Not applicable.
The present invention relates to developing a process for creating a continuous stream of envelopes during the manufacturing process. More particularly, the present invention creates a method for manufacturing a particular type of envelope using conventional devices.
Today, available compact disc (CD) or digital video disc (DVD) envelopes are constructed as individual pieces. This results in stacks of envelopes being created which cannot be used with other devices such as a thermal printer which requires a continuous stream of material. The current process of manufacturing envelopes involves folding the material, applying an adhesive, and folding the material again. Although the manufacturing process for envelopes varies, the typical process includes a multiple cut and fold process. Subsequent to this process, a customer has to determine how to print information on the envelopes in a separate process. A secondary marking method is needed to print on the envelope. In many cases, labels are printed in a secondary process and those labels are manually applied to the envelopes. This secondary marking method or process requires additional materials, additional inventory, and an additional manufacturing process. Therefore, in a typical industrial process, the steps described above for making an envelope and printing on it are incompatible with industrial printers which direct an image onto the media at a high velocity and high volume.
Additional concerns that customers have with the abovementioned process are the appearance of the packaging with the envelope and the labeling. Customers usually want to establish a particular look for their packaged material and a labeled envelope might reduce their desire. In addition, the customer is very concerned about the weight of the complete envelope with its contents, especially for a customer in the mail-order business. The addition of a label could greatly impact costs. Furthermore, customers want to reduce manufacturing times in order to get their product to the market faster. A multi-step process of creating an envelope followed by manual procedures would greatly increase the manufacturing time and cost to the customer.
The present invention generally relates to a system and method for manufacturing envelopes and manufacturing a particular type of envelope. In particular, the present invention creates an envelope in a manner that could be manufactured on a standard or conventional equipment that is tailored to a media that is used. In addition, the present invention creates a series of envelopes in a continuous stream from a stock of material. The envelopes are maintained in a stream such that they are fed into a printer for continuous printing on each envelope.
In a first aspect, a method for creating envelopes during a manufacturing process includes applying an adhesive to a first layer of a first material to create an adhesive area. The first layer of the first material is joined to a second layer of a second material. The adhesive area seals the first layer and the second layer. The adhesive area is patterned such that the first layer and the second layer contain a space to hold an item. Information is printed on at least the first layer or the second layer. The steps above are repeated in a continuous form, but not necessarily in an order, to create envelopes.
In another aspect, an envelope for holding a disc-shaped object is provided that includes a first material and a second material joined together to form an enclosure. A first portion of the enclosure contains a first linear-shaped side of the first material and the second material joined together. A second portion of the enclosure contains a second linear-shaped side of the first material and the second material joined together. The first portion and the second portion are located opposite of each other. A third portion of the enclosure contains an arc-shaped side of the first material and the second material joined together. Each end of the third portion is substantially respectively connected to the first portion and the second portion. A fourth portion of the enclosure is substantially connected at each end respectively to the first portion and the second portion to form an opening to access the inside of the enclosure. The fourth portion is located opposite to the third-portion.
In yet another aspect, a system for manufacturing a series of envelopes in a continuous stream is provided that includes placing an adhesive intermittently on a first stream of a first material. The placement of the adhesive creates an intermittent void when the first material comes in contact with another material. The first material is pressed against a second stream of a second material with the adhesive located between the first material and the second material to form a first series of connected enclosures in a third stream. Each enclosure is shaped to create a second series of connected envelopes in the third stream.
In yet another aspect, a method for creating envelopes during a manufacturing process includes applying an adhesive to a first layer of a first material to create an adhesive area. The first layer of the first material is joined to a second layer of a second material. The adhesive area seals the first layer and the second layer. The adhesive area is patterned such that the first layer and the second layer contain a space to hold an item. The steps above are repeated in a continuous form, but not necessarily in an order, to create envelopes.
The present invention is described in detail below with reference to the attached drawing figures, wherein:
The present invention provides a system and method for manufacturing envelopes and manufacturing a particular type of envelope. In an embodiment of the present invention, envelopes are created in a continuous roll or a fanfold to enable them to be used in an industrial printing process. The present invention provides manufacturing efficiencies by streamlining the steps involved in making and printing envelopes. This construction of the envelopes may aid the automated insertion of content into the envelopes. It may also allow a more secure retention of contents such as a CD or DVD while maintaining ease of use.
The present invention creates an envelope that can be imaged on a conventional thermal printer. The envelope can functionally protect contents such as a CD or a DVD during a standard mailing process. In an embodiment of the present invention, thermal printing can occur on a continuous web of envelopes. This manufacturing process eliminates a secondary process of printing and applying a standard pressure sensitive label to an envelope, such as one containing a CD or a DVD. Because of the construction of the envelopes, various sizes and shapes may be created depending on the implementation of the embodiment of the present invention.
The construction of the envelopes can be made with existing equipment from a number of vendors and from commonly used materials. In an embodiment, the finished product is a continuous stream of envelopes that can be fed into an industrial printer such as a thermal printer or fed into other equipment designed to accept product in a continuous form rather than in individual pieces. An embodiment of the present invention may implement manufacturing processes such as rotary die or flatbed. The embodiment may also include an adhesive being applied to materials with common methods such as flexography printing, offset printing, or gravure printing. Alternative methods of adhesive application may also be implemented such as NORTON systems or transfer tapes. NORTON is a trademark of the Norton Company and Saint-Gobain Abrasives, both of Worcester, Mass.
A set of benefits of the present invention is minimal adjustment that can be employed to standard production methods for printing and laminating, potentially yielding improved speed compared to folded envelopes. In addition, the present invention reduces the complicated manufacturing time and eliminates the need for specialized equipment.
To further describe the present invention, several figures will be discussed in detail below.
In
Adhesive area 115 may be constructed from various materials. An exemplary adhesive can vary but in some embodiments is preferably a cross-linked construction that can harden in a short time after printing and laminating has occurred to ensure that the adhesive does not transfer to the contents of the envelope. An exemplary adhesive can be one that is pressure-sensitive.
By means of die-cutting the series of enclosures 100 depicted in
For implementing an embodiment of the present invention, various materials can be used to construct envelopes 210, 220, and 230. An exemplary set of materials for construction may be a lightweight, tear-resistant, non-abrasive material that is also compatible with high-quality printers. The use of such materials may vary but can be selected based on an ability to protect contents. Some exemplary materials may include polypropylene, polyethylene, TYVEK of the E. I. du Pont de Nemours and Company of Wilmington, Del., or other film materials. For envelopes with low durability requirements, paper may also be used. Materials can be printable with direct thermal, thermal transfer, inkjet, impact, or other forms of imaging technology. The material can also be pre-printed or printed on-demand during the manufacturing or customer printing process, or a combination of both. Printing of any type can be on one side or both. For example, during the manufacturing process, printing may be on the inside faces of the finished envelopes. A preferred use for this type of printing can be for coupons, games, codes, or other information that needs to be concealed.
To increase utility of the envelopes, additional layers of materials as described above can be added by repeating the process in
Turning now to
Various designs can be provided for the envelopes described above. The shapes of the envelopes are not limited to the embodiments that have been described. In addition, other items can be added to the envelopes depending on the end-users' intended use. For example, radio frequency identification (RFID) inlays can be added during the construction process to enable tracking of the envelopes. As depicted in the figures, a bar code can be added for various purposes. In another embodiment, a hole may be placed in one or both layers of materials described above to allow physical identification of the contents. This hole can be lined with a clear film to maintain protection while retaining visibility. In yet another embodiment, envelopes may be created where one layer of material is clear or is constructed from a clear film to enable content visibility.
Turning now to
In
In a step 610, an adhesive is applied to a first layer 110 that comes from a stream of material. In a step 620, first layer 110 is joined to a second layer 120 that also comes from a stream of material.
As a further alternative embodiment of the present invention, an envelope may be over-laminated with a clear film to protect the printed image. The envelope can be sealed with a dry-peel adhesive. A user can cleanly peel the two plies of the envelope apart to read information contained within or to retain for records. In another alternative embodiment, the envelope can have a perforation or other feature to separate the sealed perimeter from the unsealed body of the pouch. In yet another alternative embodiment, the envelopes could be manufactured with a gusset to increase volume of the finished pouch.
The prior discussion is for illustrative purposes to convey exemplary embodiments. The steps discussed in
As shown in the above scenarios, the present invention may be implemented in various ways. From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application claims the benefit of U.S. Provisional Application 60/894,747 filed Mar. 14, 2007.
Number | Date | Country | |
---|---|---|---|
60894747 | Mar 2007 | US |