System and method for creating multiple operating territories within a meter reading system

Information

  • Patent Grant
  • 7170425
  • Patent Number
    7,170,425
  • Date Filed
    Friday, September 24, 2004
    19 years ago
  • Date Issued
    Tuesday, January 30, 2007
    17 years ago
Abstract
The present invention enables multiple operating territories to be defined, named, and managed within a meter reading system. Each operating territory may correspond to a geographic sub-section of the meter reading system that is regulated by a particular regulatory agency. Each operating territory may be assigned a set of time of use (TOU) schedules required by its corresponding regulatory agency. The set of TOU schedules assigned to each operating territory may be stored in a database.
Description
FIELD OF THE INVENTION

The present invention relates to wireless networks for collecting data, and more particularly, to systems and methods for creating multiple operating territories within a meter reading system.


BACKGROUND OF THE INVENTION

The collection of meter data from electrical energy, water, and gas meters has traditionally been performed by human meter-readers. The meter-reader travels to the meter location, which is frequently on the customer's premises, visually inspects the meter, and records the reading. The meter-reader may be prevented from gaining access to the meter as a result of inclement weather or, where the meter is located within the customer's premises, due to an absentee customer. This methodology of meter data collection is labor intensive, prone to human error, and often results in stale and inflexible metering data.


Some meters have been enhanced to include a one-way radio transmitter for transmitting metering data to a receiving device. A person collecting meter data that is equipped with an appropriate radio receiver need only come into proximity with a meter to read the meter data and need not visually inspect the meter. Thus, a meter-reader may walk or drive by a meter location to take a meter reading. While this represents an improvement over visiting and visually inspecting each meter, it still requires human involvement in the process.


Conventional meter reading systems employ a fixed wireless network to assist in the process of automated data collection. Devices such as, for example, repeaters and gateways are permanently affixed on rooftops and pole-tops and strategically positioned to receive data from enhanced meters fitted with radio-transmitters. Typically, these transmitters operate in the 902–928 MHz range and employ Frequency Hopping Spread Spectrum (FHSS) technology to spread the transmitted energy over a large portion of the available bandwidth.


Data is transmitted from the meters to the repeaters and gateways and ultimately communicated to a central location. While fixed wireless networks greatly reduce human involvement in the process of meter reading, such systems require the installation and maintenance of a fixed network of repeaters, gateways, and servers. Identifying an acceptable location for a repeater or server and physically placing the device in the desired location on top of a building or utility pole is a tedious and labor-intensive operation. When a portion of the network fails to operate as intended, human intervention is typically required to test the effected components and reconfigure the network to return it to operation.


Conventional meter reading systems typically do not support remote configuration of TOU metering rates. Another drawback of a conventional meter reading systems is that they are limited with respect to operations across multiple regulatory agencies that span a multi-state utility's geographical service territory. For example, a single meter reading system may be operated in a geographical area that spans two neighboring states such as North Carolina (NC) and South Carolina (SC). NC regulations will require one time of use (TOU) fee schedule, while SC regulations will likely require a different TOU fee schedule. Accordingly, NC meters will be configured with one set of TOU programs, while SC meters will be configured with a different set of TOU programs.


Conventional meter reading systems do not enable the NC and SC TOU configurations to be defined at a server and then propagated to collectors in each respective state. Rather, conventional meter reading systems require that collectors in NC be individually pre-programmed with the NC set of TOU programs, while collectors in SC be individually pre-programmed with the SC set of TOU programs. This individual pre-programming is particularly cumbersome when a large number of collectors are operative in both states. Furthermore, if either of the two states change their TOU regulations, conventional meter reading systems require the collectors within the respective state to be manually re-programmed with the updated set of TOU schedules.


Thus, while existing meter reading systems have reduced the need for human involvement in the daily collection of meter data, such systems still require substantial human investment in meter configuration in geographic areas that span regulatory boundaries. Therefore, there is a need for systems and methods for creating multiple operating territories within a meter reading system.


SUMMARY OF THE INVENTION

The present invention enables multiple operating territories to be defined, named, and managed within a meter reading system. Each operating territory may correspond to a geographic sub-section of the meter reading system that is regulated by a particular regulatory agency. Each operating territory may be assigned a set of time of use (TOU) programs required by its corresponding regulatory agency. The set of TOU programs has a selected quantity of TOU programs that are arranged in a selected order. The TOU programs assigned to each operating territory may be stored in a database


According to an aspect of the invention, each collector within the system has a fixed number of slots which may or may not contain a TOU program. The order of the TOU programs in the collector slots is important to ensure proper communication protocols between a collector and registered meters. The operating territory is used to manage the quantity and order of the TOU programs in the collectors by transparently assigning and removing TOU programs to and from the collector slots based on the quantity and order of TOU programs in the set.


According to another aspect of the invention, any number of collectors within the meter reading system may be assigned to a particular operating territory. Once the collectors are assigned, the operating territory's set of TOU programs is retrieved from the database. The collectors are then configured with the retrieved set of TOU programs such that the quantity and order of the TOU programs in the collector slots is identical to the quantity and order of TOU programs in the set. Therefore, after configuration, a collector has the same indexed list of TOU programs as the operating territory to which it is assigned.


According to another aspect of the invention, any number of meters within an operating territory may be assigned to a TOU program that is selected from the operating territory's set of TOU programs. If the meters have registered to a collector and the meter reading system is aware of the registration, then the meters are configured with the index of the selected TOU program. However, if the meters are not registered to a collector or if the meter reading system is unaware of the registration, then the TOU assignment is recorded but the meters are not immediately configured with the index. The meters may be later configured with the index when the meter reading system becomes aware of the meters' registration.


According to another aspect of the invention, any number of meters within the meter reading system may spontaneously register to a particular collector. For each meter, if its TOU program index does not look up to a TOU program stored in the collector's list of TOU schedules, then the registration of the meter may be refused by the collector. This aspect of the invention is particularly advantageous with respect to operating territories in close geographic proximity to one another. Specifically, if the TOU assignments of the close operating territories are managed such that the indexes that are assigned TOU programs in each of the operating territories are not assigned TOU programs in the other operating territories, then the meters within each of the operating territories may be prevented from registering with collectors in the other operating territories.


Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments that proceeds with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:



FIG. 1 is a diagram of a wireless system for collecting data from remote devices;



FIG. 2 expands upon the diagram of FIG. 1 and illustrates a system in which the present invention is embodied;



FIG. 3 illustrates an exemplary sequence of events when a collector is assigned to an operating territory;



FIG. 4 illustrates an exemplary sequence of events when a meter is assigned to a selected time of use program; and



FIG. 5 illustrates an exemplary sequence of events when a meter is registered to a collector.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Exemplary systems and methods for gathering meter data are described below with reference to FIGS. 1–5. It will be appreciated by those of ordinary skill in the art that the description given herein with respect to those figures is for exemplary purposes only and is not intended in any way to limit the scope of potential embodiments.


Generally, a plurality of meter devices, which operate to track usage of a service or commodity such as, for example, electricity, water, and gas, are operable to wirelessly communicate with each other. A collector is operable to automatically identify and register meters for communication with the collector. When a meter is installed, the meter becomes registered with the collector that can provide a communication path to the meter. The collectors receive and compile metering data from a plurality of meter devices via wireless communications. A communications server communicates with the collectors to retrieve the compiled meter data.



FIG. 1 provides a diagram of an exemplary metering system 110. System 110 comprises a plurality of meters 114, which are operable to sense and record usage of a service or commodity such as, for example, electricity, water, or gas. Meters 114 may be located at customer premises such as, for example, a home or place of business. Meters 114 comprise an antenna and are operable to transmit data, including service usage data, wirelessly. Meters 114 may be further operable to receive data wirelessly as well. In an illustrative embodiment, meters 114 may be, for example, a electrical meters manufactured by Elster Electricity, LLC.


System 110 further comprises collectors 116. Collectors 116 are also meters operable to detect and record usage of a service or commodity such as, for example, electricity, water, or gas. Collectors 116 comprise an antenna and are operable to send and receive data wirelessly. In particular, collectors 116 are operable to send data to and receive data from meters 114. In an illustrative embodiment, meters 114 may be, for example, an electrical meter manufactured by Elster Electricity, LLC.


A collector 116 and the meters 114 for which it is configured to receive meter data define a subnet/LAN 120 of system 110. As used herein, meters 114 and collectors 116 maybe considered as nodes in the subnet 120. For each subnet/LAN 120, data is collected at collector 116 and periodically transmitted to a data collection server 206. The data collection server 206 stores the data for analysis and preparation of bills. The data collection server 206 may be a specially programmed general purpose computing system and may communicate with collectors 116 wirelessly or via a wire line connection such as, for example, a dial-up telephone connection or fixed wire network.


Generally, collector 116 and meters 114 communicate with and amongst one another using any one of several robust wireless techniques such as, for example, frequency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). As illustrated, meters 114a are “first level” meters that communicate with collector 116, whereas meters 114b are higher level meters that communicate with other meters in the network that forward information to the collector 116.


Referring now to FIG. 2, there is illustrated a system 200 in which the present invention may be embodied. The system 200 includes a network management server 202, a network management system (NMS) 204 and a data collection server 206 that together manage one or more subnets/LANs 120 and their constituent nodes. The NMS 204 tracks changes in network state, such as new nodes registering/unregistering with the system 200, node communication paths changing, etc. This information is collected for each subnet/LAN 120 and are detected and forwarded to the network management server 202 and data collection server 206.


In accordance with an aspect of the invention, communication between nodes and the system 200 is accomplished using the LAN ID, however it is preferable for customers to query and communicate with nodes using their own identifier. To this end, a marriage file 208 may be used to correlate a customer serial number and LAN ID for each node (e.g., meters 114a) in the subnet/LAN 120. A device configuration database 210 stores configuration information regarding the nodes. For example, in the metering system 110, the device configuration database may the time of use (TOU) program assignment for the meters 114a communicating to the system 200. A data collection requirements database 212 contains information regarding the data to be collected on a per node basis. For example, a user may specify that metering data such as load profile, demand, TOU, etc. is to be collected from particular meter(s) 114a. Reports 214 containing information on the network configuration may be automatically generated or in accordance with a user request.


The network management system (NMS) 204 maintains a database describing the current state of the global fixed network system (current network state 220) and a database describing the historical state of the system (historical network state 222). The current network state 220 contains data regarding current meter to collector assignments, etc. for each subnet/LAN 120. The historical network state 222 is a database from which the state of the network at a particular point in the past can be reconstructed. The NMS 204 is responsible for, amongst other things, providing reports 214 about the state of the network. The NMS 204 may be accessed via an API 220 that is exposed to a user interface 216 and a Customer Information System (CIS) 218. Other external interfaces may be implemented in accordance with the present invention. In addition, the data collection requirements stored in the database 212 may be set via the user interface 216 or CIS 218.


The data collection server 206 collects data from the nodes (e.g., collectors 116) and stores the data in a database 224. The data includes metering information, such as energy consumption and may be used for billing purposes, etc. by a utility provider.


The network management server 202, network management system 204 and data collection server 206 communicate with the nodes in each subnet/LAN 120 via a communication system 226. The communication system 226 may be a Frequency Hopping Spread Spectrum radio network, a mesh network, a Wi-Fi (802.11) network, a Wi-Max (802.16) network, a land line (POTS) network, etc., or any combination of the above and enables the system 200 to communicate with the metering system 110.


The present invention enables multiple operating territories to be defined, named, and managed within a meter reading system. Each operating territory may correspond to a geographic sub-section of the meter reading system that is regulated by a particular regulatory agency. For example, referring back to FIG. 1, LAN 120a may be a first operating territory, while LAN 120b may be a second operating territory. LAN 120a may, for example, be located in North Carolina, while LAN 120b may be located in South Carolina. For ease of description, LAN's 120a and 120b will be interchangeably referred to as operating territories 120a and 120b, respectively. However, it is noted that a single operating territory may include more than one LAN.


Each operating territory 120 may be assigned a set of time of use (TOU) programs required by its corresponding regulatory agency. For example, operating territory 120a may be assigned a set of TOU programs proscribed by a North Carolina regulatory agency, while operating territory 120b may be assigned a set of TOU programs proscribed by a South Carolina regulatory agency. The set of TOU programs assigned to each operating territory may be stored in a database such as device configuration database 210.


Collectors within the meter reading system may be assigned to a particular operating territory. For example, as depicted in FIG. 1, collector 116a is assigned to operating territory 120a, while collector 116b is assigned to operating territory 120b. It is noted, however, that more than one collector may be assigned to a single operating territory. FIG. 3 illustrates an exemplary sequence of events when a collector is assigned to an operating territory. At step 310, a command to assign the collector to the operating territory is received at NMS 204. The command may be received manually from, for example, a system operator or programmatically from, for example, a CIS software system. If the command is received manually, then it may be received through UI 216, while, if the command is received programmatically, then it may be received through CIS import 218. As should be appreciated, at step 310, the collector may be assigned to an initial operating territory or the collector may be re-assigned from one operating territory to another.


At step 312, the set of TOU programs assigned to the operating territory are retrieved. For example, NMS 204 may retrieve a set of North Carolina TOU schedules assigned to operating territory 120a. The TOU programs may be retrieved from configuration database 210. The TOU programs are originally assigned to the operating territory when the operating territory is first defined. The TOU programs assigned to the operating territory may also be updated at any time. At step 314, the collector is configured with the retrieved set of TOU programs such that the order of TOU programs in the collector is identical to the order of TOU programs in the set of TOU programs assigned to the operating territory and stored at configuration database 210. Therefore, after configuration, each collector has the same indexed list of TOU programs as the operating territory to which it is assigned.


As should be appreciated, the command received at step 310 may assign more than one collector to a single operating territory. If multiple collectors are assigned, then, at step 314, they are all configured with the set of TOU programs. Accordingly, the present invention enables every collector within an operating territory to be configured or re-configured with only a single command.



FIG. 4 illustrates an exemplary sequence of events when a meter is assigned to a selected TOU program. At step 410, a command to assign the meter to the selected TOU program is received at NMS 204. The command may be received manually from, for example, a system operator or programmatically from, for example, a CIS software system. If the command is received manually, then it may be received through UI 216, while, if the command is received programmatically, then it may be received through CIS import 218. As should be appreciated, at step 410, the meter may be assigned to an initial selected TOU program or the meter may be re-assigned from one selected TOU program to another.


At step 411, it is determined whether the meter is registered to a collector. If the meter is registered, then, at step 412, the meter's operating territory is identified. The meter's operating territory may be inferred based on the operating territory of the collector to which the meter is registered. For example, meter 114c is registered with collector 116a, which is assigned to operating territory 120a. Thus, it may be inferred that meter 114c is within operating territory 120a. At step 414, the set of TOU programs assigned to the operating territory is retrieved. For example, NMS 204 may retrieve a set of North Carolina TOU programs assigned to operating territory 120a.


At step 416, it is determined whether the selected TOU program for the meter is within the set of TOU programs assigned to the operating territory. For example, it may be determined whether the selected TOU program for meter 114c is within the set of North Carolina TOU programs. If so, then, at step 418, the meter is assigned to the selected TOU program, and, at step 420, the TOU index of the selected TOU program is downloaded to the meter. If the selected TOU program is not within the set of TOU programs assigned to the operating territory, then, at step 420, the assignment of the meter to the selected TOU program is refused. Thus, the TOU programs available for assignment to a meter may be limited to the TOU programs assigned to the meter's operating territory. If the assignment of a meter is refused, then an error message may be displayed via UI 216.


If, at step 411, it is determined that the meter is unregistered, then, at step 424, a command is received to assign the meter to a selected operating territory, and, at step 426, the meter is assigned to the selected operating territory. At step 428, the set of TOU programs assigned to the selected operating territory is retrieved from configuration database 210, and, at step 430, the meter is assigned to the selected TOU program. Notably, if the meter is unregistered, then the index of the selected time of use program is not immediately downloaded to the meter. The index may be later downloaded to the meter if the meter attempts to spontaneously register with the collector at a future time.


As should be appreciated, at step 410, a single command may be received to assign multiple meters to a selected TOU program. In this scenario, steps 412420 may be performed simultaneously for each of the meters.


When operating territories are not in close geographic proximity to one another, the meters within one operating territory are typically out of the range of the collectors in other operating territories. For example, if operating territories 120a and 120b are not in close proximity to one another, then the meters within operating territory 120a will likely be out of the range of collector 116b in operating territory 120b. In this scenario, the meters within operating territory 120a are incapable of registering with collector 116b, and, therefore, the meters within operating territory 120a will reference an appropriate TOU program in collector 116a.


However, when operating territories are in close geographic proximity to one another, the meters within one operating territory may be capable of registering with one or more collectors in another operating territory. This problem may occur when the collector and meter firmware does not support the configuration of a particular identifier for the operating territories. The registration of a meter to another operating territory's collector is problematic because it may result in deficient metering if the meter's index of the TOU programs references a TOU program in the collector that is not assigned to the meter's operating territory.


The present invention provides a safeguard to ensure that a meter within one operating territory does not register with a collector in close proximity that is in another operating territory. This safeguard is available when the quantity of TOU indexes available at each collector exceeds the combined quantity of the TOU programs assigned to each of the operating territories in close proximity to one another. Furthermore, the TOU programs should be partitioned such that the TOU programs assigned to each of the operating territories associate to unique indexes. Thus, when a meter from one operating territory attempts to register with a collector from another operating territory, the collector will refuse to register the meter because the TOU index for the meter will map to an empty TOU program at the collector. This safeguard is described below with reference to FIG. 5, which illustrates an exemplary sequence of events when a meter registers to a collector.


At step 510, a meter spontaneously attempts to register to a collector. At step 512, it is determined whether the collector has a TOU program at the meter's TOU index. If the index of the meters selected TOU program has not yet been downloaded to the meter, then it may be done so at step 510.


If the collector has a TOU program at the meter's index, then at step 514, the collector will register the meter. If, on the other hand, the collector does not have a TOU program at the meter's index, then at step 516, the collector will refuse to register the meter. For example, meter 114c in operating territory 120a may attempt to register to collector 116b in operating territory 120b. Because meter 114c is in operating territory 120a, meter 114c will have a TOU index that looks up to an empty program in the collector 116b. Thus, the registration of meter 114c will be refused. The same scenario will occur if a meter from operating territory 120b may attempts to register to collector 116a in operating territory 120a.


While systems and methods have been described and illustrated with reference to specific embodiments, those skilled in the art will recognize that modification and variations may be made without departing from the principles described above and set forth in the following claims. Accordingly, reference should be made to the following claims as describing the scope of disclosed embodiments.

Claims
  • 1. A method for creating a plurality of operating territories within a meter reading system, each operating territory having an assigned set of time of use programs, the method comprising: providing to a configuration database an identification of the plurality of operating territories and, for each operating territory, a listing of the set of time of use programs assigned to the operating territory;receiving a command to assign a collector at a remote location to a first operating territory;responsive to the command, querying the configuration database to identify the set of time of use programs assigned to the first operating territory: andconfiguring the collector at the remote location with the set of time of use programs assigned to the first operating territory.
  • 2. The method of claim 1, comprising: receiving a command to assign a plurality of collectors to the first operating territory; andresponsive to the command, querying the configuration database to identify the set of time of use programs assigned to the first operating territory: andconfiguring the plurality of collectors with the set of time of use programs assigned to the first operating territory.
  • 3. The method of claim 1, further comprising: receiving a command to modify at least one of the selected quantity of time of use programs assigned to the first operating territory; andreconfiguring the collector such that the collector has at least one of the modified time of use programs.
  • 4. The method of claim 1, comprising providing to the configuration database the identification of the plurality of operating territories and, for each operating territory, the listing of the set of time of use programs assigned to the operating territory, wherein each of the operating territories is assigned a completely different set of time of use programs from one another, such that a total number of time of use programs available in the overall meter reading system is equivalent to a total number of operating systems within the overall meter reading system multiplied by a number of time of use programs that are assigned to each of the operating territories.
  • 5. A method for approving a registered meter for assignment to a selected time of use program, the method comprising: identifying an operating territory within which the meter operates;retrieving a set of time of use programs assigned to the operating territory;determining whether the selected time of use program is a member of the set of time of use programs assigned to the operating territory; if so, then: assigning the meter to the selected time of use program; andconfiguring the meter with an index of the selected time of use program; andif not, then refusing to assign the meter to the selected time of use program.
  • 6. The method of claim 5, wherein identifying the operating territory within which the meter operates comprises: identifying a collector with which the meter is registered; andidentifying that the collector is assigned to the operating territory.
  • 7. The method of claim 5, comprising retrieving the set of time of use programs assigned to the operating territory from a database that stores a plurality of sets of time of use programs each assigned to one of a plurality of operating territories within a meter reading system.
  • 8. A method for attempting to register a meter with a previously assigned time of use program to a collector comprising: identifying the previously assigned time of use program;determining whether the previously assigned time of use program is a member of a set of at least one time of use program stored at the collector; if so, then: registering the meter with the collector; andconfiguring the meter with an index of the previously assigned time of use program; andif not then refusing to register the meter with the collector.
  • 9. The method of claim 8, further comprising: receiving a command to assign the meter to an operating territory;retrieving a set of time of use programs assigned to the operating territory;assigning the meter to the operating territory; andselecting one of the set of time of use programs assigned to the operating territory to be the previously assigned time of use program.
  • 10. The method of claim 9, comprising retrieving the set of time of use programs assigned to the operating territory from a database that stores a plurality of sets of time of use programs each assigned to one of a plurality of operating territories within a meter reading system.
  • 11. A meter reading system comprising: a collector that receives meter data from at least one meter;a server that is operative to receive a command to assign the collector to an operating territory within the meter reading system, and, responsive to the command, provide instructions to configure the collector with a set of time of use programs assigned to the operating territory, andwherein the server is further operative to determine whether a selected time of use program to which to assign a registered meter is a member of the set of time of use programs assigned to the operating territory.
  • 12. The system of claim 11, further comprising a user interface that enables a user to assign the set of time of use programs to the operating territory.
  • 13. The system of claim 11, further comprising a user interface that enables a user to assign the collector to the operating territory.
  • 14. The system of claim 11, further comprising an application program interface that receives a command from a software package to assign the collector to the operating territory.
  • 15. The system of claim 11, further comprising a device configuration database that stores a plurality of sets of time of use programs each assigned to one of a plurality of operating territories within the meter reading system.
  • 16. The system of claim 11, wherein the server is operative to refuse to assign the registered meter to the selected time of use program if the selected time of use program is not a member of the set of time of use programs assigned to the operating territory.
  • 17. The system of claim 11, wherein the server is operative to determine whether a meter that is attempting to register with the collector is within the operating territory.
  • 18. The system of claim 17, wherein the server is operative to refuse to register the meter if the meter is not within the operating territory.
  • 19. The system of claim 11, further comprising a user interface that enables a user to assign a meter to the operating territory.
  • 20. The system of claim 11, further comprising an application program interface that receives a command from a software package to assign a meter to the operating territory.
US Referenced Citations (314)
Number Name Date Kind
3445815 Saltzberg et al. May 1969 A
3858212 Tompkins et al. Dec 1974 A
3878512 Kobayashi et al. Apr 1975 A
3973240 Fong Aug 1976 A
4031513 Simciak Jun 1977 A
4056107 Todd et al. Nov 1977 A
4066964 Costanza et al. Jan 1978 A
4132981 White Jan 1979 A
4190800 Kelly, Jr. et al. Feb 1980 A
4204195 Bogacki May 1980 A
4218737 Buscher et al. Aug 1980 A
4250489 Dudash et al. Feb 1981 A
4254472 Juengel et al. Mar 1981 A
4319358 Sepp Mar 1982 A
4321582 Banghart Mar 1982 A
4322842 Martinez Mar 1982 A
4328581 Harmon et al. May 1982 A
4361851 Asip et al. Nov 1982 A
4361890 Green, Jr. et al. Nov 1982 A
4396915 Farnsworth et al. Aug 1983 A
4405829 Rivest et al. Sep 1983 A
4415896 Allgood Nov 1983 A
4466001 Moore et al. Aug 1984 A
4504831 Jahr et al. Mar 1985 A
4506386 Ichikawa et al. Mar 1985 A
4513415 Martinez Apr 1985 A
4525861 Freeburg Jun 1985 A
4600923 Hicks et al. Jul 1986 A
4608699 Batlivala et al. Aug 1986 A
4611333 McCallister et al. Sep 1986 A
4614945 Brunius et al. Sep 1986 A
4617566 Diamond Oct 1986 A
4628313 Gombrich et al. Dec 1986 A
4631538 Carreno Dec 1986 A
4638298 Spiro Jan 1987 A
4644321 Kennon Feb 1987 A
4653076 Jerrim et al. Mar 1987 A
4672555 Hart et al. Jun 1987 A
4680704 Konicek et al. Jul 1987 A
4688038 Giammarese Aug 1987 A
4692761 Robinton Sep 1987 A
4707852 Jahr et al. Nov 1987 A
4713837 Gordon Dec 1987 A
4724435 Moses et al. Feb 1988 A
4728950 Hendrickson et al. Mar 1988 A
4734680 Gehman et al. Mar 1988 A
4749992 Fitzemeyer et al. Jun 1988 A
4757456 Benghiat Jul 1988 A
4769772 Dwyer Sep 1988 A
4783748 Swarztrauber et al. Nov 1988 A
4792946 Mayo Dec 1988 A
4799059 Grindahl et al. Jan 1989 A
4804938 Rouse et al. Feb 1989 A
4811011 Sollinger Mar 1989 A
4827514 Ziolko et al. May 1989 A
4833618 Verma et al. May 1989 A
4839645 Lill Jun 1989 A
4841545 Endo et al. Jun 1989 A
4860379 Schoeneberger et al. Aug 1989 A
4862493 Venkataraman et al. Aug 1989 A
4868877 Fischer Sep 1989 A
4884021 Hammond et al. Nov 1989 A
4912722 Carlin Mar 1990 A
4922518 Gordon et al. May 1990 A
4939726 Flammer et al. Jul 1990 A
4940974 Sojka Jul 1990 A
4940976 Gastouniotis et al. Jul 1990 A
4958359 Kato Sep 1990 A
4964138 Nease et al. Oct 1990 A
4965533 Gilmore Oct 1990 A
4972507 Lusignan Nov 1990 A
5007052 Flammer Apr 1991 A
5018165 Sohner et al. May 1991 A
5022046 Morrow, Jr. Jun 1991 A
5032833 Laporte Jul 1991 A
5053766 Ruiz-del-Portal et al. Oct 1991 A
5053774 Schuermann et al. Oct 1991 A
5056107 Johnson et al. Oct 1991 A
5067136 Arthur et al. Nov 1991 A
5079715 Venkataraman et al. Jan 1992 A
5079768 Flammer Jan 1992 A
5086292 Johnson et al. Feb 1992 A
5086385 Launey Feb 1992 A
5090024 Vander Mey et al. Feb 1992 A
5111479 Akazawa May 1992 A
5115433 Baran et al. May 1992 A
5115448 Mori May 1992 A
5129096 Burns Jul 1992 A
5130987 Flammer Jul 1992 A
5132985 Hashimoto et al. Jul 1992 A
5136614 Hiramatsu et al. Aug 1992 A
5142694 Jackson et al. Aug 1992 A
5151866 Glaser et al. Sep 1992 A
5155481 Brennan, Jr. et al. Oct 1992 A
5160926 Schweitzer, III Nov 1992 A
5166664 Fish Nov 1992 A
5177767 Kato Jan 1993 A
5179376 Pomatto Jan 1993 A
5189694 Garland Feb 1993 A
5194860 Jones et al. Mar 1993 A
5197095 Bonnett Mar 1993 A
5204877 Endo et al. Apr 1993 A
5214587 Green May 1993 A
5225994 Arinobu et al. Jul 1993 A
5228029 Kotzin Jul 1993 A
5229996 Bäckström et al. Jul 1993 A
5239575 White et al. Aug 1993 A
5239584 Hershey et al. Aug 1993 A
5243338 Brennan, Jr. et al. Sep 1993 A
5252967 Brennan et al. Oct 1993 A
5260943 Comroe et al. Nov 1993 A
5270704 Sosa Quintana et al. Dec 1993 A
5280498 Tymes et al. Jan 1994 A
5280499 Suzuki Jan 1994 A
5285469 Vanderpool Feb 1994 A
5287287 Chamberlain et al. Feb 1994 A
5289497 Jacobson et al. Feb 1994 A
5295154 Meier et al. Mar 1994 A
5307349 Shloss et al. Apr 1994 A
5311541 Sanderford, Jr. May 1994 A
5311542 Eder May 1994 A
5315531 Oravetz et al. May 1994 A
5319679 Bagby Jun 1994 A
5329547 Ling Jul 1994 A
5345225 Davis Sep 1994 A
5359625 Vander Mey et al. Oct 1994 A
5377222 Sanderford, Jr. Dec 1994 A
5381462 Larson et al. Jan 1995 A
5383134 Wrzesinski Jan 1995 A
5384712 Oravetz et al. Jan 1995 A
5387873 Muller et al. Feb 1995 A
5390360 Scop et al. Feb 1995 A
5406495 Hill Apr 1995 A
5416917 Adair et al. May 1995 A
5420799 Peterson et al. May 1995 A
5428636 Meier Jun 1995 A
5430759 Yokev et al. Jul 1995 A
5432507 Mussino et al. Jul 1995 A
5432815 Kang et al. Jul 1995 A
5438329 Gastouniotis et al. Aug 1995 A
5448230 Schanker et al. Sep 1995 A
5448570 Toda et al. Sep 1995 A
5450088 Meier et al. Sep 1995 A
5452465 Geller et al. Sep 1995 A
5455533 Köllner Oct 1995 A
5455544 Kechkaylo Oct 1995 A
5455569 Sherman et al. Oct 1995 A
5455822 Dixon et al. Oct 1995 A
5457713 Sanderford, Jr. et al. Oct 1995 A
5461558 Patsiokas et al. Oct 1995 A
5463657 Rice Oct 1995 A
5473322 Carney Dec 1995 A
5475742 Gilbert Dec 1995 A
5475867 Blum Dec 1995 A
5479442 Yamamoto Dec 1995 A
5481259 Bane Jan 1996 A
5488608 Flammer, III Jan 1996 A
5491473 Gilbert Feb 1996 A
5493287 Bane Feb 1996 A
5495239 Ouellette Feb 1996 A
5497424 Vanderpool Mar 1996 A
5499243 Hall Mar 1996 A
5500871 Kato et al. Mar 1996 A
5511188 Pascucci et al. Apr 1996 A
5519388 Adair, Jr. May 1996 A
5521910 Matthews May 1996 A
5522044 Pascucci et al. May 1996 A
5524280 Douthitt et al. Jun 1996 A
5525898 Lee, Jr. et al. Jun 1996 A
5526389 Buell et al. Jun 1996 A
5528507 McNamara et al. Jun 1996 A
5528597 Gerszberg et al. Jun 1996 A
5539775 Tuttle et al. Jul 1996 A
5541589 Delaney Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5546424 Miyake Aug 1996 A
5548527 Hemminger et al. Aug 1996 A
5548633 Kujawa et al. Aug 1996 A
5553094 Johnson et al. Sep 1996 A
5555508 Munday et al. Sep 1996 A
5559870 Patton et al. Sep 1996 A
5566332 Adair et al. Oct 1996 A
5570084 Ritter et al. Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5590179 Shincovich et al. Dec 1996 A
5592470 Rudrapatna et al. Jan 1997 A
5594740 LaDue Jan 1997 A
5602744 Meek et al. Feb 1997 A
5617084 Sears Apr 1997 A
5619192 Ayala Apr 1997 A
5619685 Schiavone Apr 1997 A
5621629 Hemminer et al. Apr 1997 A
5627759 Bearden et al. May 1997 A
5631636 Bane May 1997 A
5636216 Fox et al. Jun 1997 A
5640679 Lundqvist et al. Jun 1997 A
5659300 Dresselhuys et al. Aug 1997 A
5668803 Tymes et al. Sep 1997 A
5668828 Sanderford, Jr. et al. Sep 1997 A
5673252 Johnson et al. Sep 1997 A
5684472 Bane Nov 1997 A
5684799 Bigham et al. Nov 1997 A
5691715 Ouellette Nov 1997 A
5692180 Lee Nov 1997 A
5696501 Ouellette et al. Dec 1997 A
5696765 Safadi Dec 1997 A
5699276 Roos Dec 1997 A
5714931 Petite et al. Feb 1998 A
5715390 Hoffman et al. Feb 1998 A
5717604 Wiggins Feb 1998 A
5719564 Sears Feb 1998 A
5732078 Arango Mar 1998 A
5744657 Webster Apr 1998 A
5745901 Entner et al. Apr 1998 A
5748104 Argyroudis et al. May 1998 A
5748619 Meier May 1998 A
5751914 Coley et al. May 1998 A
5751961 Smyk May 1998 A
5754772 Leaf May 1998 A
5754830 Butts et al. May 1998 A
5757783 Eng et al. May 1998 A
5768148 Murphy et al. Jun 1998 A
5778368 Hogan et al. Jul 1998 A
5787437 Potterveld et al. Jul 1998 A
5790789 Suarez Aug 1998 A
5790809 Holmes Aug 1998 A
5801643 Williams et al. Sep 1998 A
5805712 Davis Sep 1998 A
5808558 Meek et al. Sep 1998 A
5809059 Souissi et al. Sep 1998 A
5822521 Gartner et al. Oct 1998 A
5850187 Carrender et al. Dec 1998 A
5862391 Salas et al. Jan 1999 A
5872774 Wheatley, III et al. Feb 1999 A
5874903 Shuey et al. Feb 1999 A
5875183 Nitadori Feb 1999 A
5875402 Yamawaki Feb 1999 A
5884184 Sheffer Mar 1999 A
5892758 Argyroudis Apr 1999 A
5896382 Davis et al. Apr 1999 A
5897607 Jenney et al. Apr 1999 A
5898387 Davis et al. Apr 1999 A
5907491 Canada et al. May 1999 A
5907540 Hayashi May 1999 A
5910799 Carpenter et al. Jun 1999 A
5923269 Shuey et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926531 Petite Jul 1999 A
5943375 Veintimilla Aug 1999 A
5944842 Propp et al. Aug 1999 A
5953319 Dutta et al. Sep 1999 A
5959550 Giles Sep 1999 A
5960074 Clark Sep 1999 A
5963146 Johnson et al. Oct 1999 A
5974236 Sherman Oct 1999 A
5986574 Colton Nov 1999 A
6000034 Lightbody et al. Dec 1999 A
6028522 Petite Feb 2000 A
6034988 VanderMey et al. Mar 2000 A
6035201 Whitehead Mar 2000 A
6041056 Bigham et al. Mar 2000 A
6061604 Russ et al. May 2000 A
6067029 Durston May 2000 A
6073169 Shuey et al. Jun 2000 A
6073174 Montgomerie et al. Jun 2000 A
6078251 Landt et al. Jun 2000 A
6078785 Bush Jun 2000 A
6078909 Knutson Jun 2000 A
6088659 Kelley et al. Jul 2000 A
6091758 Ciccone et al. Jul 2000 A
6100817 Mason, Jr. et al. Aug 2000 A
6112192 Capek Aug 2000 A
6124806 Cunningham et al. Sep 2000 A
6128276 Agee Oct 2000 A
6137423 Glorioso et al. Oct 2000 A
6150955 Tracy et al. Nov 2000 A
6154487 Murai et al. Nov 2000 A
6160933 Laude Dec 2000 A
6160993 Wilson Dec 2000 A
6172616 Johnson et al. Jan 2001 B1
6195018 Ragle et al. Feb 2001 B1
6199068 Carpenter Mar 2001 B1
6208266 Lyons et al. Mar 2001 B1
6218953 Petite Apr 2001 B1
6233327 Petite May 2001 B1
6246677 Nap et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6363057 Ardalan et al. Mar 2002 B1
6393341 Lawrence et al. May 2002 B1
6396839 Ardalan et al. May 2002 B1
6421731 Ciotti, Jr. et al. Jul 2002 B1
6430268 Petite Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6446192 Narasimhan et al. Sep 2002 B1
6643278 Panasik et al. Nov 2003 B1
6657549 Avery Dec 2003 B1
6684245 Shuey et al. Jan 2004 B1
6751563 Spanier et al. Jun 2004 B2
20010002210 Petite May 2001 A1
20010024163 Petite Sep 2001 A1
20020012323 Petite et al. Jan 2002 A1
20020013679 Petite Jan 2002 A1
20020019712 Petite et al. Feb 2002 A1
20020019725 Petite Feb 2002 A1
20020026957 Reyman Mar 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020031101 Peite et al. Mar 2002 A1
20020125998 Petite et al. Sep 2002 A1
20020145537 Mueller et al. Oct 2002 A1
20020169643 Petite et al. Nov 2002 A1
20030036810 Petite Feb 2003 A1
20030036822 Davis et al. Feb 2003 A1
20030202512 Kennedy Oct 2003 A1
20040113810 Mason, Jr. et al. Jun 2004 A1
Foreign Referenced Citations (18)
Number Date Country
682196 Jul 1993 CH
0 395 495 Oct 1990 EP
0 446 979 Sep 1991 EP
0 629 098 Dec 1994 EP
2 118 340 Oct 1983 GB
2 157 448 Oct 1985 GB
2 186 404 Aug 1987 GB
02 222 898 Mar 1990 GB
2 237 910 May 1991 GB
59-229949 Dec 1984 JP
02-67967 Mar 1990 JP
4290593 Oct 1992 JP
05-260569 Oct 1993 JP
8194023 Jul 1996 JP
9302515 Feb 1993 WO
9304451 Mar 1993 WO
9532595 Nov 1995 WO
9610856 Apr 1996 WO
Related Publications (1)
Number Date Country
20060071811 A1 Apr 2006 US