The present invention pertains generally to systems and methods for creating templates. More particularly, the present invention pertains to systems and methods for creating templates that are useful as a control reference for moving a laser beam's focal point during ophthalmic surgery. The present invention is particularly, but not exclusively, useful as a system and method for creating templates that will replicate the anatomical object that is to be altered during a laser ophthalmic surgery.
It is axiomatic that any ophthalmic surgical procedure must be accomplished with great accuracy and precision. This is particularly so when a laser system will be used to cut or ablate tissue deep inside an eye. In such cases, it becomes particularly important that there is some operational base reference which can be established to control movements of the laser beam's focal point during a surgery.
Imaging devices, such as those that employ Optical Coherence Tomography (OCT) techniques, have been particularly helpful for providing information that is useful in performing ophthalmic laser surgeries. Nevertheless, OCT imaging techniques, alone, are not always able to provide the degree of precision that is required to establish a discernible and accurate base reference for the control of laser surgeries within the eye. For any number of reasons, an OCT image may lack the sharpness or clarity that is necessary or desired. In the specific case of ophthalmic surgeries, however, the eye itself can be helpful in overcoming these deficiencies.
The anatomy of an eye is well known. In particular, for the purpose of establishing a base reference, the eye's anatomy is unique because, unlike most other body parts, many of its structures are substantially symmetrical. Most importantly, the light refractive, optical elements of the eye are all aligned along a definable central axis, and they are arranged in a known anatomical order. It happens that the central axis can be easily identified for such an arrangement of optical elements, and it can be accurately defined by any of several standard techniques.
It is well known that the interface surfaces between different optical structures inside the eye (e.g. the interface surface between the anterior chamber and the anterior capsule of the crystalline lens) can be effectively imaged by OCT. Consequently, the location of an intersection between an interface surface and the central axis can also be accurately established by OCT. Moreover, due to their symmetry on the central axis, the size and extent of the various optical elements in the eye can also be predicted with great accuracy. As recognized by the present invention, such a replication of structural elements can be used, altogether or in part, to establish a base reference for use in an ophthalmic laser procedure.
In light of the above, it is an object of the present invention to provide a system and method that will establish a base reference inside an eye for controlling an ophthalmic laser procedure. Another object of the present invention is to provide a system and method for using OCT techniques to establish a base reference that results from an automated anatomical recognition of different optical elements in an eye (i.e. different refractive tissues) and the location of these elements (tissues). Still another object of the present invention is to provide a system and method for establishing a base reference inside an eye that is easy to assemble, is simple to use and is comparatively cost effective.
In accordance with the present invention, a system and method are provided for replicating anatomical features inside an eye. Specifically, this is done to create a template for identifying anatomical structures that can be used as a base reference for controlling a laser system during ophthalmic laser surgery (e.g. a capsulotomy) inside the eye.
As required for the present invention, a first step in the creation of a template involves the identification of a central (“z”) axis for the eye. Structurally, this “z” axis needs to be identified such that the optical elements (i.e. light refractive structures) of the eye will be symmetrically aligned along the axis. Next, an OCT device is used to create a cross sectional image of the eye. Importantly, this image is created to include the “z” axis. Once the OCT cross sectional image has been created, and the central “z” axis has been incorporated into the image, various reference points are established along the central “z” axis. Specifically, based on the OCT image, each of the reference points is selected and located where an interface surface between adjacent optical elements in the eye intersects the central “z” axis. In this context, each reference point is specifically related to a particularly identified anatomical surface in the image. The result here is a plurality of contiguous lengths (Δ“z”n) along the “z” axis that are individually measured between adjacent reference points. These lengths will be anatomically recognized and can be measured with great accuracy. In essence, at this point a template based on the “z” axis has been created that can be used to replicate the optical elements of the eye.
A refinement for the present invention can be made by accounting for any tilt there might be between the central “z” axis and the optical elements of the eye. As noted above, the optical elements need to be symmetrically aligned along the central “z” axis. In accordance with the present invention, compensation for a tilt angle “Φ” can be accomplished in either of two ways. In order to compensate for a tilt angle “Φ” (in both ways of compensating for “Φ”) it is first necessary to establish a base reference axis that is substantially oriented in a “z” direction. A base reference point is then located on the base reference axis. Importantly, the base reference point is located on an interface surface inside the eye (object).
For one methodology of the present invention, a first axis is identified that is substantially parallel to the base reference axis, and is at a distance “d1” from the base reference axis. A first reference point is then located on the first axis where the first axis intersects the interface surface. The z-location of the first reference point is then compared with an expected z-location for the first reference point to determine a first differential (δz′). Similarly, a second axis is identified that is also substantially parallel to the base reference axis, at a distance “d2” from the base reference axis. A second reference point is then located on the second axis where the second axis intersects the interface surface. The z-location of the second reference point is then compared with an expected location for the second reference point to determine a second differential (δz″). With this first methodology δz′ and δz″, along with a measurement of the angle between the respective planes identified by the first and second axes with the base reference axis (e.g. 90° for XZ and YZ planes), are used to measure an angle of tilt (Φ) for the interface surface. The tilt angle Φ can then be used to refine the establishment of the central “z” axis.
In another methodology, after a base reference axis is established and a base reference point is located on an interface surface inside the eye (object), a circular path in traced on the interface surface at a distance “r” from the base reference axis. Variations in “z” along the path can then be measured to identify a differential (δz) relative to a rotation angle (θ) about the base reference axis. Specifically, in this case, δz is measured between a zmax at θ1 and a zmin at θ2. Then, using δz, θ1 and θ2, the angle of tilt (Φ) for the interface surface can be measured. Like the first methodology, the tilt angle Φ can then be used to refine the orientation of the central “z” axis.
A template with greater precision and accuracy can be created by verifying the location of previously selected reference points. To do this, at least one verification point is detected on the “z” axis in the OCT image. Like the original reference points, this verification point will be exactly located on the “z” axis at the intersection of an interface surface with the “z” axis. The location of the verification point in relation to the location of a previously selected reference point is then identified, and measurements are taken to confirm the anatomical identity of the surface that is associated with the reference point.
For an operational use of a template that has been created in accordance with the present invention, a replica of the anatomical surface of an optical element can be symmetrically traced between adjacent reference points on the “z” axis. In particular, the replica is based on the location of the selected reference point(s) and on information in the image. As a template, at least one selected reference point, together with the “z” axis, can then be used as a base reference for controlling a movement of a laser beam focal point relative to an identified surface. For example, a first reference point can be located on a posterior surface of an anterior capsule, and a second reference point can be located on the anterior surface of a posterior capsule. Using this template as a control reference, the focal point of the laser beam can then be moved between the anterior capsule and the posterior capsule to perform a capsulotomy.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
In accordance with the present invention, the proper orientation of the axis 12 is initially established in relation to a cross sectional image of at least the anterior portion of the eye 14. As shown in
By way of example, consider the reference point 22 on central “z” axis 12. With this reference point 22 in mind, it is well known that the anterior surface 24 of cornea 16 can be imaged using OCT techniques. In particular, from the perspective of the refractive differences of the adjacent media, and the capabilities of OCT imaging, the surface 24 can be identified as the interface surface between the environmental air and the cornea 16. Consequently, the intersection of this surface 24 with the axis 12 can be used to accurately set a location for the reference point 22 on the axis 12. These same considerations and capabilities can be used to accurately set other reference points.
Following from the above disclosure, reference point 26 can be identified and located on the central “z” axis 12 at the intersection of the interface surface 28 with the axis 12. In this case, surface 28 is the interface between the cornea 16 and the anterior chamber 30 of eye 14 (see
Referring again to
For a refinement of the present invention, it is to be understood that a template 10 which is created in accordance with the above disclosure, can be verified for accuracy, if desired. To do so, a verification point 40 is selected. In this case, the verification point 40 shown in
In another aspect of the present invention, selected reference points can be used to trace the outline of optical elements in the eye 14. For example, in
In an operation of the present invention, the template 10 is superposed onto an OCT image of the eye 14 as shown in
In another aspect of the present invention, the location and orientation of the central “z” axis 12 can be refined in accordance with either of two methodologies. For the first methodology, reference is directed to
With further consideration of the first methodology, an axis 56 is identified which is also substantially parallel to the base central axis 12, and is located at a distance “d2” from the base central axis 12. Further, a reference point 58 is located on the axis 56 which is also on the interface surface 34. As was done with reference point 54, the computer/controller 44 compares the location of the reference point 58 with an expected location for the reference point 58″ to determine a second differential (δz″). The computer/controller 44 then uses δz′ and δz″ to measure an angle of tilt (Φ) for the interface surface 34, and incorporates the tilt angle Φ into its control over an operation of the laser unit 48.
For a second methodology that can be alternatively employed to refine the orientation and location of the base central axis 12,
While the particular System and Method for Creating a Customized Anatomical Model of an Eye as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/636,582, titled SYSTEM AND METHOD FOR CREATING A CUSTOMIZED ANATOMICAL MODEL OF AN EYE, filed Apr. 20, 2012. The entire contents of Application Ser. No. 61/636,582 are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3169459 | Friedberg | Feb 1965 | A |
4881808 | Bille et al. | Nov 1989 | A |
5214456 | Gersten | May 1993 | A |
5246435 | Bille et al. | Sep 1993 | A |
5439462 | Bille et al. | Aug 1995 | A |
6275718 | Lempert | Aug 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6454761 | Freedman | Sep 2002 | B1 |
6579282 | Bille et al. | Jun 2003 | B2 |
7252662 | McArdle et al. | Aug 2007 | B2 |
7798641 | Bille | Sep 2010 | B2 |
7844425 | Bille et al. | Nov 2010 | B2 |
8208688 | Everett et al. | Jun 2012 | B2 |
20030063258 | Torii et al. | Apr 2003 | A1 |
20060028619 | Fujieda | Feb 2006 | A1 |
20060195076 | Blumenkranz et al. | Aug 2006 | A1 |
20060274269 | Koest | Dec 2006 | A1 |
20090137993 | Kurtz | May 2009 | A1 |
20090190093 | Tanassi et al. | Jul 2009 | A1 |
20110087324 | Salvati et al. | Apr 2011 | A1 |
20110202044 | Goldshleger et al. | Aug 2011 | A1 |
20110202046 | Angeley et al. | Aug 2011 | A1 |
20110208172 | Youssefi et al. | Aug 2011 | A1 |
20120133889 | Bergt | May 2012 | A1 |
20130235343 | Hee | Sep 2013 | A1 |
20140241605 | Izatt | Aug 2014 | A1 |
Entry |
---|
J.A. Izatt and M.A. Choma. “Theory of Optical Coherence Tomography” Springer, 1346 p. 758, ISBN: 978-3-540-77549-2. 2008. |
PCT International Search Report, Application No. PCT/US2013/035822, Apr. 9, 2013. |
Number | Date | Country | |
---|---|---|---|
20130294668 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61636582 | Apr 2012 | US |