The present invention generally relates to the field of document data file management, data security applied to such data files and data file communication by and among computer systems. In one embodiment, the invention operates on a system comprised of at least one local computer operated by a user, a server system operating the Workshare server and at least one server operating a corresponding third party Saas document sharing platform, whereby the local computer and the servers are in communication using a data network.
In the past most document sharing was done via email but in recent years' users have seen the benefits derived from sharing documents in online shared containers and sought to have content being synchronised between these containers and their own computers and mobile devices. This market shift has led to a large number of File Sharing, File Synchronization and Collaboration systems designed to make collaboration easier and for files to be synchronised to wherever a user might want to consume them. The fact that there is not one dominant vendor or technology in this space, but a large number of different vendors and different technological platforms has lead to a number of problems when two organizations that use two different solutions wish to communicate or share documents. They end up relying on inferior technology that both organizations happen to have available—not the platforms that they use internally. This introduces inconveniences like lost document versions, version conflicts, vulnerabilities to security and the like. Therefore, there is a need for a computer system and method of operating computer systems that is an agnostic and consolidated technical solution for document storage, sharing and communication that provides productivity gains for users, and control and risk reduction for organisations by permitting such uses across multiple platforms.
The problem of multiple document sharing platforms can be considered from four perspectives:
Content Producer: The modern information professional (someone who produces documents for a living) is being faced with an ever increasing number of SaaS (Software as a Service) based (cloud) systems for storing and sharing documents. These systems include onsite or cloud based enterprise collaboration applications, traditional secure document repositories, home grown Intranet sites and an ever increasing number of modern cloud based SaaS file sharing systems. In a professional service context, often the choice of which system to use is not governed by the content producer, but by his client (the content consumer). As a result, users are required to work across many of these systems on a daily basis.
Content Consumer: From the client's (i.e. the content consumer) perspective, the problem is the same. Unless they are able to mandate that all their content producing counterparts use the same system as they do for file sharing and collaboration (which is unlikely) they are faced with the same dilemma. This example is well illustrated by the challenges corporate counsels face when dealing with multiple law firms and multiple stakeholders internal to the organization. Getting everyone to use the same document storage, sharing management and transmission system is often an impossibility. As a result of the administrative burden this imposes, typically users revert to the lowest common denominator—email with attachments.
Information Governance perspective: The situation above is a nightmare for those charged with data loss prevention and ensuring that information access policy is adhered to. For example, an organization might have a policy that no hidden information found inside documents (for example, metadata) should accidently leave the organization. This organization might have taken measures to ensure this level of protection over files being exchanged in email, but has an ever increasing gaping hole when it comes to SaaS based file sharing systems (which due to their simplicity and mass adoption are often the client's choice). Additionally, the organization (either of the content producers or content consumers) might have invested in an Enterprise Content Management system. In this case, the organisational goal will be to ensure that all content is stored in their chosen ECM/DMS system instead of being distributed in an ever increasing number of external systems.
Market perspective: The number of Enterprise File Sharing Systems is increasing rapidly. The market research firm Gartner Group tracked about 170 companies. Dominant incumbent vendors all have offerings competing against new highly funded startuipvendors and there is a plethora of specialist vendors who provide a unique value proposition over and above basic file sharing—product like Workshare's Transact™ are examples of applications that deliver file sharing in a unique way, aligned with the use cases in the markets in which they operate. Different vendors are taking different approaches to compete. Some SaaS vendors have made available their up their proprietary application programming interface protocols (APIs) to position themselves as platforms whereas others have doubled down on their unique proprietary technology to deliver narrow products and services. Prices are being squeezed and as a result, there is a race to the bottom in terms of prices for data storage. There needs to be a way of working across the boundaries around these systems, effortlessly and safely.
The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed invention. In the drawings, the same reference numbers and any acronyms identify elements or acts with the same or similar structure or functionality for ease of understanding and convenience. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the Figure number in which that element is first introduced (e.g., element 101 is first introduced and discussed with respect to
Various examples of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant art will understand, however, that the invention may be practiced without many of these details. Likewise, one skilled in the relevant art will also understand that the invention can include many other features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below, so as to avoid unnecessarily obscuring the relevant description. The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the invention. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
The invention is a computer system and computer operated process that provides an agnostic and consolidated position between all of these other systems to provide productivity gains for users and control and risk reduction for organisations. In one embodiment of the invention,
The Benefit to the User:
Benefits to the Organisation:
To accomplish this product proposition, the system and its operation has to provide several functionalities:
The invention essentially participates in the upload and download of files from the user's computer (or an incumbent ECM/DMS system the user is using) to one or more SaaS based 3rd party systems or internal systems that the organization uses. By user computer, a desktop, laptop, tablet or smartphone may be used. To accomplish this, the user operates an application that embodies the invention (referred to as the Workshare App) which provides access to 3rd party SaaS application and provides enhanced functionality to upload and download files from the user's computer (or a DMS system the user is using) to and from the 3rd party system or the organization's internal systems. See
To illustrate how this works, consider the following workflow where a user would like to upload a file from their DMS to a 3rd party, external SaaS system (See
1. User opens the Workshare App and navigates to the SaaS file sharing folder where the file is to be uploaded.
2. User clicks ‘Upload’ which is a standard Upload button rendered in the page received from the SaaS provider.
3. Instead of being presented with a standard File Open dialog box, the invention intercepts that process step and instead the user is presented with a Workshare File Open dialog which could render any of the following:
4. The user selects the file to upload.
5. Before the file (or a pointer to it) is actually passed to the external Saas application, the Workshare App runs a policy check against the file and preforms any policy actions required, which might include:
6. After the policy checks are preformed, the file (or a pointer to it) is handed to the external SaaS application which then dutifully uploads the document data file to whichever destination folder location was selected.
7. The whole transaction may be tracked by the Workshare App, so a record of this user uploading this file, at this time, from this source, to this destination can be recorded in one or both of a local database and pushed to the Workshare Cloud Services APIs:
In yet another embodiment of this invention, a custom web browser may be used with a computer system that implements advance file selection dialogs with DMS and policy integration. This may be built using open source code from a typical web browser. An implementation of this strategy using Chromium Extension Framework™ is described in more detail below.
In yet another embodiment of this invention uses customized file selection dialog boxes in the user interface that are integrated into an existing web browser either via a browser addin or an extension or by customization at a lower level (for instance selectively replacing or modifying the operating system file selection dialogs).
A further embodiment of the invention would be an application that uses the public APIs of various 3rd party SAAS providers and rendering the information received via those APIs to show a representation of the files and or folders available to the user within the SAAS service. See
The key to the process outlines above is that because the pages from the 3rd party SaaS application are being contained in the Workshare App, which is able to provide a different File Open and File Save function to which a standard browser rendering the same pages would provide. The SaaS application or other 3rd party system is none the wiser—there is no specific integration between the Workshare App and the SaaS provider, it is simply that the JavaScript on the page is delegating the task of providing the file to the browser yet it is the Workshare Apps own implementation of this file selection function that is executed.
The key workflow can be summarized to the following:
1. User initiates an upload process, but instead of the normal web-browser response, Workshare App intercepts to provide the response.
2. User selects the file from whichever source, using a dialog provided by another system (DMS system for example).
3. The Workshare App process runs a security protocol on the file (or files) before passing the file (or its pointer) to the calling application, for example, the web-browser.
One embodiment of the invention is composed of Chromium Extension Framework (CEF) which is an open source version of the Chrome browser. This may be packaged as part of the Workshare App. In one embodiment, the invention is sub-classing CefDialogHandler which is detailed here, which is incorporates by reference the following software documentation: http://magpcss.org/ceforum/apidocs3/projects/(default)/CefDialogHandler.html CefDialogHandler is a class used to handle user interface dialog events. The methods of this class will be called on the browser process user interface thread. The class has a method OnFileDialog, depicted below:
public virtual bool OnFileDialog(CefRefPtr<CefBrowser>browser, CefDialogHandler::FileDialogMode mode, const CefString& title, const CefString& default_file_path, const std::vector<CefString>& accect_filters, int selected_accept_filter, CefRefPtr<CefFileDialogCallback>callback);
The method is called to run a file chooser dialog. |mode| represents the type of dialog to display. |title| is the title to be used for the dialog and may be empty to show the default title (“Open” or “Save” depending on the mode). |default_file_path| is the path with optional directory and/or file name component that should be initially selected in the dialog. |accept_filters| are used to restrict the selectable file types and may any combination of (a) valid lower-cased MIME types (e.g. “text/*” or “image/*”), (b) individual file extensions (e.g. “.txt” or “.png”), or (c) combined description and file extension delimited using “|” and “;” (e.g. “Image Types|.png;.gif;.jpg”). |selected_accept_filter| is the 0-based index of the filter that should be selected by default. To display a custom dialog, return true and execute |callback| either inline or at a later time. To display the default dialog return false.
Implementing “CefDialogHandler::OnFileDialog” allows the invention to replace the default browser dialogs for “Open File” and “Save File”. This function allows the invention to show the Workshare file selector user interface and then return a single, or multiple, absolute local file name(s) that can then be uploaded or accessed in the usual way in the loaded web page or java script.
A similar process may be used for file uploads, as depicted in
Using this method, the invention may be integrated for all of the above functionalities with any API based, client side (API installed on the user's computer) document management systems. Furthermore, the invention may be integrated to add both SaaS providers and client side API based systems to provide an ever growing mesh of integrations between each of these systems.
The invention stores data in its database The data that the invention stores in the database (109) may include the following fields for a transaction involving a document:
Additional information to be stored in the database might include:
However, full location information (i.e. a full URL to the place it was uploaded) may not be available at the time of upload, but may be deduced later (for instance by inspecting the SaaS platform contents using an appropriate API and the user's credentials and finding a file that matches the size and upload time).
In another embodiment, the system receives a link to the file on the third party DMS, and then automatically exercises the link to obtain the file. The file is transferred to the user's device for display or editing. When the user is finished, the database can save the revised file as a new version on its server. Alternatively, the server can run the file upload process to return the new version up to the third party DMS. In addition, the invention can run a comparison of the user's revised file with the obtained version.
Operating Environment: The system is typically comprised of a central server that is connected by a data network to a user's computer. The central server may be comprised of one or more computers connected to one or more mass storage devices. The precise architecture of the central server does not limit the claimed invention. Further, the user's computer may be a laptop or desktop type of personal computer. It can also be a cell phone, smart phone or other handheld device, including a tablet. The precise form factor of the user's computer does not limit the claimed invention. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held, laptop or mobile computer or communications devices such as cell phones and PDA's, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like. The precise form factor of the user's computer does not limit the claimed invention. In one embodiment, the user's computer is omitted, and instead a separate computing functionality provided that works with the central server. In this case, a user would log into the server from another computer and access the system through a user environment.
The user environment may be housed in the central server or operatively connected to it. Further, the user may receive from and transmit data to the central server by means of the Internet, whereby the user accesses an account using an Internet web-browser and browser displays an interactive web page operatively connected to the central server. The central server transmits and receives data in response to data and commands transmitted from the browser in response to the customer's actuation of the browser user interface. Some steps of the invention may be performed on the user's computer and interim results transmitted to a server. These interim results may be processed at the server and final results passed back to the user.
The method described herein can be executed on a computer system, generally comprised of a central processing unit (CPU) that is operatively connected to a memory device, data input and output circuitry (IO) and computer data network communication circuitry. Computer code executed by the CPU can take data received by the data communication circuitry and store it in the memory device. In addition, the CPU can take data from the I/O circuitry and store it in the memory device. Further, the CPU can take data from a memory device and output it through the IO circuitry or the data communication circuitry. The data stored in memory may be further recalled from the memory device, further processed or modified by the CPU in the manner described herein and restored in the same memory device or a different memory device operatively connected to the CPU including by means of the data network circuitry. The memory device can be any kind of data storage circuit or magnetic storage or optical device, including a hard disk, optical disk or solid state memory. The IO devices can include a display screen, loudspeakers, microphone and a movable mouse that indicate to the computer the relative location of a cursor position on the display and one or more buttons that can be actuated to indicate a command.
The computer can display on the display screen operatively connected to the I/O circuitry the appearance of a user interface. Various shapes, text and other graphical forms are displayed on the screen as a result of the computer generating data that causes the pixels comprising the display screen to take on various colors and shades. The user interface also displays a graphical object referred to in the art as a cursor. The object's location on the display indicates to the user a selection of another object on the screen. The cursor may be moved by the user by means of another device connected by I/O circuitry to the computer. This device detects certain physical motions of the user, for example, the position of the hand on a flat surface or the position of a finger on a flat surface. Such devices may be referred to in the art as a mouse or a track pad. In some embodiments, the display screen itself can act as a trackpad by sensing the presence and position of one or more fingers on the surface of the display screen. When the cursor is located over a graphical object that appears to be a button or switch, the user can actuate the button or switch by engaging a physical switch on the mouse or trackpad or computer device or tapping the trackpad or touch sensitive display. When the computer detects that the physical switch has been engaged (or that the tapping of the track pad or touch sensitive screen has occurred), it takes the apparent location of the cursor (or in the case of a touch sensitive screen, the detected position of the finger) on the screen and executes the process associated with that location. As an example, not intended to limit the breadth of the disclosed invention, a graphical object that appears to be a 2 dimensional box with the word “enter” within it may be displayed on the screen. If the computer detects that the switch has been engaged while the cursor location (or finger location for a touch sensitive screen) was within the boundaries of a graphical object, for example, the displayed box, the computer will execute the process associated with the “enter” command. In this way, graphical objects on the screen create a user interface that permits the user to control the processes operating on the computer.
The invention may also be entirely executed on one or more servers. A server may be a computer comprised of a central processing unit with a mass storage device and a network connection. In addition a server can include multiple of such computers connected together with a data network or other data transfer connection, or, multiple computers on a network with network accessed storage, in a manner that provides such functionality as a group. Practitioners of ordinary skill will recognize that functions that are accomplished on one server may be partitioned and accomplished on multiple servers that are operatively connected by a computer network by means of appropriate inter process communication. In addition, the access of the web site can be by means of an Internet browser accessing a secure or public page or by means of a client program running on a local computer that is connected over a computer network to the server. A data message and data upload or download can be delivered over the Internet using typical protocols, including TCP/IP, HTTP, TCP, UDP, SMTP, RPC, FTP or other kinds of data communication protocols that permit processes running on two remote computers to exchange information by means of digital network communication. As a result a data message can be a data packet transmitted from or received by a computer containing a destination network address, a destination process or application identifier, and data values that can be parsed at the destination computer located at the destination network address by the destination application in order that the relevant data values are extracted and used by the destination application. The precise architecture of the central server does not limit the claimed invention. In addition, the data network may operate with several levels, such that the user's computer is connected through a fire wall to one server, which routes communications to another server that executes the disclosed methods.
The user computer can operate a program that receives from a remote server a data file that is passed to a program that interprets the data in the data file and commands the display device to present particular text, images, video, audio and other objects. The program can detect the relative location of the cursor when the mouse button is actuated, and interpret a command to be executed based on location on the indicated relative location on the display when the button was pressed. The data file may be an HTML document, the program a web-browser program and the command a hyper-link that causes the browser to request a new HTML document from another remote data network address location. The HTML can also have references that result in other code modules being called up and executed, for example, Flash or other native code.
Those skilled in the relevant art will appreciate that the invention can be practiced with other communications, data processing, or computer system configurations, including: wireless devices, Internet appliances, hand-held devices (including personal digital assistants (PDAs)), wearable computers, all manner of cellular or mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, set-top boxes, network PCs, mini-computers, mainframe computers, and the like. Indeed, the terms “computer,” “server,” and the like are used interchangeably herein, and may refer to any of the above devices and systems.
In some instances, especially where the user computer is a mobile computing device used to access data through the network the network may be any type of cellular, IP-based or converged telecommunications network, including but not limited to Global System for Mobile Communications (GSM), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDM), General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Advanced Mobile Phone System (AMPS), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS), Evolution-Data Optimized (EVDO), Long Term Evolution (LTE), Ultra Mobile Broadband (UMB), Voice over Internet Protocol (VoIP), or Unlicensed Mobile Access (UMA).
The Internet is a computer network that permits customers operating a personal computer to interact with computer servers located remotely and to view content that is delivered from the servers to the personal computer as data files over the network. In one kind of protocol, the servers present webpages that are rendered on the customer's personal computer using a local program known as a browser. The browser receives one or more data files from the server that are displayed on the customer's personal computer screen. The browser seeks those data files from a specific address, which is represented by an alphanumeric string called a Universal Resource Locator (URL). However, the webpage may contain components that are downloaded from a variety of URL's or IP addresses. A website is a collection of related URL's, typically all sharing the same root address or under the control of some entity. In one embodiment different regions of the simulated space have different URL's. That is, the simulated space can be a unitary data structure, but different URL's reference different locations in the data structure. This makes it possible to simulate a large area and have participants begin to use it within their virtual neighborhood.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator.) Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as C, C++, C#, Action Script, PHP, EcmaScript, JavaScript, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The computer program and data may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed hard disk), an optical memory device (e.g., a CD-ROM or DVD), a PC card (e.g., PCMCIA card), or other memory device. The computer program and data may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program and data may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software or a magnetic tape), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web.) It is appreciated that any of the software components of the present invention may, if desired, be implemented in ROM (read-only memory) form. The software components may, generally, be implemented in hardware, if desired, using conventional techniques.
The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices. Practitioners of ordinary skill will recognize that the invention may be executed on one or more computer processors that are linked using a data network, including, for example, the Internet. In another embodiment, different steps of the process can be executed by one or more computers and storage devices geographically separated by connected by a data network in a manner so that they operate together to execute the process steps. In one embodiment, a user's computer can run an application that causes the user's computer to transmit a stream of one or more data packets across a data network to a second computer, referred to here as a server. The server, in turn, may be connected to one or more mass data storage devices where the database is stored. The server can execute a program that receives the transmitted packet and interpret the transmitted data packets in order to extract database query information. The server can then execute the remaining steps of the invention by means of accessing the mass storage devices to derive the desired result of the query. Alternatively, the server can transmit the query information to another computer that is connected to the mass storage devices, and that computer can execute the invention to derive the desired result. The result can then be transmitted back to the user's computer by means of another stream of one or more data packets appropriately addressed to the user's computer. In one embodiment, the relational database may be housed in one or more operatively connected servers operatively connected to computer memory, for example, disk drives. In yet another embodiment, the initialization of the relational database may be prepared on the set of servers and the interaction with the user's computer occur at a different place in the overall process.
It should be noted that the flow diagrams are used herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Oftentimes, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.
The described embodiments of the invention are intended to be exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in the appended claims. Although the present invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only, and is not to be taken by way of limitation. It is appreciated that various features of the invention which are, for clarity, described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable combination.
The foregoing description discloses only exemplary embodiments of the invention. Modifications of the above disclosed apparatus and methods which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. Accordingly, while the present invention has been disclosed in connection with exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention as defined by the following claims.
This application claims priority as a non-provisional application to U.S. Provisional Application No. 62/213,611, filed on Sep. 2, 2015, a non-provisional application to U.S. Provisional Application No. 62/211,848 filed on Aug. 30, 2015 and as a continuation in part to U.S. patent application Ser. No. 13/333,605 filed on Dec. 21, 2011, and all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4479195 | Herr et al. | Oct 1984 | A |
4949300 | Christenson et al. | Aug 1990 | A |
5008853 | Bly et al. | Apr 1991 | A |
5072412 | Henderson, Jr. et al. | Dec 1991 | A |
5220657 | Bly et al. | Jun 1993 | A |
5245553 | Tanenbaum | Sep 1993 | A |
5247615 | Mori et al. | Sep 1993 | A |
5293619 | Dean | Mar 1994 | A |
5379374 | Ishizaki et al. | Jan 1995 | A |
5446842 | Schaeffer et al. | Aug 1995 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5617539 | Ludwig et al. | Apr 1997 | A |
5619649 | Kovnat et al. | Apr 1997 | A |
5634062 | Shimizu et al. | May 1997 | A |
5671428 | Muranaga et al. | Sep 1997 | A |
5699427 | Chow et al. | Dec 1997 | A |
RE35861 | Queen | Jul 1998 | E |
5787175 | Carter | Jul 1998 | A |
5787444 | Gerken et al. | Jul 1998 | A |
5801702 | Dolan et al. | Sep 1998 | A |
5806078 | Hug et al. | Sep 1998 | A |
5819300 | Kohno et al. | Oct 1998 | A |
5832494 | Egger et al. | Nov 1998 | A |
5890177 | Moody et al. | Mar 1999 | A |
5897636 | Kaeser | Apr 1999 | A |
5898836 | Freivald et al. | Apr 1999 | A |
6003060 | Aznar et al. | Dec 1999 | A |
6012087 | Freivald et al. | Jan 2000 | A |
6029175 | Chow et al. | Feb 2000 | A |
6038561 | Snyder et al. | Mar 2000 | A |
6049804 | Burgess et al. | Apr 2000 | A |
6067551 | Brown et al. | May 2000 | A |
6088702 | Plantz et al. | Jul 2000 | A |
6128635 | Ikeno | Oct 2000 | A |
6145084 | Zuili et al. | Nov 2000 | A |
6189019 | Blumer et al. | Feb 2001 | B1 |
6212534 | Lo et al. | Apr 2001 | B1 |
6219818 | Freivald et al. | Apr 2001 | B1 |
6243091 | Berstis | Jun 2001 | B1 |
6263350 | Wollrath et al. | Jul 2001 | B1 |
6263364 | Najork et al. | Jul 2001 | B1 |
6269370 | Kirsch | Jul 2001 | B1 |
6285999 | Page | Sep 2001 | B1 |
6301368 | Bolle et al. | Oct 2001 | B1 |
6317777 | Skarbo et al. | Nov 2001 | B1 |
6321265 | Najork et al. | Nov 2001 | B1 |
6327611 | Everingham | Dec 2001 | B1 |
6336123 | Inoue et al. | Jan 2002 | B2 |
6351755 | Najork et al. | Feb 2002 | B1 |
6356937 | Montville et al. | Mar 2002 | B1 |
6377984 | Najork et al. | Apr 2002 | B1 |
6404446 | Bates et al. | Jun 2002 | B1 |
6418433 | Chakrabarti et al. | Jul 2002 | B1 |
6418453 | Kraft et al. | Jul 2002 | B1 |
6424966 | Meyerzon et al. | Jul 2002 | B1 |
6449624 | Hammack et al. | Sep 2002 | B1 |
6505237 | Beyda et al. | Jan 2003 | B2 |
6513050 | Williams et al. | Jan 2003 | B1 |
6547829 | Meyerzon et al. | Apr 2003 | B1 |
6556982 | McGaffey et al. | Apr 2003 | B1 |
6560620 | Ching | May 2003 | B1 |
6584466 | Serbinis et al. | Jun 2003 | B1 |
6591289 | Britton | Jul 2003 | B1 |
6594662 | Sieffert et al. | Jul 2003 | B1 |
6596030 | Ball et al. | Jul 2003 | B2 |
6614789 | Yazdani et al. | Sep 2003 | B1 |
6658626 | Aiken | Dec 2003 | B1 |
6662212 | Chandhok et al. | Dec 2003 | B1 |
6738762 | Chen et al. | May 2004 | B1 |
6745024 | DeJaco et al. | Jun 2004 | B1 |
6832202 | Schuyler et al. | Dec 2004 | B1 |
6918082 | Gross | Jul 2005 | B1 |
7035427 | Rhoads | Apr 2006 | B2 |
7085735 | Hall et al. | Aug 2006 | B1 |
7107518 | Ramaley et al. | Sep 2006 | B2 |
7113615 | Rhoads et al. | Sep 2006 | B2 |
7152019 | Tarantola et al. | Dec 2006 | B2 |
7181492 | Wen et al. | Feb 2007 | B2 |
7194761 | Champagne | Mar 2007 | B1 |
7212955 | Kirshenbaum et al. | May 2007 | B2 |
7233686 | Hamid | Jun 2007 | B2 |
7240207 | Weare | Jul 2007 | B2 |
7299504 | Tiller et al. | Nov 2007 | B1 |
7321864 | Gendler | Jan 2008 | B1 |
7356704 | Rinkevich et al. | Apr 2008 | B2 |
7434164 | Salesin et al. | Oct 2008 | B2 |
7454778 | Pearson et al. | Nov 2008 | B2 |
7496841 | Hadfield et al. | Feb 2009 | B2 |
7564997 | Hamid | Jul 2009 | B2 |
7570964 | Maes | Aug 2009 | B2 |
7613770 | Li | Nov 2009 | B2 |
7624447 | Horowitz et al. | Nov 2009 | B1 |
7627613 | Dulitz et al. | Dec 2009 | B1 |
7640308 | Antonoff et al. | Dec 2009 | B2 |
7673324 | Tirosh et al. | Mar 2010 | B2 |
7680785 | Najork | Mar 2010 | B2 |
7685298 | Day | Mar 2010 | B2 |
7694336 | Rinkevich et al. | Apr 2010 | B2 |
7707153 | Petito et al. | Apr 2010 | B1 |
7720256 | Desprez et al. | May 2010 | B2 |
7730175 | Roesch et al. | Jun 2010 | B1 |
7788235 | Yeo | Aug 2010 | B1 |
7796309 | Sadovsky et al. | Sep 2010 | B2 |
7797724 | Calvin | Sep 2010 | B2 |
7818678 | Massand | Oct 2010 | B2 |
7844116 | Monga | Nov 2010 | B2 |
7857201 | Silverbrook et al. | Dec 2010 | B2 |
7877790 | Vishik et al. | Jan 2011 | B2 |
7890752 | Bardsley et al. | Feb 2011 | B2 |
7895166 | Foygel et al. | Feb 2011 | B2 |
7903822 | Hair et al. | Mar 2011 | B1 |
7941844 | Anno | May 2011 | B2 |
7958101 | Teugels et al. | Jun 2011 | B1 |
8005277 | Tulyakov et al. | Aug 2011 | B2 |
8042112 | Zhu et al. | Oct 2011 | B1 |
8117225 | Zilka | Feb 2012 | B1 |
8145724 | Hawks | Mar 2012 | B1 |
8181036 | Nachenberg | May 2012 | B1 |
8196030 | Wang et al. | Jun 2012 | B1 |
8201254 | Wilhelm et al. | Jun 2012 | B1 |
8209538 | Craigie | Jun 2012 | B2 |
8233723 | Sundaresan | Jul 2012 | B2 |
8286085 | Denise | Oct 2012 | B1 |
8286171 | More et al. | Oct 2012 | B2 |
8301994 | Shah | Oct 2012 | B1 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8406456 | More | Mar 2013 | B2 |
8473847 | Glover | Jun 2013 | B2 |
8478995 | Alculumbre | Jul 2013 | B2 |
8555080 | More et al. | Oct 2013 | B2 |
8572388 | Boemker et al. | Oct 2013 | B2 |
8620872 | Killalea | Dec 2013 | B1 |
8635295 | Mulder | Jan 2014 | B2 |
8732127 | Rotterdam et al. | May 2014 | B1 |
8776190 | Cavage et al. | Jul 2014 | B1 |
8797603 | Dougherty et al. | Aug 2014 | B1 |
8839100 | Donald | Sep 2014 | B1 |
9098500 | Asokan et al. | Aug 2015 | B1 |
9311624 | Diament et al. | Apr 2016 | B2 |
9652485 | Bhargava et al. | May 2017 | B1 |
20010018739 | Anderson et al. | Aug 2001 | A1 |
20010042073 | Saether et al. | Nov 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020016959 | Barton et al. | Feb 2002 | A1 |
20020019827 | Shiman et al. | Feb 2002 | A1 |
20020023158 | Polizzi et al. | Feb 2002 | A1 |
20020052928 | Stern et al. | May 2002 | A1 |
20020063154 | Hoyos et al. | May 2002 | A1 |
20020065827 | Christie et al. | May 2002 | A1 |
20020065848 | Walker et al. | May 2002 | A1 |
20020073188 | Rawson, III | Jun 2002 | A1 |
20020087515 | Swannack et al. | Jul 2002 | A1 |
20020099602 | Moskowitz et al. | Jul 2002 | A1 |
20020120648 | Ball et al. | Aug 2002 | A1 |
20020129062 | Luparello | Sep 2002 | A1 |
20020136222 | Robohm | Sep 2002 | A1 |
20020138744 | Schleicher et al. | Sep 2002 | A1 |
20020159239 | Amie et al. | Oct 2002 | A1 |
20020164058 | Aggarwal et al. | Nov 2002 | A1 |
20030009518 | Harrow et al. | Jan 2003 | A1 |
20030009528 | Sharif et al. | Jan 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030046572 | Newman et al. | Mar 2003 | A1 |
20030051054 | Redlich et al. | Mar 2003 | A1 |
20030061260 | Rajkumar | Mar 2003 | A1 |
20030061350 | Masuoka | Mar 2003 | A1 |
20030078880 | Alley et al. | Apr 2003 | A1 |
20030084279 | Campagna | May 2003 | A1 |
20030093755 | Ramakrishnan | May 2003 | A1 |
20030097454 | Yamakawa et al. | May 2003 | A1 |
20030112273 | Hadfield | Jun 2003 | A1 |
20030115273 | Delia et al. | Jun 2003 | A1 |
20030131005 | Berry | Jul 2003 | A1 |
20030147267 | Huttunen | Aug 2003 | A1 |
20030158839 | Faybishenko et al. | Aug 2003 | A1 |
20030191799 | Araujo et al. | Oct 2003 | A1 |
20030196087 | Stringer et al. | Oct 2003 | A1 |
20030223624 | Hamid | Dec 2003 | A1 |
20030233419 | Beringer | Dec 2003 | A1 |
20030237047 | Borson | Dec 2003 | A1 |
20040002049 | Beavers et al. | Jan 2004 | A1 |
20040031052 | Wannamaker et al. | Feb 2004 | A1 |
20040122659 | Hourihane et al. | Jun 2004 | A1 |
20040128321 | Hamer | Jul 2004 | A1 |
20040148567 | Jeon et al. | Jul 2004 | A1 |
20040186851 | Jhingan et al. | Sep 2004 | A1 |
20040187076 | Ki | Sep 2004 | A1 |
20040225645 | Rowney et al. | Nov 2004 | A1 |
20040261016 | Glass et al. | Dec 2004 | A1 |
20050021980 | Kanai | Jan 2005 | A1 |
20050038893 | Graham | Feb 2005 | A1 |
20050055306 | Miller et al. | Mar 2005 | A1 |
20050055337 | Bebo et al. | Mar 2005 | A1 |
20050071755 | Harrington et al. | Mar 2005 | A1 |
20050108293 | Lipman et al. | May 2005 | A1 |
20050138350 | Hariharan | Jun 2005 | A1 |
20050138540 | Baltus et al. | Jun 2005 | A1 |
20050204008 | Shinbrood | Sep 2005 | A1 |
20050251738 | Hirano et al. | Nov 2005 | A1 |
20050251748 | Gusmorino et al. | Nov 2005 | A1 |
20050256893 | Perry | Nov 2005 | A1 |
20050268327 | Starikov | Dec 2005 | A1 |
20050278421 | Simpson et al. | Dec 2005 | A1 |
20060005247 | Zhang et al. | Jan 2006 | A1 |
20060013393 | Ferchichi et al. | Jan 2006 | A1 |
20060021031 | Leahy et al. | Jan 2006 | A1 |
20060047765 | Mizoi et al. | Mar 2006 | A1 |
20060050937 | Hamid | Mar 2006 | A1 |
20060059196 | Sato et al. | Mar 2006 | A1 |
20060064717 | Shibata et al. | Mar 2006 | A1 |
20060067578 | Fuse | Mar 2006 | A1 |
20060069740 | Ando | Mar 2006 | A1 |
20060075041 | Antonoff et al. | Apr 2006 | A1 |
20060098850 | Hamid | May 2006 | A1 |
20060112120 | Rohall | May 2006 | A1 |
20060129627 | Phillips | Jun 2006 | A1 |
20060158676 | Hamada | Jul 2006 | A1 |
20060171588 | Chellapilla et al. | Aug 2006 | A1 |
20060184505 | Kedem | Aug 2006 | A1 |
20060190493 | Kawai et al. | Aug 2006 | A1 |
20060218004 | Dworkin et al. | Sep 2006 | A1 |
20060218643 | DeYoung | Sep 2006 | A1 |
20060224589 | Rowney | Oct 2006 | A1 |
20060236246 | Bono et al. | Oct 2006 | A1 |
20060261112 | Todd et al. | Nov 2006 | A1 |
20060271947 | Lienhart et al. | Nov 2006 | A1 |
20060272024 | Huang et al. | Nov 2006 | A1 |
20060277229 | Yoshida et al. | Dec 2006 | A1 |
20060294468 | Sareen et al. | Dec 2006 | A1 |
20060294469 | Sareen et al. | Dec 2006 | A1 |
20070005589 | Gollapudi | Jan 2007 | A1 |
20070011211 | Reeves et al. | Jan 2007 | A1 |
20070025265 | Porras et al. | Feb 2007 | A1 |
20070027830 | Simons et al. | Feb 2007 | A1 |
20070038704 | Brown et al. | Feb 2007 | A1 |
20070094510 | Ross et al. | Apr 2007 | A1 |
20070100991 | Daniels et al. | May 2007 | A1 |
20070101154 | Bardsley et al. | May 2007 | A1 |
20070101413 | Vishik et al. | May 2007 | A1 |
20070112930 | Foo et al. | May 2007 | A1 |
20070150443 | Bergholz et al. | Jun 2007 | A1 |
20070174766 | Rubin et al. | Jul 2007 | A1 |
20070179967 | Zhang | Aug 2007 | A1 |
20070192728 | Finley et al. | Aug 2007 | A1 |
20070220061 | Tirosh et al. | Sep 2007 | A1 |
20070220068 | Thompson et al. | Sep 2007 | A1 |
20070253608 | Tulyakov et al. | Nov 2007 | A1 |
20070261099 | Broussard et al. | Nov 2007 | A1 |
20070261112 | Todd et al. | Nov 2007 | A1 |
20070294318 | Arora et al. | Dec 2007 | A1 |
20070294612 | Drucker et al. | Dec 2007 | A1 |
20070299880 | Kawabe et al. | Dec 2007 | A1 |
20080022003 | Alve | Jan 2008 | A1 |
20080028017 | Garbow et al. | Jan 2008 | A1 |
20080033913 | Winburn | Feb 2008 | A1 |
20080034282 | Zernik | Feb 2008 | A1 |
20080034327 | Cisler et al. | Feb 2008 | A1 |
20080065668 | Spence et al. | Mar 2008 | A1 |
20080080515 | Tombroff et al. | Apr 2008 | A1 |
20080082529 | Mantena et al. | Apr 2008 | A1 |
20080091465 | Fuschino et al. | Apr 2008 | A1 |
20080091735 | Fukushima et al. | Apr 2008 | A1 |
20080162527 | Pizano et al. | Jul 2008 | A1 |
20080177782 | Poston et al. | Jul 2008 | A1 |
20080209001 | Boyle et al. | Aug 2008 | A1 |
20080215667 | Rothbarth | Sep 2008 | A1 |
20080219495 | Hulten et al. | Sep 2008 | A1 |
20080235760 | Broussard et al. | Sep 2008 | A1 |
20080263363 | Jueneman et al. | Oct 2008 | A1 |
20080275694 | Varone | Nov 2008 | A1 |
20080288597 | Christensen et al. | Nov 2008 | A1 |
20080301193 | Massand | Dec 2008 | A1 |
20080306894 | Rajkumar et al. | Dec 2008 | A1 |
20080310624 | Celikkan | Dec 2008 | A1 |
20080320316 | Waldspurger et al. | Dec 2008 | A1 |
20090025087 | Peirson et al. | Jan 2009 | A1 |
20090030997 | Malik | Jan 2009 | A1 |
20090034804 | Cho et al. | Feb 2009 | A1 |
20090049132 | Gutovski | Feb 2009 | A1 |
20090052778 | Edgecomb et al. | Feb 2009 | A1 |
20090064326 | Goldstein | Mar 2009 | A1 |
20090083073 | Mehta et al. | Mar 2009 | A1 |
20090083384 | Bhogal et al. | Mar 2009 | A1 |
20090129002 | Wu et al. | May 2009 | A1 |
20090164427 | Shields et al. | Jun 2009 | A1 |
20090177754 | Brezina et al. | Jul 2009 | A1 |
20090183257 | Prahalad | Jul 2009 | A1 |
20090187567 | Rolle | Jul 2009 | A1 |
20090216843 | Willner et al. | Aug 2009 | A1 |
20090222450 | Zigelman | Sep 2009 | A1 |
20090234863 | Evans | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090271620 | Sudhakar | Oct 2009 | A1 |
20090319480 | Saito | Dec 2009 | A1 |
20100011077 | Shkolnikov et al. | Jan 2010 | A1 |
20100011428 | Atwood et al. | Jan 2010 | A1 |
20100017404 | Banerjee et al. | Jan 2010 | A1 |
20100017850 | More et al. | Jan 2010 | A1 |
20100049807 | Thompson | Feb 2010 | A1 |
20100058053 | Wood et al. | Mar 2010 | A1 |
20100064004 | Ravi et al. | Mar 2010 | A1 |
20100064372 | More et al. | Mar 2010 | A1 |
20100070448 | Omoigui | Mar 2010 | A1 |
20100076985 | Egnor | Mar 2010 | A1 |
20100083230 | Ramakrishnan | Apr 2010 | A1 |
20100114985 | Chaudhary et al. | May 2010 | A1 |
20100114991 | Chaudhary et al. | May 2010 | A1 |
20100131604 | Portilla | May 2010 | A1 |
20100146382 | Abe et al. | Jun 2010 | A1 |
20100174678 | Massand | Jul 2010 | A1 |
20100174761 | Longobardi et al. | Jul 2010 | A1 |
20100186062 | Banti et al. | Jul 2010 | A1 |
20100217987 | Shevade | Aug 2010 | A1 |
20100235763 | Massand | Sep 2010 | A1 |
20100241943 | Massand | Sep 2010 | A1 |
20100257352 | Errico | Oct 2010 | A1 |
20100274765 | Murphy | Oct 2010 | A1 |
20100287246 | Klos et al. | Nov 2010 | A1 |
20100299727 | More et al. | Nov 2010 | A1 |
20100318530 | Massand | Dec 2010 | A1 |
20100332428 | McHenry et al. | Dec 2010 | A1 |
20110029625 | Cheng et al. | Feb 2011 | A1 |
20110035655 | Heineken | Feb 2011 | A1 |
20110041165 | Bowen | Feb 2011 | A1 |
20110106892 | Nelson et al. | May 2011 | A1 |
20110107106 | Morii et al. | May 2011 | A1 |
20110125806 | Park | May 2011 | A1 |
20110141521 | Qiao | Jun 2011 | A1 |
20110145229 | Vailaya et al. | Jun 2011 | A1 |
20110197121 | Kletter | Aug 2011 | A1 |
20110225646 | Crawford | Sep 2011 | A1 |
20110252098 | Kumar | Oct 2011 | A1 |
20110252310 | Rahaman et al. | Oct 2011 | A1 |
20110264907 | Betz et al. | Oct 2011 | A1 |
20110314384 | Lindgren et al. | Dec 2011 | A1 |
20120011361 | Guerrero et al. | Jan 2012 | A1 |
20120016867 | Clemm et al. | Jan 2012 | A1 |
20120030563 | Lemonik et al. | Feb 2012 | A1 |
20120036157 | Rolle | Feb 2012 | A1 |
20120079267 | Lee | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120110092 | Keohane et al. | May 2012 | A1 |
20120117096 | Massand | May 2012 | A1 |
20120117644 | Soeder | May 2012 | A1 |
20120131635 | Huapaya | May 2012 | A1 |
20120133989 | Glover | May 2012 | A1 |
20120136862 | Glover | May 2012 | A1 |
20120136951 | Mulder | May 2012 | A1 |
20120151316 | Massand | Jun 2012 | A1 |
20120173881 | Trotter | Jul 2012 | A1 |
20120185511 | Mansfield et al. | Jul 2012 | A1 |
20120246115 | King | Sep 2012 | A1 |
20120265817 | Vidalenc et al. | Oct 2012 | A1 |
20120317239 | Mulder | Dec 2012 | A1 |
20130007070 | Pitschke | Jan 2013 | A1 |
20130060799 | Massand | Mar 2013 | A1 |
20130074195 | Johnston et al. | Mar 2013 | A1 |
20130097421 | Lim | Apr 2013 | A1 |
20130212707 | Donahue et al. | Aug 2013 | A1 |
20130227043 | Murakami | Aug 2013 | A1 |
20130227397 | Tvorun | Aug 2013 | A1 |
20140032489 | Hebbar et al. | Jan 2014 | A1 |
20140115436 | Beaver et al. | Apr 2014 | A1 |
20140136497 | Georgiev | May 2014 | A1 |
20140181223 | Homsany et al. | Jun 2014 | A1 |
20140280336 | Glover | Sep 2014 | A1 |
20140281872 | Glover | Sep 2014 | A1 |
20150026464 | Hanner et al. | Jan 2015 | A1 |
20150172058 | Follis | Jun 2015 | A1 |
20160350270 | Nakazawa | Dec 2016 | A1 |
Entry |
---|
Restriction Requirement dated Feb. 14, 2005 in U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7/496,841. |
Restriction Requirement dated Feb. 5, 2008 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Restriction Requirement dated Feb. 5, 2008 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, and now U.S. Pat. No. 7,496,841. |
Restriction Requirement dated Jun. 30, 2006 in U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Roussev, et al., “Integrating XML and Object-based Programming for Distributed Collaboration”, IEEE, 2000, pp. 254-259. |
Stephen Voida et al., Share and Share Alike: Exploring the User Interface Affordances of File Sharing, Apr. 22-27, 2006, ACM, pp. 1-10. |
Sujoy Roy, et al., “Robust Hash for Detecting and Localizing Image Tampering,” Image Processing, 2007, ICIP 2007, IEEE International Conference on, vol. 6, No., pp. V1-117-V1-120, Sep. 16, 2007-Oct. 19, 2007. |
Sujoy Roy; Qibin Sun; , “Robust Hash for Detecting and Localizing Image Tampering,” Image Processing, 2007. ICIP 2007. IEEE International Conference on , vol. 6, No., pp. VI-117-VI-120, Sep. 16, 2007-Oct. 19, 2007. |
Tsai, et al., “A document Workspace for Collaboration and Annotation based on XML Technology”, Department of Electrical Engineering, 2001, pp. 165-172. |
Tsai, et al., “A Document Workspace for Collaboration and Annotation based on XML Technology”, IEEE, 2000, pp. 165-172. |
Tuklakov, et al., “Symmetric Hash Functions for Fingerprint Minutiae,” International Workshop on Pattern Recognition for Crime Prevention, Security and Surveillance, Bath U.K., Oct. 2, 2005, pp. 30-38. |
Tulyakov et al, Symmetric Hash Functions for Fingerprint Minutiae, ICAPR 2005, LNCS 3687, pp. 30-38, 2005. |
Tulyakov et al. “Symmetric Hash Functions for Fingerprint Minutiae.” International Workshop on Patter Recognition for Crime Prevention, Security and Surveillance, Bath U.K., Oct. 2, 2005, pp. 30-38. |
Tulyakov, et al., “Symmetric Hash Functions for Fingerprint Minutiae,” International Workshop on Pattern Recognition for Crime Prevention, Security and Surveillance, Bath U.K., Oct. 2, 2005, pp. 30-38. |
U.S. Appl. No. 13/789,104, filed Mar. 7, 2013, Gofman. |
V Monga, B.L. Evans Perceptual image hashing via feature points: performance evaluation and tradeoffs IEEE Transactions on Image Processing, 15 (11) (2006), pp. 3453-3466. |
Weiss et al., Lightweight document matching for help-desk applications, In: Intelligent Systems and their Applications, IEEE, Vo. 15, Issue:2, pp. 57-61, ISSN 1094-7167, 2000. |
Wells et al., “Groupware & Collaboration Support”, www.objs.com/survey/groupwar.htm, Aug. 30, 2001, 10 pages. |
Written Opinion of PCT Application No. PCT/US2009/051313, dated Mar. 3, 2010, 3 pages. |
Written Opinion of PCT Application No. PCT/US2009/051313, dated Mar. 3, 2010, 4 pages. |
Written Opinion PCT Application No. PCT/2009/064919, dated Jul. 1, 2010, 4 pages. |
Written Opinion PCT Application No. PCT/US2009/056651, dated Apr. 21, 2010, pp. 1-5. |
Written Opinion PCT Application No. PCT/US2009/056668 dated Apr. 16, 2010 pp. 1-4. |
Written Opinion PCT Application No. PCT/US2009/056668, dated Apr. 16, 2010, 4 pages. |
Written Opinion PCT Application No. PCT/US2009/064919 dated Jul. 1, 2010, pp. 1-4 pages. |
Written Opinion PCT Application No. PCT/US2009/064919 dated Jul. 1, 2010, pp. 1-4. |
Written Opinion PCT Application No. PCT/US2009/065019 dated Jun. 4, 2010, p. 1-5. |
Written Opinion PCT Application No. PCT/US2009/065019 dated Jun. 4, 2010, pp. 1-5. |
Written Opinion PCT Application No. PCT/US2009/065019, dated Jun. 4, 2010, 5 pages. |
Written Opinion PCT Application No. PCT/US2010/043345 dated Apr. 28, 2011, 4 pages. |
Written Opinion PCT/US2009/056651 dated Apr. 21, 2010, pp. 1-5. |
XP-002257904, “Workshare Debuts Synergy”, 2003, 3 pages. |
Advisory Action dated Apr. 12, 2013, in Co-Pending U.S. Appl. No. 12/621,429 by More, S., filed Nov. 18, 2009. |
Advisory Action dated Nov. 1, 2013, in Co-Pending U.S. Appl. No. 13/659,793 by More, S., filed Oct. 24, 2012. |
Co-pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001. |
Co-pending U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Co-pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Co-pending U.S. Appl. No. 12/209,082, filed Sep. 11, 2008. |
Co-pending U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Co-pending U.S. Appl. No. 12/275,185, filed Nov. 20, 2008. |
Co-pending U.S. Appl. No. 12/621,429, filed Nov. 18, 2009. |
Co-pending U.S. Appl. No. 12/844,818, filed Jul. 27, 2010. |
Co-pending U.S. Appl. No. 13/306,765, filed Nov. 29, 2011. |
Co-pending U.S. Appl. No. 13/306,798, filed Nov. 29, 2011. |
Co-pending U.S. Appl. No. 13/306,819, filed Nov. 29, 2011. |
Co-pending U.S. Appl. No. 13/620,364, filed Sep. 14, 2012. |
Co-Pending U.S. Appl. No. 13/659,793, filed Oct. 24, 2012. |
Co-Pending U.S. Appl. No. 13/659,817, filed Oct. 24, 2012. |
Final Office Action dated Apr. 16, 2012 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Final Office Action dated Apr. 17, 2007 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Final Office Action dated Apr. 17, 2007 for U.S. Appl. No. 10/023,010, filed Dec. 7, 2001, now U.S. Pat. No. 7,496,841. |
Final Office Action dated Apr. 17, 2007 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Final Office Action dated Aug. 12, 2011 for U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Final Office Action dated Aug. 12, 2011 in Co-Pending U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Final Office Action dated Aug. 16, 2013 in co-pending U.S. Appl. No. 13/306,798 of Glover, R.W., filed Nov. 29, 2011. |
Final Office Action dated Feb. 1, 2013 in Co-Pending U.S. Appl. No. 12/621,429 by More, S., filed Nov. 18, 2009. |
Final Office Action dated Feb. 1, 2013 in Co-Pending U.S. Appl. No. 12/621,429 of More, S., filed Nov. 18, 2009. |
Final Office Action dated Jan. 18, 2013 in Co-Pending U.S. Appl. No. 12/844,818 by Glover, R., filed Jul. 27, 2010. |
Final Office Action dated Jan. 18, 2013 in Co-Pending U.S. Appl. No. 12/844,818 of Glover, R., filed Jul. 27, 2010. |
Final Office Action dated May 10, 2012 in Co-Pending U.S. Appl. No. 12/209,082, filed Sep. 11, 2008. |
Final Office Action dated May 10, 2012 in Co-Pending U.S. Appl. No. 12/209,082. |
Final Office Action dated Oct. 21, 2013, in Co-Pending U.S. Appl. No. 13/659,793 by More, S., filed Oct. 24, 2012. |
“3BClean”. |
“EzClean—Metadata removal utility for Microsoft Office”. |
“MIMEsweeper Solutions”. |
“CS MAILsweeper™ 4.3 for SMTP” by Clearswift Ltd ( © 2002). |
“EzClean—New Features—version 3.3”. |
“EzClean 3.2—New Features”. |
“EzClean FAQ”. |
“How do I make sure that there is no embarrassing Metadata in any documents that I attach to e-mails? ezClean makes it easy!”. |
“Lotus Announces cc:Mail for the World Wide Web; Provides EasyAccess to E-Mail via the Web”. |
“Middleboxes: Taxonomy and Issues,” Internet Engineering TaskForce (IETF), RFC 3234 (Feb. 2002). |
“MIME (Multipurpose Internet Mail Extensions): Mechanisms forSpecifying and Describing the Format of Internet Message Bodies,” Internet Engineering Task Force (IETF), RFC 1341 (Jun. 1992). |
“Think Your Deletions are Gone Forever? Think Again! ezClean Makes Metadata Removal Easy!”. |
3B Clean: What is the Problem? 3B is the solution. |
3B Transform from 2005. |
3BOpen Doc Making StarOffice and OpenOffice.org a viable option. |
3BOpenDoc—Convert documents to and from OSF. |
Bitform Extract SDK 2005.1. |
EZclean version 3.3 Installation Guide and Admin Manual. |
EzClean version 3.3 Integration Guide for use with CS MailSweeper for SMTP. |
Jamison, Scott. Essential SharePoint 2010: Overview, Governance, and Planning. Addison-Wesley Professional; 1 edition (Aug. 22, 2010). |
Lightfoot, Johnathan and Beckett, Chris. Plain & Simple Microsoft® SharePoint® 2010. O'Reilly Media, Inc. Copyright © 2010. |
Londer, Olga and Coventry, Penelope. Step by Step Microsoft® SharePoint® Foundation 2010. Microsoft Press. ISBN: 978-0-7356-2726-0. Copyright © 2011. |
Pattison,Ted et al. Inside Microsoft® SharePoint® 2010. Critical Path Training, LLC © 2011. |
Sahil Malik. Microsoft SharePoint 2010: Building Solutions for SharePoint 2010 . Apress; 1st ed. edition (Jun. 7, 2010). |
Silver, Michael A.; MacDonald, Neil. Plan to Deal with Metadata Issues with Windows Vista. Gartner, Inc.. Dec. 21, 2005.ID No. G00136321. |
Simple Mail Transfer Protocol, Internet Engineering Task Force(IETF), RFC 821 (Aug. 1982). |
Non-final office action issued for U.S. Appl. No. 13/799,067 dated Oct. 30, 2014. |
Non-Final Office Action dated Apr. 26, 2013 in Co-Pending U.S. Appl. No. 13/659,817 of More, S., filed Oct. 24, 2012. |
Non-Final Office Action dated Apr. 27, 2012 in Co-Pending U.S. Appl. No. 12/275,185 of More, S., filed Nov. 20, 2008. |
Non-Final Office Action dated Apr. 27, 2012 in Co-Pending U.S. Appl. No. 12/275,185, filed Nov. 20, 2008. |
Non-Final Office Action dated Aug. 1, 2012 in Co-Pending U.S. Appl. No. 12/621,429, filed Nov. 18, 2009. |
Non-Final Office Action dated Aug. 1, 2012 in Co-Pending U.S. Appl. No. 12/621,429 of More, S., filed Nov. 18, 2009. |
Non-Final Office Action dated Aug. 13, 2013 in co-pending U.S. Appl. No. 13/306,819 by Glover, R.W., filed Nov. 29, 2011. |
Non-Final Office Action dated Dec. 22, 2011 in Co-Pending U.S. Appl. No. 12/209,082. |
Non-Final Office Action dated Dec. 6, 2012 in co-pending U.S. Appl. No. 13/306,798, filed Nov. 29, 2011. |
Non-Final Office Action dated Jan. 9, 2012 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Bettenburg et al., An Empirical Study on the Risks of Using Off-the-Shelf Techniques for Processing Mailing List Data, 2009, IEEE 4 pages. |
Bindu et al., Spam War: Battling Ham against Spam, 2011 IEEE 6 pages. |
Bobba et al. Attribute-Based Messaging: Access Control and Confidentiality, 2010, ACM 35 pages. |
Chen et al., Online Detection and Prevention of Phishing Attacks, 2006, IEEE 7 pages. |
Karnouskos et al., Active Electronic Mail, 2002, ACM 6 pages. |
Kaushik et al., Email Feedback: A Policy based Approach to Overcoming False Positives, 2005, 10 pages. |
Stolfo et al., AMT?MET: Systems for Modeling and Detecting Errant Email. 2003, IEEE 6 pages. |
Jain, Pravin. The class of JAVA. Aug. 12, 2010. |
Final office action dated Aug. 15, 2012 for U.S. Appl. No. 11/336,329 which published as U.S. Pub. No. 2007/0174766 for “Hidden document data removal” to Rubin et. al.. |
Greg Shultz. article “Keep Microsoft Office Documents Clean with iScrub,” published by TechRepublic.com on Jul. 9, 2003. |
Mike Heck. Keep Sensitive Data Out of E-Mails. InfoWorld.com. Apr. 24, 2006. |
Workshare Ltd. Workshare Protect 4.5 Admin Guide, (c) 2006. |
Workshare Ltd. Workshare Protect 4.5 User Guide, (c) 2006. |
Classification Definitions Class 715, Data Processing: Presentation Processing of Document, Operator Interface Processing, and Screen Saver Display Processing; Feb. 2011, pp. 1-33. |
Non-Final Office Action dated Mar. 11, 2011, in Co-pending U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Non-Final Office Action dated Mar. 16, 2006 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Non-Final Office Action dated Mar. 18, 2013 in Co-Pending U.S. Appl. No. 13/659,793 of More, S., filed Oct. 24, 2012. |
Non-Final Office Action dated Mar. 20, 2006 in Co-pending U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Non-Final Office Action dated May 17, 2013 in co-pending U.S. Appl. No. 13/306,765 by Mulder, S.P.M., filed Nov. 29, 2011. |
Non-Final Office Action dated May 7, 2008 in Co-pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001. |
Non-Final Office Action dated Sep. 19, 2011 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Non-Final Office Action dated Sep. 19, 2012 in Co-Pending U.S. Appl. No. 12/844,818 by Glover, R., filed Jul. 27, 2010. |
Notice of Allowance dated Aug. 19, 2012 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Notice of Allowance dated Jul. 8, 2013 in Co-Pending U.S. Appl. No. 12/209,082 by S. More et al., filed Sep. 11, 2008. |
Notice of Allowance dated Jun. 26, 2012 in Co-Pending U.S. Appl. No. 12/275,185 of More, S., filed Nov. 20, 2008. |
Notice of Allowance dated Mar. 13, 2013 in Co-Pending U.S. Appl. No. 12/844,818 of Glover, R., filed Jul. 27, 2010. |
Notice of Allowance dated Oct. 2, 2012, in Co-Pending U.S. Appl. No. 12/275,185 of More, S., filed Nov. 20, 2008. |
Notice of Allowance dated Oct. 24, 2008 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Notice of Allowance dated Sep. 25, 2013, in Co-Pending U.S. Appl. No. 13/659,817 by More, S., filed Oct. 24, 2012. |
PC Magazine “Pure Intranets: Real-Time Internet Collaboration”, http://www.zdnet.com/pcmag/featuresgroupware/gpwst.htm, Aug. 30, 2001, 2 pages. |
Restriction Requirement dated Jun. 30, 2006 for U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Restriction Requirement dated Feb. 14, 2005 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Number | Date | Country | |
---|---|---|---|
20170054791 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62213611 | Sep 2015 | US | |
62211848 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13333605 | Dec 2011 | US |
Child | 15251892 | US |