according to the present invention provides a course of refractive treatment which comprises a computer system that receives refractive eye data indicative of a refractive error, preferably a spherical error of the eye. The computer system calculates at least a first treatment profile for performing a main treatment which, however, provides an overcorrection of the intended correction. For example, the intended correction is defined as S/0/0 whereas the first treatment profile provides an overcorrection of S+F1·S/0/0. The value F1 is a constant in the range of 0.05 to 0.3, preferably in the range of 0.05 to 0.15. When calculating this first treatment profile, a first optical zone having a diameter D1 is taken into account. The computer system further calculates at least a second treatment profile suitable to correct said overcorrection which can be described in the present case as −F1·S/0/0. This second treatment profile is calculated with reference to a second optical zone OZ2 having a diameter D2 which is smaller than diameter D1 of the first optical zone OZ1.
Thus, the following two steps would be combined.
According to a preferred embodiment of the present invention, the computer system comprises a first treatment profile which represents the intended correction which may be described as S/0/0. The computer system further calculates a second treatment profile suitable to correct an overcorrection, i.e. −F1·S/0/0 and further calculates a third treatment profile providing said overcorrection, i.e. F1·S/0/0. The first treatment profile is calculated with reference to the first optical zone OZ1, the second treatment profile is calculated with reference to a second optical zone OZ2 and the third treatment profile is calculated with reference to a third optical zone OZ3. Herein, the diameter D1 of the first optical zone OZ1 is greater than the diameter of the second and the third optical zones OZ2 and OZ3. Preferably, the diameter D2 of the second optical zone OZ2 is greater than the diameter D3 of the third optical zone OZ3. For this preferred embodiment, the following three steps are calculated.
In this example, the intended treatment for correction of a spherical error of a patient is based on the following data:
This intended treatment may be divided into the following steps.
In this example, F1=0.083.
A treatment is calculated with reference to a first, second and third optical zone. The first optical zone OZ1 corresponds to said nominal optical zone.
With reference to the diameter D1 of said first optical zone a diameter D2 of the second optical zone OZ2 is selected from a range of D1-0.5 mm to D1-1.5 mm. With reference to the diameter D1 of said first optical zone the diameter D3 of the third optical zone OZ3 is selected from a range of D1 to D1-2.5 mm. The selection of the respective size of the optical zones has the advantage that viewing ability under dim light condition is improved.
The foregoing disclosure and description of the preferred embodiments are illustrative and explanatory thereof, and various changes in the illustrated construction and method of operation may be made without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 053 297.7 | Nov 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/009878 | 10/12/2006 | WO | 00 | 5/7/2008 |