This disclosure relates to a system and method for custom forming a protective helmet for a customer's head, such as a helmet for a cyclist, football player, hockey player, or motor sports participant. In particular, the system and method include equipment and methods for capturing and receiving captured data from customers or potential customers and arranging the data for three-dimensional analysis.
For helmet-wearing athletes in many sports, beyond the safety aspects of the protective helmet, additional considerations can include helmet fit and airflow through the helmet. Improvements in fit comfort and airflow can reduce distractions to the athlete and thereby improve performance. Although the results of the method and system disclosed in this document relate primarily to safety, in addition to safety, improvements in fit, airflow, and comfort can also be achieved without reducing safety for particular customers and customer head shapes.
Conventional helmet creation technology has designed helmets with the assumption that human heads are similar and that head circumference is the most important factor in choosing an appropriate helmet. Adjustments to the standard helmet are then made by adding different thicknesses of padding between the customer's head and the inner surface of the helmet. These assumptions, however, have resulted in helmets that do not fit correctly, tend to slip around on the customer's head, rattle on the customer's head when vibration occurs in the customer's body during activities in the sport, or to create pressure points on the customer's head and face to try to keep the helmet in place even though the padding does not fit right or where the customer's head is too big to have padding between the head and the helmet protective material. Systems that conform to a customer's head developed by Giro and Bell in the 1990's do a remarkable job of stabilizing the helmet on a customer's head. However, previously developed fit systems do not totally eliminate reliance on the requirement for additional padding by the customer to adapt the standard helmets to the customer's head for a more comfortable fit.
While scanning systems for human body parts are known, they suffer from a number of significant limitations and deficiencies. For example, the scanning equipment is expensive, bulky and requires the scanner and the subject to be in the same place at the same time. This requirement limits the easy and cost effective access for the general public as the scanner equipment is very expensive, difficult to transport and must have trained personnel to use it. Additionally, some head shape scanning technologies are susceptible to false readings due to moisture on the head and hair bulk. Conventional helmet creating technologies are not practical for creating custom head shape helmets because they are expensive and the molds are expensive. It is desirable to form a custom fit helmet for customers without the need of expensive scanning and manufacturing equipment, and to create that custom fit helmet quickly and without requiring separate custom molds for each helmet.
A need exists for a custom-fitted helmet and a method for making the same. Accordingly, in an aspect, a method of making a custom-fitted helmet can comprise, at a first location, obtaining head data for a customer's head comprising a length, a width, and at least one head contour. Generating, with at least one processor, a computerized three dimensional (3D) headform matching the customer's head length, width, and head contour from the head data. Comparing the 3D headform to a helmet safety standard. At a second location different from the first location, forming a custom-fitted helmet based on the 3D headform wherein the custom-fitted helmet satisfies the safety standard and comprises an inner surface comprising a topography that conforms to the length, width, and at least one contour of the customer's head.
The method of making the custom-fitted helmet can further comprise obtaining head data for the customer's head by obtaining images of a deformable interface member disposed on the customer's head, wherein a thickness of the deformable interface member approximates a thickness of a padding layer disposed within the custom-fitted helmet. Obtaining the images can be accomplished by using an optical sensor, a camera, or a laser. Obtaining images of the deformable interface member that can comprise measurement points. Obtaining images that can comprise a marker of a known size. Obtaining the head data can comprise gathering the head data using a non-contact sensor positioned adjacent the customer's head. Updating a customer's head data can occur after at least six months by measuring at least the customer's updated head length and updated head width. Obtaining the head data at the first location by capturing a photographic image of the customer's head can include the first location being a customer's home, and sending the captured photographic image of the customer's head from the customer's home to the at least one processor located a location remote from the customer's home. Obtaining the head data at the first location can be accomplished by capturing a photographic image of the customer's head, wherein the first location is a store, and sending the captured photographic image of the customer's head from the store to the at least one processor located a location remote from the store. The inner surface of the custom-fitted helmet can be formed comprising a surface topography that is proportional to the length, width, and at least one contour of the customer's head. A graphical computerized 3D headform can be generated from the head data, the helmet safety standard can be provided as a graphical 3D helmet safety standard, and the 3D headform can be compared to the helmet safety standard by positioning the graphical 3D headform within the graphical 3D helmet safety standard to determine a size and shape of the inner surface of the custom-fitted helmet. The helmet safety standard can be provided comprising a certified surface. The helmet safety standard can be provided comprising a test line. A helmet base unit can be selected comprising a surface comprising a size and shape different than a size and shape of the inner surface of the custom-fitted helmet and the inner surface of the custom-fitted helmet can be formed by removing expanded polystyrene (EPS) from the helmet base unit using a computer numerical control (CNC) machine. The inner surface of the custom-fitted helmet can be formed by an additive process. Forming the inner surface of the custom-fitted helmet can be accomplished by inserting a liner comprising a plurality of contiguous pieces or a plurality of separated pieces into a helmet base unit. The liner can be formed as a substantially flat array of pieces and a surface of the substantially flat array of pieces can be adjusted to mirror the computerized headform.
In another aspect, a method of making a custom-fitted helmet can comprise obtaining head data for a customer's head, comparing the head data to a helmet safety standard, and forming a custom-fitted helmet that satisfies the safety standard and comprises an inner surface comprising a topography that conforms to the head data for the customer's head.
The method of making the custom-fitted helmet can further comprise obtaining head data for the customer's head length, width, and at least one head contour. A graphical computerized 3D headform can be generated from the head data, the helmet safety standard can be provided as a graphical 3D helmet safety standard, and the 3D headform can be compared to the helmet safety standard by positioning the graphical 3D headform within the helmet safety standard to determine a size and shape of the inner surface of the custom-fitted helmet. The helmet safety standard can be a graphical 3D helmet safety standard comprising a certified surface. The graphical 3D helmet safety standard can comprise a test line. A helmet base unit can be selected to comprise a surface comprising a size and shape different than a size and shape of the inner surface of the custom-fitted helmet, and the inner surface of the custom-fitted helmet can be formed by removing EPS from the helmet base unit using a CNC machine. The helmet base unit can be formed comprising a first protective material and a second protective material disposed adjacent to the first protective material, wherein the second protective material is more easily removed that the first protective material, and the custom-fitted helmet can be formed by removing a portion of the second protective material. The custom-fitted helmet can be formed comprising posts configured to interface with a jig to stabilize the custom-fitted helmet during forming. The inner surface of the custom-fitted helmet can be formed by an additive process. The inner surface of the custom-fitted helmet can be formed by inserting a custom-fitted liner into a stock helmet. Head data for the customer's head can be obtained by obtaining images of a deformable interface member disposed on the customer's head, wherein a thickness of the deformable interface layer corresponds to a thickness of a padding layer within the custom-fitted helmet.
In another aspect, a method of making a custom-fitted helmet can comprise, at a home or at a store, obtaining head data for a customer's head, and at a location remote from the home or retail store, forming a custom-fitted helmet that comprises an inner surface comprising a topography that conforms to the head data for the customer's head.
The method of making the custom-fitted helmet can further comprise obtaining head data for the customer's head by obtaining images of a deformable interface member disposed on the customer's head, wherein the images comprise a marker of a known size. A graphical computerized 3D headform can be generated from the head data, a helmet safety standard can be provided as a graphical 3D helmet safety standard, and the 3D headform can be compared to the graphical 3D helmet safety standard by positioning the graphical 3D headform within the graphical 3D helmet safety standard to determine a size and shape of the inner surface of the custom-fitted helmet. The graphical 3D helmet safety standard can comprise a certified surface. The graphical 3D helmet safety standard can further comprises a test line. Head data can be obtained by obtaining a length and a width of the customer's head based on two-dimensional (2D) measurements. A helmet base unit can be selected to comprise a surface comprising a size and shape different than a size and shape of the inner surface of the custom-fitted helmet, and the inner surface of the custom-fitted helmet can be formed by removing EPS from the helmet base unit using a CNC machine. The graphical 3D headform can be positioned within the graphical 3D helmet safety standard to optimize a field of view (FOV) for the customer.
This disclosure, its aspects and implementations, are not limited to the specific helmet or material types, or other system component examples, or methods disclosed herein. Many additional components, manufacturing and assembly procedures known in the art consistent with helmet manufacture are contemplated for use with particular implementations from this disclosure. Accordingly, for example, although particular implementations are disclosed, such implementations and implementing components may comprise any components, models, types, materials, versions, quantities, and/or the like as is known in the art for such systems and implementing components, consistent with the intended operation.
The word “exemplary,” “example,” or various forms thereof are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” or as an “example” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Furthermore, examples are provided solely for purposes of clarity and understanding and are not meant to limit or restrict the disclosed subject matter or relevant portions of this disclosure in any manner. It is to be appreciated that a myriad of additional or alternate examples of varying scope could have been presented, but have been omitted for purposes of brevity.
While this disclosure includes a number of embodiments in many different forms, there is shown in the drawings and will herein be described in detail particular embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the disclosed methods and systems, and is not intended to limit the broad aspect of the disclosed concepts to the embodiments illustrated.
This disclosure provides a system and method for custom forming a protective helmet for a customer's head, such as a helmet for a cyclist, football player, hockey player, baseball player, lacrosse player, polo player, equestrian rider, rock climber, auto racer, motorcycle rider, motocross racer, skier, skater, ice skater, snowboarder, snow skier and other snow or water athlete, sky diver or any other athlete in a sport or other person including soldier, pilot, or other military person, who is in need of protective head gear. Each of these sports uses a helmet that includes either single or multi-impact rated protective material base that is typically, though not always, covered on the outside by a decorative cover and includes comfort material on at least portions of the inside, usually in the form of padding. Other sports, such as boxing sparring, wrestling and water polo use soft helmet types. Soft helmet types can also benefit from particular aspects of the disclosed methods and system through custom fit soft helmets. Other industries also use protective headwear, such as a construction, soldier, fire fighter, pilot, or other worker in need of a safety helmet, where similar technologies and methods may also be applied. The method, system, and devices described herein are discussed with particular reference to heads and custom-fitted helmets, the same or similar methods, systems, and devices are applicable to other body parts and corresponding gear or clothing.
Human heads are each very different. Even if two people have the same head circumference, they may have different relative length and width measurements, and certainly have different head topographies. Conventional helmet sizes, small, medium, large, extra large, etc., are generally based on head circumference. If a customer's head circumference is a particular circumference, the customer may try a particular generic helmet size that does not fit because the customer's head is longer or wider than “normal,” and is different from the generic helmet size, such that the customer may try wearing the next larger generic helmet size. However, the customer's head may have had a head shape that includes a width that is substantially equal to a first or generic small width, while the customer's head further includes a length that is substantially equal to a second or generic medium length. In a such a situation, putting the customer into a medium sized helmet results in the helmet not fitting as well as it could because the helmet width is now too big and must be filled by extra padding. By studying many different head shapes and the fit of helmets to those respective head shapes, it has been discovered that head length and width are the most important measurements on a head in determining a comfortable fit and providing a good match between a customer's head topography and a topography of the helmet. It has also been discovered that matching a length and width of a customer's head to a length and width of the customer's helmet is more important than only matching a circumference of the customer's head to a circumference of the customer's helmet. Additionally, matching a topography of the customer's head to a topography of the customer's helmet also plays a significant role in determining a good fit for comfort and safety. As additional data on more and more head shapes and topography continues to be gathered and studied, additional classifications of head shapes may be discovered to further refine the processes described herein.
Accordingly, this disclosure relates to a system for manufacturing a customer specific custom-fitted helmet that matches a customer's particular head size and topography to a helmet that is created specifically for that customer. The system may be implemented through a computer interface or other method that receives the customer's head data and then manufactures a custom-fitted helmet unique to that customer's head data. As an overview, a particular non-limiting embodiment comprises receiving captured customer head data, analyzing the received data for comparison with safety standards, a pre-determined thickness or other standards, creating an acceptable 3D model for at least portions of the helmet internal surface, and creating a custom helmet specific to the customer's data received.
A protective helmet customer's head data may be gathered in a variety of different levels of detail and manners. Particular embodiments of the systems and methods disclosed are improved and more useful with more data received, but the systems and methods are not limited to capturing the full level of detail in every instance. For example, although capturing a full 3D model and topographical layout of a customer's head may be accomplished using, for example, a non-contact or optical sensor such as a laser, an optical micrometer, photographic camera, or video recorder, in many cases just the customer's head length and head width measurements may be used to create a custom helmet for the customer through embodiments of the system and method. It is intended that although particular more complete levels of data capture are described herein, any of the embodiments may be implemented with any level of data capture detail by either substituting in standard data for any missing data, or by comparison with other similar head shapes to customize to the most likely head topography for the customer from other customer data with acceptable margins.
Customer head data may be captured with the customer present through the use of mechanical measurement tools such as a ruler, tape measure, or calipers, or through optical tools such as a 2D photo or series of photos or video that can later be broken down by frames to extract the data, through physical casting of the customer's head, through laser micrometers, touch probes, magnetic resonance imaging, CT scanning, radio wave scanning, micrometer scanning of the customer's head or portions of the customer's head, and any other method known for gathering measurement data relating to the outer surface of the customer's head. Those of ordinary skill in the art will readily understand how to extract the data into a usable form from the particular data gathering method chosen.
For the measurement of most heads, by wearing a deformable interface member 22, at least a portion of the customer's hair 32 can be pressed flat against customer head 30. Because most customers have some hair, and at a minimum the deformable interface member 22 has a thickness, even when deformable interface member 22, such as cap 26 is designed to fit tightly on customer head 30, a gap or offset will exist between a surface of customer head 30 (such as the scalp) and an outer surface 34 of deformable interface member 22. In most if not all cases, margins of error for the gap between the surface of customer head 30 and the outer surface 34 of deformable interface member 22 is small enough to not be critical to the processes for creation of a custom helmet. More specifically, a thickness of the customer hair 32 under the deformable interface material is often a good approximation of a thickness of customer hair 32 that will be accommodated between customer head 30 and an inner surface of the customer's customized helmet. Alternatively, a known or approximate thickness of the deformable interface member 22, a thickness of the customer's hair 32, or both can be subtracted from a measurement of the outer surface of deformable interface material 22 to produce a better approximation of an actual measurement of customer head 30.
In an embodiment, a thickness of deformable interface material 22 can be selected to be equal to a thickness of subsequently added comfort padding. Thus, deformable interface material 22 can provide a desired offset for subsequently included comfort padding, such as padding of interface layer 84, without a need for performing costly post-measurement or post-processing computer aided drafting (CAD) work. By directly measuring a good and viable approximation for a surface 85 of padding 84, an amount of expensive CAD work needed for generating a custom inner surface 82 of a custom-fitted helmet 81 is reduced, thereby providing a streamlined and cost-effective process for modeling and generating custom-fitted helmets 81. Accordingly, any gap between the scalp of a customer head 30, including customer hair 32 and a thickness of deformable interface member 22, can be accounted for in a variety of ways according to the application and design of the modeling process. For convenience of discussion, the present disclosure will at times refer to the head data gathered from an outer surface of deformable interface material 22 as the customer's head data relevant to the surface of the customer head 30, and not as an approximation. However, the measurement of customer head 30 can also include an offset for padding 84.
In a particular embodiment, cap 26 used for the initial measurements of customer head 30 comprises a thickness of approximately 1.5 mm (made of neoprene in particular embodiments). It has been found that for some wearers, like track racers, a tighter fit is more desirable than for other wearers, like street riders, who are used to a looser fit on their head. In particular embodiments described below, the surface of the 3D headform 66 is used as the cutting surface for the customization process for the inner surface of the base unit. In other embodiments, additional calculations are made to virtually add a layer between the wearer's head and the cut surface before the cut surface is defined and the cuts are made. By having the wearer wear a cap that includes a predetermined thickness that is chosen to allow a particular offset between the wearer's head and the internal surface of the final custom helmet, the additional calculations are not needed. This reduces processing time and significantly simplifies the cutting surface calculations.
In one particular embodiment, three different cap thicknesses are used as options for a wearer depending upon the wearer's preferences and the ultimate purpose for the helmet created. In a particular embodiment, a first cap thickness is 1.5 mm, a second cap thickness is 3.0 mm and a third cap thickness is 4.5 mm. These examples are non-limiting and user preferences are different and uses for the helmets are different so that any range of cap thicknesses and any number of caps is contemplated for use with various embodiments. In another particular embodiment, instead of, or in addition to, separate caps being used, a wearer may apply multiple caps simultaneously to obtain a thicker offset. For example, a wearer may apply three 1.5 mm caps to obtain a cap thickness of 4.5 mm. Thus, a wearer may indicate a preference as to how tight they want their final helmet to fit and without requiring additional complex calculations the system can automatically adapt the final cut line helmet model to compare with the headform by simply applying a particular thickness of cap or multiple caps of the same or different thicknesses during data capture.
In other particular embodiments, the cap thickness may be selected to automatically establish a padding offset or the padding offset combined with a comfort offset, without the system further calculating a 3D offset from the wearer's measured head data. By incorporating the offset into the cap thickness, the offset that ordinarily would have been calculated by the computer system may be automatically accounted for through a thicker cap. Provided the cap material fits closely to the wearer's head, like neoprene or nylon or another elastic and flexible, form fitting material, this method may be used to establish the desired offset without further calculating of a separate cutting surface.
As shown in
As shown in
Thus, a non-limiting example of a particular method for obtaining head data can be understood with respect to
As shown in
As shown in the front view of
For example, the first location can be at a home or residence, such as the customer's home, where customer head data collection can be obtained, for example, through imaging, measuring, or photographing in the convenience of the home of customer 20. Additionally, the first location can also include a store, kiosk, tradeshow, or other event or location at which images or data of customer head 30 can be captured. When capturing head data at the first location, customer 20 or another individual assisting the customer can take or capture one or more photographs with a discrete or stand alone camera. Alternatively, one or more photographs can be captured by a camera that is integrated with a computer, tablet, or handheld electronic device. The integrated camera can also be associated or paired with an application or software program that includes instructions or directions that guide or prompt customer 20 or other user or helper through a process of obtaining or acquiring the appropriate images of photographs. Interactive applications and software can also adaptively adjust a number and type of images taken in order to ensure adequate and proper data for subsequent helmet customization. For example, a stationary camera coupled to a computer program can take a series of photos at one or more fixed time intervals. The interactive program can also prompt the customer to position customer head 30 at useful positions for each image captured, such that the customer is directed to change their head position relative to the camera during each time interval to provide multiple pictures at different angles, such as pictures of a front, side, and back of customer head 30. Based on the quality of data received, the tolerance or sizing required for a final custom-fitted helmet, the interactive software can prompt customer 20 or an assistant to take additional photographs or retake low quality and out-of-focus or misaligned photographs to ensure sufficient and proper head data is obtained to make the custom-fitted helmet. The interactive application can also be configured to enable the customer to select other customizations for the custom-fitted helmet.
The head data obtained for customer 20 need not be restricted to a single use or customized-fitted helmet. Instead, the data gathered for customer 20 can be entered into database 24 and used to establish a customer profile for later processing, analysis, and manufacture. Because, after a particular age, a shape and size of customer head 30 will not change significantly, the customer's profile may be saved for some time and used for future custom helmet orders. Updating head data for customer head 30 can occur at regular or fixed intervals based on the customer's age, the customer's anticipated growth, or in conjunction with athletic seasons and schedules. For example, a customer's head data can be updated at least every year, or at least every six months by measuring at least one or more of the customer's updated head length, updated head width, or updated head contour.
Thus, customer head data, once captured, and before or after refinement of the data, can be sent from the first location to a second location remote from the first location. The customer head data may be transmitted to database 24 in which head data is centralized for further processing, analysis, and manufacture of a custom helmet, as discussed in greater detail below. The data may be transferred in any way to database 24 such as, but not limited to, entry into and transmission through a computer over the Internet or other transmission method, mailing the data records, or a store employee, customer assistant or even the customer calling someone associated with database 24 and relaying the data.
In an embodiment, head data for customer 20, such as photographs, can be imported into image analysis software 62 such that photographs of the customer are placed on corresponding reference planes, such as coronal, sagittal, and transverse planes, and are dimensioned based on the measurements taken, such as the measurements from the measurement points 42 or from marker 52. 3D modeling program 60 generates a representation of customer head 30 and can include a 3D pattern that matches reference pattern 28, if present. Accordingly, 3D lines can match major and minor horizontal reference line 40a and 40b, respectively, as well as vertical reference lines 40, if present, to each of the corresponding reference planes. Using the 3D curves, the modeling program creates a surface that connects all of the curves to form a 3D headform or graphical representation 66 of the customer's head 30, as shown in
As shown in
As shown in
As shown in
Thus, in order to determine a location of test line 73 relative to outer surface 79 of helmet 78 and which portions of helmet 78 will be subjected to impact testing, the helmet is positioned with respect to test headform 74 so that an outer surface of test headform 74 “contacts” inner surface 80 of helmet 78. A front portion of a brow of customer head 30 can be placed in contact with a brow portion of inner surface 80 near an upper edge of the faceport. Helmet 78 can then be rotated so that a top or crown portion of customer head 30 is placed in contact with a crown portion of inner surface 80. Helmet 78 can be positioned with respect to test headform 74 by placing a physical or tangible helmet on a physical or tangible headform, although more commonly a graphical or analytical comparison is made using computer generated 3D images of the helmet and test headform. With helmet 78 on test headform 74, test line 73 is transferred from the headform to the helmet, thereby designating the regions or portions of the helmet that can be impacted during testing, for example on a test rig.
When a mass produced helmet of standardized sizing and standardized inner surface is tested, such as helmet 78, the relative positions of headform 74 and any helmet 78 selected from the mass produced group will be substantially identical or constant for all helmets in a group because inner surface 80 for each helmet 78 is standardized and a shape of headform 74 is constant. Accordingly, the relative position of test line 73 will also be constant for each and every helmet 78. A constant relative position for test line 73 and helmet 78 allows for a small representative number of helmets to be destroyed in testing to certify that all helmets 78 of a particular design satisfy the appropriate safety standards.
To the contrary, custom-fitted helmet 81 includes a custom inner surface 82 of protective base material 72, or an inner surface 85 of padding or interface layer 84, such that each custom-fitted helmet 81 can have a different relative position with respect to test headform 74. Different relative positions between headform 74 and custom inner surface 82 potentially result in a new position or location for each test line 73 transferred from headform 74 to every custom-fitted helmet 81. Under conventional testing standards, each custom helmet would be required to be produced in multiples so that a number of custom-fitted helmets 81 could undergo destructive testing to ensure the design of a single custom-fitted helmet 81 worn by customer 20 satisfies the applicable safety standards. Because producing multiples of each custom-fitted helmet for destructive testing is not a commercially viable approach for producing and selling custom-fitted helmets, non destructive testing including analytically or graphically comparing a custom-fitted helmet 81 with a helmet safety standard 71 can be used. As a non-limiting example, an alternative method for testing custom-fitted helmets 81 is shown in
Certified surface 77 can be generated or selected based on data from numerous customer heads 30, including 3D headforms 66. By taking a group or set of head data for similarly sized heads, a certified surface 77 can be generated that would accommodate each of the heads included within the data set. Certified surface 77 does not need to exist physically, as a tangible structure within custom-fitted helmet 81 or as part of a helmet base unit 86, but can exist mathematically, graphically, or as part of a model. In an embodiment, for example, certified surface 77 exists as part of a computer executable program such as a piece of CAD software, and can be used for defining or generating test line 73.
Advantageously, certified surface 77 can be used for positioning headform 74 within custom-fitted helmet 81 or base unit 86 and transferring test line 73 from the headform to outer surface 83 of the custom-fitted helmet. In order to transfer test line 73 from headform 74 to outer surface 83 of the custom-fitted helmet, the test headform can be positioned in an uppermost and forwardmost position permitted by certified surface 77 (or another relative position or offset defined by certified surface 77 such as surface 85 of padding 84, which is referred to herein for convenience as the certified surface). As such, helmet 81 can be positioned with respect to test headform 74 so that an outer surface of test headform 74 aligns or is coextensive with certified surface 77. More specifically, a front portion of a brow of headform 74 can be aligned with a brow portion of certified surface 77 near an upper edge of the faceport. Helmet 81 can then be rotated so that a top or crown portion of headform 74 is aligned with a crown portion of certified surface 77, while also maintaining alignment with the brow portions.
Helmet 81 can be positioned with respect to test headform 74 by placing a physical or tangible helmet on a physical or tangible headform, although more commonly a graphical or analytical comparison is made using computer generated 3D images of the helmet and test headform. By aligning headform 74 toward the front and top portions of custom-fitted helmet 81, a gap, offset, or some space can exist between a rear portion of headform 74 and a rear portion of certified surface 77, especially for headforms of varying sizes including larger sizes. The gap can be filled with protective base material 72 by the formation of custom inner surface 82 based on a specific size or shape of an actual customer head 30 or 3D headform 66, as discussed below in relation to
By considering a position of an eye of customer 20 when positioning 3D headform 66 within custom fitted helmet 81, the FOV for customer 20 can be increased. In an embodiment, the eye of customer 20 can by aligned with a faceport of custom-fitted helmet 81 by adjusting a vertical offset or distance between the eye of the customer and the upper faceport edge 76, or the lower faceport edge, so that the edge of the faceport does not obstruct the customer's vision. Optimal eye position within the faceport can vary by application. For example, when maximizing customer FOV, a lower position of the faceport relative to a customer's eye is desirable for upright street riding, while a higher position of the faceport relative to a customer's eye is desirable for aggressive tucked race positions where a relative location of upper faceport edge 76 is an important constraint for visibility.
Additionally, a distance between the eye of customer 20 can also be moved closer to the faceport of custom-fitted helmet 81. In conventional or stock helmet designs, a user's head is centered front to back within the helmet and can produce a significant offset between a front of the helmet and the front of customer head 30. As a result of the offset between the user's eye and the front of the helmet, edges of a helmet faceport can obscure more of the user's FOV. On the other hand, by orienting customer head 30 the farthest forward permissible by applicable safety standard 71, FOV can be improved for customer 20 by reducing an amount of obstruction created by faceport edges of custom-fitted helmet 81. Gains achieved by moving a customer's head farther forward can also be greater for those customers that have heads that are shorter front to back. Applicants have discovered that even small changes in distances between the eye of customer 20 and a front of the helmet, or vertical distances between the customer's eye and the upper and lower edges of the helmet faceport, can have significant effects on the area of the customer's FOV.
Once 3D headform 66 is properly aligned within custom-fitted helmet 81, unwanted gaps or spaces between certified surface 77 and the 3D headform can be identified and eliminated by providing protective base material 72 (and optionally padding 84) to fill the gap between certified surface 77 and customer 3D headform 66. While providing protective base material 72 within the gap between certified surface 77 and 3D headform 66 can be thought of as “filling” the gaps, in some embodiments, gaps will not physically exist between a physically constructed custom inner surface 82 and customer head 30. For example, an analytical or computational comparison can be made physically, graphically, analytically, with CAD software, or with other suitable program before forming custom inner surface 82 so that the custom inner surface can be formed, such as by being cut, from helmet base unit 86 to conform to the length, width, and at least one contour of the customer's head without an unwanted gap existing between certified surface 77 and 3D headform 66 or customer head 30.
By forming custom inner surface 82 with additional base material 72 between 3D headform 66 and certified surface 77, custom-fitted helmet 81 may be more comfortable than a standardized or certified helmet that has base material 72 only extending to certified surface 77. Also, the custom-fitted helmet 81 will satisfy safety standard 71, or can be effectively tested using the same test line 73 for an entire class of custom-fitted helmets 81 instead of requiring destructive testing for each new custom-fitted helmet 81 that is made. Stated another way, any custom-fitted helmet 81 that includes a custom inner surface 82 that is outside or offset from certified surface 77 by having a minimum distance between outer surface 83 and custom inner surface 82 that is greater than a minimum distance between outer surface 83 and certified surface 77, will also satisfy safety standard 71 or can be effectively tested using the same test line 73. Stated yet another way, any custom-fitted helmet 81 that includes a custom inner surface 82 that does not place customer head 30 or 3D headform 66 in such a way as to extend through or beyond certified surface 77 toward outer surface 83, will also satisfy safety standard 71, or can be effectively tested using the same test line 73.
As such, in an embodiment, a person having ordinary skill in the relevant art will understand that certified surface 77 is a baseline surface indicating that any other custom inner surface 82 position outside (or more distant from outer surface 83 that certified surface 77) will produce helmets that meet the helmet safety standard, or can be effectively tested using the same test line 73. Accordingly, custom-fitted helmets 81 comprising custom inner surfaces 82 can be certified by measuring against certified surface 77 and testing against test line 73 without each custom-fitted helmet needing to undergo destructive testing like a non-custom fitted helmet 78, as described above. Therefore, use of test headform 74 for the creation of a uniform test standard such as test line 73 relative to a certified surface 77 for a range or class of custom-fitted helmets 81 can remove the economic burden produced by destructive testing of each custom-fitted helmet 81, making large scale production of safety certified custom-fitted helmets practical.
As a non-limiting example, Applicant has worked with responsible parties at the Snell foundation and established an acceptable working method for consistently positioning ISO headforms with respect to certified surfaces 77 and within custom-fitted helmets 81, or models of the same, in such a way that test lines 73 will be constant or fixed with respect to various custom-fitted helmets, thereby allowing a single test to certify the safety of a number of similar helmets all having different inner surfaces, without the waste of destroying custom made helmets.
Similarly,
The exemplary embodiment of
Furthermore, as has been discussed in relation to
After determining what inner surface 82 of custom-fitted helmet 81 will be, based for example on customer head data and helmet safety standard 71, inner surface 82 can be formed. As indicated above with reference to
Helmet base unit 86 includes an outer surface 83, a custom inner surface 82, and protective base material 72 between the outer and inner surface that will accommodate both helmet safety standard 71 and 3D headform 66. Thus, helmet base unit 86 can be of any size and shape before being customized to fit customer head 30. Customization of base unit 86 for the formation of custom-fitted helmet 81 can be by an additive or subtractive process. In fact, helmet base unit helmet 86 may, in particular customizable embodiments, be initially formed as a block of protective material that is entirely trimmed down to form the customized helmet shape and design that conforms to customer head 30 according to 3D headform 66. Thus, helmet base unit 86 can be initially formed as a non-descript block base unit or as a helmet-shaped base unit that includes material inside and outside of the final customized helmet, which will be customized through removing excess material from the helmet base unit. Alternatively, helmet base unit 86 can be a helmet-shaped base unit that includes material inside that will be customized through removing excess material and an outer surface 83 that does not require customization. An example of a helmet base unit 86 that includes an outer surface 83 that does not require customization and a custom inner surface 82 that leaves material inside the helmet base unit that will be customized is illustrated in
However, in order to minimize an amount of protective base material 72 that can be removed to reduce or minimize weight and size of custom-fitted helmet 81, helmet base unit 86 can be formed such that outer surface 83 is formed with a shape, form, and contour equal to a final shape, form, and contour of the final custom-fitted helmet 81. Similarly, helmet base unit 86 can be formed such that custom inner surface 82 includes a shape, form, and contour that approximates or is somewhat larger than the final shape, form, and contour of custom inner surface 82 of completed custom-fitted helmet 81. Thus, by preparing a helmet base unit 86 that approximates a final shape and design of custom-fitted helmet 81, the amount of protective base material 72 that is removed for customizing custom inner surface 82 is reduced.
In order to ensure that helmet base unit 86 approximates a final shape and design of custom-fitted helmet 81, for a plurality of customers of different head shapes and sizes, a number of helmet base unit models including sizes ranging from a small size to a large size can be provided. Thus, helmet base unit 86 can be selected from a number of helmet base unit models to have the smallest possible helmet size, thereby minimizing helmet weight and size while still allowing customer 20 to have a custom-fitted helmet 81 with a thickness greater than or equal to minimum dimension DM of helmet safety standard 71 between a surface of customer head 30 and outer surface 83 of custom-fitted helmet 81. Dimensions of helmet base unit 86 can then be altered to generate a computerized helmet model 88. Computerized helmet model 88 includes at least a digital data set indicative of a portion of a helmet. In some embodiments, computerized helmet model 88 includes a model of at least custom inner surface 82 of custom-fitted helmet 81. Additionally, and as discussed more fully below, in some cases all of the dimensions of the custom-fitted helmet 81 may be calculated by a processor associated with the database 24. In a particular embodiment, a graphical comparison can be made visually or analytically between headform 66, minimum dimensions DM of helmet safety standard 71, and helmet base unit 86 to visually determine if any minimum dimensions DM are not met and extend into a space occupied by headform 66 or extend beyond helmet base unit 86. If a portion of headform 66 does extend into at least a portion of minimum dimensions DM for helmet base unit 86, a larger or different helmet base unit model is chosen.
As shown in
Depending upon what type of material is used for protective base material 72 of helmet base unit 86, any of several different methods may be used to remove excess protective base material 72 from the helmet base unit. Those of ordinary skill in the art will readily understand or determine without undo experimentation which method of removing protective base material 72 is best based on a composition of the protective base material.
Importantly, customization of custom inner surface 82 to include a topography that conforms to the length, width, and at least one contour of the customer head 30 can be done with any shape or style of helmet. Other non-limiting examples for other helmet types are shown in
The process of forming a customized custom inner surface 82 for custom-fitted helmet 81 is applicable not only to a tangible helmet base unit 86, but is likewise applicable to computerized helmet models 88. In an embodiment, a computerized helmet model 88 can be a virtual or graphical model that comprises dimensions, forms, shapes, contours, and characteristics of a final helmet that include an outer surface 83 and also satisfies helmet safety standard 71. In other words, computerized helmet model 88 can be a virtual representation of a tangible or physical helmet base unit 86. A portion of computerized helmet model 88 can be formed or modified based on head data of customer head 30 or based on 3D headform 66. Specifically, computerized helmet model 88 can be formed or modified such that a custom inner surface 82 comprises a topography that conforms to a length, width, and at least one contour of customer head 30, 3D headform 66, or both. Computerized helmet model 88 can be used as a starting point for customization of a custom inner surface 82 by modifying helmet base unit 86 to form custom-fitted helmet 81, as indicated above with respect to
Inner layer 110 can be formed of a material that is identical, similar, or different from outer layer 108. Inner layer 110 can be coupled to outer layer 108 by chemical bonds, mechanical bonds, or both, and can be coupled using an adhesive, a bonding agent, or friction. Outer layer 108 can be a standard helmet shell of impact protective material similar to helmet base unit 86 that includes a protective base material 72 and further comprises an outer surface 83. An inner surface of outer layer 108 is not configured to be in contact with user head 30, but instead is configured to be in contact with, or coupled to, one or more inner layers 110.
Custom inner surface 82 of inner layer 110 can be formed by an additive or subtractive process. Inner layer 110 can be applied as a separately manufactured insert from outer layer 108, in which inner layer 110 is formed by spraying or as another molded material added to outer layer 108 during manufacturing, or later, or in any other manner known in the art. Portions of one or more inner layers 110 can be sculpted or otherwise removed as part of a subtractive process such that custom inner surface 82 conforms to head data for customer head 30 or 3D headform 66. A final custom inner surface 82 can be formed either before inner layer 110 is added to outer layer 108, or after inner layer 110 is added to outer layer 108. Inner layer 110 includes custom inner surface 82 that comprises a topography that conforms to the length, width, and at least one contour of customer head 30. Custom inner surface 82 can be in direct contact with customer head 30 or customer hair 32. Alternatively, custom inner surface 82 can be coupled or in contact with one or more padding or interface layers 84 that are in direct contact with customer head 30 or customer hair 32. Padding layer 84 can be disposed over custom inner surface 82 of custom-fitted helmet 81, as a layer comprising a uniform thickness. Alternatively, padding layer 84 can be formed as a layer comprising a variable or differing thickness in which various portions of the padded layer can be formed with different amounts of padding or cushioning relative to specific portions of customer head 30 or custom-fitted helmet 81. However, when padding layer 84 is formed with variable thickness the different amounts of padding need not be used to account for differences between a topography of an inner surface of a generic helmet and a topography of the customer's head as has been conventionally done with generic one-size-fits-many helmets.
In particular embodiments, inner layer 110 can be formed of a material that is more easily removable or cuttable than outer layer 108. Depending upon the manufacturing processes used for forming custom inner surface 82, inner layer 110 can be formed of any suitable protective helmet material known in the art, including EPS, various foams, EPP, Plastic, expanded polyethylene, VN, PU, EVA, Cork, Rubber, Sorbathane, Zorbium, EPLA, brock foam, or combinations of any of the above.
For subtractive methods of forming custom inner surface 82 of inner layer 110, any of several different methods may be used to remove excess material from the inner layer depending upon the protective material used in forming helmet base unit 86. Those of ordinary skill in the art will readily understand or determine without undo experimentation based on the protective material used in helmet base unit 86, which method of removal is best for protective base material 72. One method that works well with removal of excess EPS is routing or CNC machining, as described above with respect to
In an embodiment, as indicated above, an additional inner layer can be applied as an insert that is separately manufactured from an outer layer. The inner layer can, for example, be formed by spraying, or by any other manner known in the art. The inner layer insert includes inner layer 110, as shown and described with respect to
As illustrated in both
Specifically,
It is to be understood that the disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as obvious modifications and equivalents will be apparent to one skilled in the art; for example, the photographs may be digital photographs or paper based photographs that may then be scanned into digital form. While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the disclosure.
As used herein, the terms “component,” “system” and the like in relation to discussions about computer-related processes and systems are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an instance, an executable, a thread of execution, a program, a computer, or both. By way of illustration, both an application running on a computer and the computer can be a component. One or more components may reside within a process, a thread of execution, or both, and a component may be localized on one computer and/or distributed between two or more computers.
Furthermore, all or portions of the computer-related processes and systems can be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed innovation. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick, key drive . . . ). Additionally, it should be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN). Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
Where the above examples, embodiments and implementations reference examples, it should be understood by those of ordinary skill in the art that other helmet and manufacturing devices and examples could be intermixed or substituted with those provided. In places where the description above refers to particular embodiments of helmets and customization methods, it should be readily apparent that a number of modifications may be made without departing from the spirit thereof and that these embodiments and implementations may be applied to other to helmet customization technologies as well. Accordingly, the disclosed subject matter is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the disclosure and the knowledge of one of ordinary skill in the art.
This application is a continuation of U.S. utility patent application 17,026,475, filed Sep. 21, 2020, which is a continuation of U.S. utility patent application Ser. No. 16/231,805, filed Dec. 24, 2018, which is a continuation of U.S. utility patent application Ser. No. 14/156,269, filed Jan. 15, 2014, which claims the benefit from U.S. provisional patent application 61/754,469, filed Jan. 18, 2013, U.S. provisional patent application 61/812,666, filed Apr. 16, 2013, U.S. provisional patent application 61/875,603, filed Sep. 9, 2013, U.S. provisional patent application 61/883,087, filed Sep. 26, 2013, the disclosure of which are incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1655007 | Boettge | Jan 1928 | A |
1841232 | Wells | Jan 1932 | A |
2140716 | Pryale | Dec 1938 | A |
2293308 | Riddell, Sr. | Aug 1942 | A |
2296335 | Brady | Sep 1942 | A |
3039109 | Simpson | Jun 1962 | A |
3116490 | Zbikowski | Jan 1964 | A |
3153792 | Marietta | Oct 1964 | A |
3186004 | Carlini | Jun 1965 | A |
3197784 | Sheldon | Aug 1965 | A |
3208080 | Hirsch | Sep 1965 | A |
3273162 | Andrews, III | Sep 1966 | A |
3296582 | Ide | Jan 1967 | A |
3344433 | Stapenhill | Oct 1967 | A |
3364499 | Kwoka | Jan 1968 | A |
3447162 | Aileo | Jun 1969 | A |
3447163 | Bothwell | Jun 1969 | A |
3462763 | Schneider | Aug 1969 | A |
3501772 | Wyckoff | Mar 1970 | A |
3551911 | Holden | Jan 1971 | A |
3566409 | Hopper | Mar 1971 | A |
3568210 | Marietta | Mar 1971 | A |
3582990 | Frieder | Jun 1971 | A |
3600714 | Greathouse | Aug 1971 | A |
3609764 | Morgan | Oct 1971 | A |
3616463 | Theodore | Nov 1971 | A |
3629864 | Latina | Dec 1971 | A |
3713640 | Margan | Jan 1973 | A |
3729744 | Rappleyea | May 1973 | A |
3761959 | Dunning | Oct 1973 | A |
3785395 | Andreasson | Jan 1974 | A |
3815152 | Bednarczuk | Jun 1974 | A |
3818508 | Lammers | Jun 1974 | A |
3820163 | Rappleyea | Jun 1974 | A |
3843970 | Marietta | Oct 1974 | A |
3860966 | Brown | Jan 1975 | A |
3872511 | Nichols | Mar 1975 | A |
3882547 | Morgan | May 1975 | A |
3897597 | Kasper | Aug 1975 | A |
3946441 | Johnson | Mar 1976 | A |
3992721 | Morton | Nov 1976 | A |
3999220 | Keltner | Dec 1976 | A |
4006496 | Marker | Feb 1977 | A |
4023209 | Frieder | May 1977 | A |
4023213 | Rovani | May 1977 | A |
4038700 | Gyory | Aug 1977 | A |
4054953 | De Barsy | Oct 1977 | A |
4060855 | Rappleyea | Dec 1977 | A |
4064565 | Griffiths | Dec 1977 | A |
4101983 | Dera | Jul 1978 | A |
4124208 | Burns | Nov 1978 | A |
4134155 | Robertson | Jan 1979 | A |
4168542 | Small | Sep 1979 | A |
4239106 | Aileo | Dec 1980 | A |
4282610 | Steigerwald | Aug 1981 | A |
4287613 | Schulz | Sep 1981 | A |
4300242 | Nava | Nov 1981 | A |
4307471 | Lovell | Dec 1981 | A |
4345338 | Frieder, Jr. | Aug 1982 | A |
4354284 | Gooding | Oct 1982 | A |
D267287 | Gooding | Dec 1982 | S |
4375108 | Gooding | Mar 1983 | A |
4404690 | Farquharson | Sep 1983 | A |
4432099 | Grick | Feb 1984 | A |
4466138 | Gessalin | Aug 1984 | A |
4478587 | MacKal | Oct 1984 | A |
4534068 | Mitchell | Aug 1985 | A |
4558470 | Mitchell | Dec 1985 | A |
4566137 | Gooding | Jan 1986 | A |
4586200 | Poon | May 1986 | A |
4665569 | Santini | May 1987 | A |
4724549 | Herder | Feb 1988 | A |
4766614 | Cantwell | Aug 1988 | A |
4853980 | Zarotti | Aug 1989 | A |
4903346 | Reddemann | Feb 1990 | A |
4916759 | Arai | Apr 1990 | A |
4937888 | Straus | Jul 1990 | A |
4982452 | Chaise | Jan 1991 | A |
4996724 | Dextrase | Mar 1991 | A |
5014365 | Schulz | May 1991 | A |
5023958 | Rotzin | Jun 1991 | A |
5031246 | Kronenberger | Jul 1991 | A |
5035009 | Wingo, Jr. | Jul 1991 | A |
5056162 | Tirums | Oct 1991 | A |
5101517 | Douglas | Apr 1992 | A |
5101580 | Lyden | Apr 1992 | A |
5136728 | Kamata | Aug 1992 | A |
5150479 | Oleson | Sep 1992 | A |
5175889 | Infusino | Jan 1993 | A |
5204998 | Liu | Apr 1993 | A |
5221088 | McTeigue | Jun 1993 | A |
5263203 | Kraemer | Nov 1993 | A |
5271103 | Darnell | Dec 1993 | A |
5298208 | Sibley | Mar 1994 | A |
5309576 | Broersma | May 1994 | A |
5327588 | Garneau | Jul 1994 | A |
5345614 | Tanaka | Sep 1994 | A |
5383363 | Kulmaczewski | Jan 1995 | A |
5450631 | Egger | Sep 1995 | A |
5461730 | Carrington | Oct 1995 | A |
D364487 | Tutton | Nov 1995 | S |
5475878 | Dawn | Dec 1995 | A |
5515546 | Shifrin | May 1996 | A |
5517691 | Blake | May 1996 | A |
5518802 | Colvin | May 1996 | A |
5522091 | Rudolf | Jun 1996 | A |
5534343 | Landi | Jul 1996 | A |
5544367 | March, II | Aug 1996 | A |
5553330 | Carveth | Sep 1996 | A |
5561866 | Ross | Oct 1996 | A |
5615132 | Horton | Mar 1997 | A |
5645077 | Foxlin | Jul 1997 | A |
5661854 | March, II | Sep 1997 | A |
5666670 | Ryan | Sep 1997 | A |
5708988 | McGuine | Jan 1998 | A |
5713082 | Bassette | Feb 1998 | A |
5732414 | Monica | Mar 1998 | A |
5745028 | Hock | Apr 1998 | A |
5774901 | Minami | Jul 1998 | A |
5787513 | Sharmat | Aug 1998 | A |
5794271 | Hastings | Aug 1998 | A |
5819206 | Horton | Oct 1998 | A |
5829065 | Cahill | Nov 1998 | A |
5833796 | Matich | Nov 1998 | A |
5856811 | Shih | Jan 1999 | A |
5867840 | Hirosawa | Feb 1999 | A |
5883145 | Hurley | Mar 1999 | A |
5891372 | Besset | Apr 1999 | A |
5930840 | Arai | Aug 1999 | A |
5940890 | Dallas | Aug 1999 | A |
5941272 | Feldman | Aug 1999 | A |
5943706 | Miyajima | Aug 1999 | A |
5950243 | Winters | Sep 1999 | A |
5950244 | Fournier | Sep 1999 | A |
5953761 | Jurga | Sep 1999 | A |
5956777 | Popovich | Sep 1999 | A |
6002994 | Lane | Dec 1999 | A |
6009563 | Swanson | Jan 2000 | A |
6032297 | Barthold | Mar 2000 | A |
6032530 | Hock | Mar 2000 | A |
6070271 | Williams | Jun 2000 | A |
6073271 | Alexander | Jun 2000 | A |
6088840 | Im | Jul 2000 | A |
6089251 | Pestel | Jul 2000 | A |
6090044 | Bishop | Jul 2000 | A |
6128786 | Maddux | Oct 2000 | A |
6131196 | Vallion | Oct 2000 | A |
6138284 | Arai | Oct 2000 | A |
6154889 | Moore, III | Dec 2000 | A |
6178560 | Halstead | Jan 2001 | B1 |
6186145 | Brown | Feb 2001 | B1 |
6189156 | Loiars | Feb 2001 | B1 |
6219850 | Halstead | Apr 2001 | B1 |
6226801 | Alexander | May 2001 | B1 |
6272692 | Abraham | Aug 2001 | B1 |
6282724 | Abraham | Sep 2001 | B1 |
6292952 | Watters | Sep 2001 | B1 |
6298483 | Schiebl | Oct 2001 | B1 |
6298497 | Chartrand | Oct 2001 | B1 |
6301718 | Rigal | Oct 2001 | B1 |
6305030 | Brignone | Oct 2001 | B1 |
6314586 | Duguid | Nov 2001 | B1 |
6332228 | Takahara | Dec 2001 | B1 |
6339849 | Nelson | Jan 2002 | B1 |
6351853 | Halstead | Mar 2002 | B1 |
6360376 | Carrington | Mar 2002 | B1 |
6361507 | Foxlin | Mar 2002 | B1 |
6378140 | Abraham | Apr 2002 | B1 |
6385780 | Racine | May 2002 | B1 |
6389607 | Wood | May 2002 | B1 |
6421841 | Ikeda | Jul 2002 | B2 |
6434755 | Halstead | Aug 2002 | B1 |
6442765 | Fallon | Sep 2002 | B1 |
6446270 | Durr | Sep 2002 | B1 |
D465067 | Ide | Oct 2002 | S |
6463351 | Clynch | Oct 2002 | B1 |
6467099 | Dennis | Oct 2002 | B2 |
6532602 | Watters | Mar 2003 | B2 |
6539336 | Vock | Mar 2003 | B1 |
D475486 | Ide | Jun 2003 | S |
6588022 | Anders | Jul 2003 | B1 |
6604246 | Obreja | Aug 2003 | B1 |
6611789 | Darley | Aug 2003 | B1 |
6658671 | Von Holst | Dec 2003 | B1 |
D492818 | Ide | Jul 2004 | S |
6785985 | Marvin | Sep 2004 | B2 |
6798392 | Hartwell | Sep 2004 | B2 |
6826509 | Crisco, III | Nov 2004 | B2 |
6925657 | Takahashi | Aug 2005 | B2 |
6931671 | Skiba | Aug 2005 | B2 |
D521191 | Berger | May 2006 | S |
7054784 | Flentov | May 2006 | B2 |
D523180 | Frye | Jun 2006 | S |
7062795 | Skiba | Jun 2006 | B2 |
7092846 | Vock | Aug 2006 | B2 |
7111329 | Stroud | Sep 2006 | B2 |
7162392 | Vock | Jan 2007 | B2 |
7234812 | Piorkowski | Jun 2007 | B2 |
7243378 | Desarmaux | Jul 2007 | B2 |
7254843 | Talluri | Aug 2007 | B2 |
7288326 | Elzey | Oct 2007 | B2 |
7341776 | Milliren | Mar 2008 | B1 |
D570055 | Ferrara | May 2008 | S |
7386401 | Vock | Jun 2008 | B2 |
D582607 | Ferrara | Dec 2008 | S |
7328462 | Straus | Dec 2008 | B1 |
7526389 | Greenwald | Apr 2009 | B2 |
D603099 | Bologna | Oct 2009 | S |
7634820 | Rogers | Dec 2009 | B2 |
7673351 | Copeland | Mar 2010 | B2 |
7693668 | Vock | Apr 2010 | B2 |
D617503 | Szalkowski | Jun 2010 | S |
7735157 | Ikeda | Jun 2010 | B2 |
7743640 | Lampe | Jun 2010 | B2 |
7774866 | Ferrara | Aug 2010 | B2 |
7802320 | Morgan | Sep 2010 | B2 |
7832023 | Crisco | Nov 2010 | B2 |
7841025 | Fink | Nov 2010 | B1 |
7849524 | Williamson | Dec 2010 | B1 |
7870617 | Butler | Jan 2011 | B2 |
7917972 | Krueger | Apr 2011 | B1 |
7930771 | Depreitere | Apr 2011 | B2 |
7952577 | Harvill | May 2011 | B2 |
7987525 | Summers | Aug 2011 | B2 |
8026396 | Mitsuda | Sep 2011 | B2 |
8069498 | Maddux | Dec 2011 | B2 |
8087099 | Sawabe | Jan 2012 | B2 |
8105184 | Lammer | Jan 2012 | B2 |
8117679 | Pierce | Feb 2012 | B2 |
8156569 | Cripton | Apr 2012 | B2 |
8176574 | Bryant | May 2012 | B2 |
8201269 | Maddux | Jun 2012 | B2 |
D663076 | Parsons | Jul 2012 | S |
8209784 | Maddux | Jul 2012 | B2 |
D666779 | Harris | Sep 2012 | S |
8280681 | Vock | Oct 2012 | B2 |
8296867 | Rudd | Oct 2012 | B2 |
8296868 | Belanger | Oct 2012 | B2 |
D679058 | Szalkowski | Mar 2013 | S |
D681281 | Bologna | Apr 2013 | S |
8418270 | Desjardins | Apr 2013 | B2 |
8465376 | Bentley | Jun 2013 | B2 |
8544117 | Erb | Oct 2013 | B2 |
8544118 | Brine, III | Oct 2013 | B2 |
8566968 | Marzec | Oct 2013 | B2 |
8572767 | Bryant | Nov 2013 | B2 |
8640267 | Cohen | Feb 2014 | B1 |
8656520 | Rush, III | Feb 2014 | B2 |
8661564 | Dodd | Mar 2014 | B2 |
8702516 | Bentley | Apr 2014 | B2 |
8707470 | Novicky | Apr 2014 | B1 |
8726424 | Thomas | May 2014 | B2 |
8730231 | Snoddy | May 2014 | B2 |
8739317 | Abernethy | Jun 2014 | B2 |
8756719 | Veazie | Jun 2014 | B2 |
8776272 | Straus | Jul 2014 | B1 |
8813269 | Nelson | Aug 2014 | B2 |
8814150 | Ferrara | Aug 2014 | B2 |
8850622 | Finiel | Oct 2014 | B2 |
8850623 | Mazzoccoli | Oct 2014 | B1 |
8863319 | Knight | Oct 2014 | B2 |
8874251 | Thornton | Oct 2014 | B2 |
8887312 | Bhatnagar | Nov 2014 | B2 |
8887318 | Mazzarolo | Nov 2014 | B2 |
8894514 | Jennings | Nov 2014 | B2 |
8927088 | Faden | Jan 2015 | B2 |
8955169 | Weber | Feb 2015 | B2 |
8966670 | Cheng | Mar 2015 | B2 |
8966671 | Rumbaugh | Mar 2015 | B2 |
9017806 | Jacobsen | Apr 2015 | B2 |
9026396 | Evans | May 2015 | B2 |
9032558 | Leon | May 2015 | B2 |
9095179 | Kwan | Aug 2015 | B2 |
9107466 | Hoying | Aug 2015 | B2 |
9113672 | Witcher | Aug 2015 | B2 |
9119431 | Bain | Sep 2015 | B2 |
9131744 | Erb | Sep 2015 | B2 |
9179727 | Grant | Nov 2015 | B2 |
9185946 | Leary | Nov 2015 | B2 |
9194136 | Cormier | Nov 2015 | B2 |
9210961 | Torres | Dec 2015 | B2 |
9249853 | Cormier | Feb 2016 | B2 |
9257054 | Coza | Feb 2016 | B2 |
9271542 | McCue | Mar 2016 | B2 |
9289024 | Withnall | Mar 2016 | B2 |
9314060 | Giles | Apr 2016 | B2 |
9314062 | Marz | Apr 2016 | B2 |
9314063 | Bologna | Apr 2016 | B2 |
9320311 | Szalkowski | Apr 2016 | B2 |
9332800 | Brown | May 2016 | B2 |
9380823 | Johnson | Jul 2016 | B2 |
9420843 | Cormier | Aug 2016 | B2 |
9440413 | Lewis | Sep 2016 | B2 |
9462842 | Hoshizaki | Oct 2016 | B2 |
9474316 | Berry | Oct 2016 | B2 |
9493643 | Li | Nov 2016 | B2 |
9498014 | Wingo | Nov 2016 | B2 |
9516910 | Szalkowski | Dec 2016 | B2 |
9530248 | Zhang | Dec 2016 | B2 |
9545127 | Sandifer | Jan 2017 | B1 |
9572390 | Simpson | Feb 2017 | B1 |
9572391 | McInnis | Feb 2017 | B2 |
9572402 | Jarvis | Feb 2017 | B2 |
9578917 | Cohen | Feb 2017 | B2 |
9642410 | Grice | May 2017 | B2 |
9656148 | Bologna | May 2017 | B2 |
9702516 | Vasquez | Jul 2017 | B1 |
9713355 | Daoust | Jul 2017 | B2 |
9726249 | Horstemeyer | Aug 2017 | B2 |
9750296 | Knight | Sep 2017 | B2 |
9763487 | Brown, Jr. | Sep 2017 | B1 |
9763488 | Bologna | Sep 2017 | B2 |
9770060 | Infusino | Sep 2017 | B2 |
9788589 | Lewis | Oct 2017 | B2 |
9788600 | Wawrousek | Oct 2017 | B2 |
9795177 | Weaver | Oct 2017 | B1 |
9795180 | Lowe | Oct 2017 | B2 |
9801424 | Mazzarolo | Oct 2017 | B2 |
9839251 | Pannikottu | Dec 2017 | B2 |
9841075 | Russo | Dec 2017 | B2 |
9854988 | Oakley | Jan 2018 | B2 |
9924756 | Hyman | Mar 2018 | B2 |
9962905 | Duoss | May 2018 | B2 |
9968154 | Tenenbaum | May 2018 | B2 |
9980530 | Hassan | May 2018 | B2 |
10010122 | Kamradt | Jul 2018 | B2 |
10029633 | Phipps | Jul 2018 | B2 |
10039338 | Kelly | Aug 2018 | B2 |
10071301 | Vock | Sep 2018 | B2 |
10085508 | Surabhi | Oct 2018 | B2 |
10105076 | Chu | Oct 2018 | B2 |
10105584 | Whitcomb | Oct 2018 | B1 |
10130133 | Leon | Nov 2018 | B2 |
10130134 | Blair | Nov 2018 | B2 |
10136691 | Degolier | Nov 2018 | B2 |
10136692 | Ide | Nov 2018 | B2 |
10143255 | Golnaraghi | Dec 2018 | B2 |
10149511 | Vito | Dec 2018 | B2 |
10151565 | Fonte | Dec 2018 | B2 |
10158685 | Hobby | Dec 2018 | B1 |
10159296 | Pietrzak | Dec 2018 | B2 |
10165818 | Suddaby | Jan 2019 | B2 |
10167922 | McDonnell | Jan 2019 | B2 |
10178889 | Wacter | Jan 2019 | B2 |
10182135 | Black | Jan 2019 | B2 |
10183423 | Nauman | Jan 2019 | B2 |
10201743 | Simpson | Feb 2019 | B1 |
10258100 | Erb | Apr 2019 | B1 |
D850011 | Bologna | May 2019 | S |
D850012 | Bologna | May 2019 | S |
D850013 | Bologna | May 2019 | S |
10306942 | Hoshizaki | Jun 2019 | B2 |
10350477 | Schneider | Jul 2019 | B2 |
10362829 | Lowe | Jul 2019 | B2 |
10368604 | Linares | Aug 2019 | B2 |
10369739 | Cormier | Aug 2019 | B2 |
10569044 | Dunn | Feb 2020 | B2 |
10647879 | Rolland | May 2020 | B2 |
10780338 | Bologna | Sep 2020 | B1 |
10813402 | Posner | Oct 2020 | B2 |
20010032351 | Nakayama | Oct 2001 | A1 |
20010034895 | Ikeda | Nov 2001 | A1 |
20010039674 | Shida | Nov 2001 | A1 |
20020114859 | Cutler | Aug 2002 | A1 |
20020116147 | Vock | Aug 2002 | A1 |
20030014210 | Vock | Jan 2003 | A1 |
20030163287 | Vock | Aug 2003 | A1 |
20040045078 | Puchalski | Mar 2004 | A1 |
20040117896 | Madey | Jun 2004 | A1 |
20040139531 | Moore | Jul 2004 | A1 |
20040181854 | Primrose | Sep 2004 | A1 |
20040204904 | Ebisawa | Oct 2004 | A1 |
20040240198 | Laar | Dec 2004 | A1 |
20040250340 | Piper | Dec 2004 | A1 |
20050050617 | Moore | Mar 2005 | A1 |
20050241048 | Cattaneo | Nov 2005 | A1 |
20050241049 | Ambuske | Nov 2005 | A1 |
20050278834 | Lee | Dec 2005 | A1 |
20060031978 | Pierce | Feb 2006 | A1 |
20060059606 | Ferrara | Mar 2006 | A1 |
20060101559 | Moore | May 2006 | A1 |
20060112477 | Schneider | Jun 2006 | A1 |
20060143807 | Udelhofen | Jul 2006 | A1 |
20070061106 | Vock | Mar 2007 | A1 |
20070094769 | Lakes | May 2007 | A1 |
20070119538 | Price | May 2007 | A1 |
20070157370 | Joubert Des Ouches | Jul 2007 | A1 |
20070266481 | Alexander | Nov 2007 | A1 |
20080052808 | Leick | Mar 2008 | A1 |
20080086916 | Ellis | Apr 2008 | A1 |
20080155734 | Li-Hua | Jul 2008 | A1 |
20080163410 | Udelhofen | Jul 2008 | A1 |
20080172774 | Ytterborn | Jul 2008 | A1 |
20080250550 | Bologna | Oct 2008 | A1 |
20080256686 | Ferrara | Oct 2008 | A1 |
20080295228 | Muskovitz | Dec 2008 | A1 |
20090031479 | Rush, III | Feb 2009 | A1 |
20090038055 | Ferrara | Feb 2009 | A1 |
20090044316 | Udelhofen | Feb 2009 | A1 |
20090106882 | Nimmons | Apr 2009 | A1 |
20090222964 | Wiles | Sep 2009 | A1 |
20090255036 | Lim | Oct 2009 | A1 |
20090260133 | Del Rosario | Oct 2009 | A1 |
20090265841 | Ferrara | Oct 2009 | A1 |
20090274865 | Wadley | Nov 2009 | A1 |
20100043126 | Morel | Feb 2010 | A1 |
20100050323 | Durocher | Mar 2010 | A1 |
20100076692 | Vock | Mar 2010 | A1 |
20100180362 | Glogowski | Jul 2010 | A1 |
20100251465 | Milea | Oct 2010 | A1 |
20100258988 | Darnell | Oct 2010 | A1 |
20100287687 | Ho | Nov 2010 | A1 |
20100319110 | Preston-Powers | Dec 2010 | A1 |
20110047678 | Barth | Mar 2011 | A1 |
20110056004 | Landi | Mar 2011 | A1 |
20110107503 | Morgan | May 2011 | A1 |
20110131695 | Maddux | Jun 2011 | A1 |
20110167542 | Bayne | Jul 2011 | A1 |
20110203038 | Jones | Aug 2011 | A1 |
20110209272 | Drake | Sep 2011 | A1 |
20110215931 | Callsen | Sep 2011 | A1 |
20110225706 | Pye | Sep 2011 | A1 |
20110229685 | Lin | Sep 2011 | A1 |
20110271428 | Withnall | Nov 2011 | A1 |
20120036619 | Ytterborn | Feb 2012 | A1 |
20120047634 | Vaidya | Mar 2012 | A1 |
20120060251 | Schimpf | Mar 2012 | A1 |
20120066820 | Fresco | Mar 2012 | A1 |
20120079646 | Belanger | Apr 2012 | A1 |
20120096631 | King | Apr 2012 | A1 |
20120151663 | Rumbaugh | Jun 2012 | A1 |
20120198604 | Weber | Aug 2012 | A1 |
20120210498 | Mack | Aug 2012 | A1 |
20120297526 | Leon | Nov 2012 | A1 |
20120317705 | Lindsay | Dec 2012 | A1 |
20130007950 | Arai | Jan 2013 | A1 |
20130040524 | Halldin | Feb 2013 | A1 |
20130031700 | Wacter | Mar 2013 | A1 |
20130060168 | Chu | Mar 2013 | A1 |
20130061371 | Phipps | Mar 2013 | A1 |
20130061375 | Bologna | Mar 2013 | A1 |
20130067643 | Musal | Mar 2013 | A1 |
20130074248 | Evans | Mar 2013 | A1 |
20130122256 | Kleiven | May 2013 | A1 |
20130180034 | Preisler | Jul 2013 | A1 |
20130185837 | Phipps | Jul 2013 | A1 |
20130211774 | Bentley | Aug 2013 | A1 |
20130212783 | Bonin | Aug 2013 | A1 |
20130283503 | Zilverberg | Oct 2013 | A1 |
20130283504 | Harris | Oct 2013 | A1 |
20130298316 | Jacob | Nov 2013 | A1 |
20130340146 | Dekker | Dec 2013 | A1 |
20130340147 | Giles | Dec 2013 | A1 |
20140000012 | Mustapha | Jan 2014 | A1 |
20140007322 | Marz | Jan 2014 | A1 |
20140007324 | Svehaug | Jan 2014 | A1 |
20140013492 | Bottlang | Jan 2014 | A1 |
20140020158 | Parsons | Jan 2014 | A1 |
20140033402 | Donnadieu | Feb 2014 | A1 |
20140081601 | Zhang | Mar 2014 | A1 |
20140090155 | Johnston | Apr 2014 | A1 |
20140196198 | Cohen | Jul 2014 | A1 |
20140201889 | Pietrzak | Jul 2014 | A1 |
20140208486 | Krueger | Jul 2014 | A1 |
20140223641 | Henderson | Aug 2014 | A1 |
20140223644 | Bologna | Aug 2014 | A1 |
20140259326 | Carlson | Sep 2014 | A1 |
20140373257 | Turner | Dec 2014 | A1 |
20150055085 | Fonte | Feb 2015 | A1 |
20150074875 | Schimpf | Mar 2015 | A1 |
20150080766 | Ji | Mar 2015 | A1 |
20150081076 | Fernandes | Mar 2015 | A1 |
20150121609 | Cote | May 2015 | A1 |
20150157081 | Hyman | Jun 2015 | A1 |
20150157083 | Lowe | Jun 2015 | A1 |
20150250250 | Ellis | Sep 2015 | A1 |
20150272258 | Preisler | Oct 2015 | A1 |
20160053843 | Subhash | Feb 2016 | A1 |
20160058092 | Aldino | Mar 2016 | A1 |
20160157544 | Ning | Jun 2016 | A1 |
20160183619 | Del Ramo | Jun 2016 | A1 |
20160198681 | Fyfe | Jul 2016 | A1 |
20160255900 | Browd | Sep 2016 | A1 |
20160302496 | Ferrara | Oct 2016 | A1 |
20170065018 | Lindsay | Mar 2017 | A1 |
20170196294 | Fischer | Jul 2017 | A1 |
20170196295 | Glover | Jul 2017 | A1 |
20170300755 | Bose | Oct 2017 | A1 |
20190110546 | Wacter | Apr 2019 | A1 |
20190149644 | Black | May 2019 | A1 |
20190166946 | Vito | Jun 2019 | A1 |
20190328071 | Stone | Oct 2019 | A1 |
20190380419 | Fischer | Dec 2019 | A1 |
20200000169 | Reinhall | Jan 2020 | A1 |
20200022444 | Stone | Jan 2020 | A1 |
20200060374 | Glover | Feb 2020 | A1 |
20210000209 | Neubauer | Jan 2021 | A1 |
20210007432 | Santiago | Jan 2021 | A1 |
20210085011 | Santiago | Mar 2021 | A1 |
20210106091 | Glover | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
2778050 | Apr 2011 | CA |
2870519 | Feb 2007 | CN |
2896943 | May 2007 | CN |
101204904 | Jun 2008 | CN |
102972901 | Mar 2013 | CN |
3222681 | Dec 1983 | DE |
3603234 | Aug 1987 | DE |
3632525 | Aug 1996 | DE |
19745960 | Oct 1997 | DE |
19707495 | Aug 1998 | DE |
0315498 | May 1989 | EP |
623292 | Nov 1994 | EP |
630589 | Dec 1994 | EP |
770338 | May 1997 | EP |
1199000 | Apr 2002 | EP |
1219189 | Jul 2002 | EP |
1388300 | Feb 2004 | EP |
1538935 | Jun 2005 | EP |
1627575 | Feb 2006 | EP |
1708587 | Oct 2006 | EP |
1836913 | Sep 2007 | EP |
1972220 | Sep 2008 | EP |
2042048 | Apr 2009 | EP |
2071969 | Jun 2009 | EP |
2103229 | Sep 2009 | EP |
2156761 | Feb 2010 | EP |
2289360 | Mar 2011 | EP |
2389822 | Nov 2011 | EP |
2428129 | Mar 2012 | EP |
2525187 | Nov 2012 | EP |
256430 | Aug 1926 | GB |
2481855 | Jan 2012 | GB |
2490894 | Nov 2012 | GB |
2000045119 | Feb 2000 | JP |
2000245888 | Sep 2000 | JP |
2001020121 | Jan 2001 | JP |
2150874 | Jun 2000 | RU |
2005129896 | Apr 2007 | RU |
9534229 | Dec 1995 | WO |
1998023174 | Jun 1998 | WO |
9911152 | Mar 1999 | WO |
1999042012 | Aug 1999 | WO |
2000067998 | Nov 2000 | WO |
2002028211 | Apr 2002 | WO |
2004023913 | Mar 2004 | WO |
2004052133 | Jun 2004 | WO |
2007013106 | Feb 2007 | WO |
2007047923 | Apr 2007 | WO |
2008085108 | Jul 2008 | WO |
2010001230 | Jan 2010 | WO |
2011084660 | Jul 2011 | WO |
2011087435 | Jul 2011 | WO |
2011148146 | Dec 2011 | WO |
2012047696 | Apr 2012 | WO |
2012074400 | Jun 2012 | WO |
2012099633 | Jul 2012 | WO |
2013033078 | Mar 2013 | WO |
Entry |
---|
Tan et al., Ballistic impact analysis of an advanced combat helmet with interior cushioning system on a Hybrid3 headform, 5 pages (Year: 2011). |
European Search Report dated Sep. 1, 2016 in corresponding EP Appln. No. 14740903.1 (7 pages). |
First Examination Report issued in Australian Appln. No. 2014207532 dated Apr. 13, 2017 (3 pages). |
Office Action issued in Chinese Appln. No. 201480013229.7 dated Feb. 7, 2018 (26 pages). |
Office Action issued in Chinese Appln. No. 201480013229.7 dated Mar. 13, 2017 (55 pages). |
Office Action issued in EP Appln. No. 14740903.1 dated Aug. 3, 2017 (5 pages). |
Office Action issued in Japanese Appln. No. 2015-553831 dated Dec. 12, 2017 (13 pages). |
Office Action issued in Russian Appln. No. 2015129408 dated Dec. 27, 2017 (8 pages). |
International Search Report and Written Opinion issued in PCT/US14/11877 dated Apr. 24, 2014 (12 pages). |
First Examination Report issued in New Zealand Appln. No. 710449 dated Mar. 2, 2018 (5 pages). |
International Search Report and Written Opinion issued in PCT/US2017/043132 dated Sep. 28, 2017 (10 pages). |
International Search Report and Written Opinion issued in PCT/US2019/062700 dated Jan. 30, 2020 (17 pages). |
International Search Report and Written Opinion issued in PCT/US2019/062697 dated Feb. 3, 2020 (18 pages). |
International Search Report and Written Opinion issued in PCT/US2019/066084 dated Mar. 9, 2020 (13 pages). |
International Search Report for PCT/US2005/032903 dated Mar. 10, 2006. |
International Search Report for PCT/US2006/000536 dated Oct. 2, 2006. |
Written Opinion for PCT/US2006/000536 dated Jul. 10, 2007. |
Walmink et al., Interaction opportunities around helmet design, 4 pages (Year: 2014). |
Yu et al., Motorcycle helmet safety design research, 5 pages (Year: 2010). |
Echeta, I., Feng, X., Dutton, B. et al. Review of defects in lattice structures manufactured by powder bed fusion, International Journal of Advanced Manufacturing Technology 106, 2649-2668 (2020), at https://doi.org/10.1007/s00170-019-04753-4. |
International Search Report and Written Opinion issued in PCT/US2019/046935 dated Dec. 23, 2019 (17 pages). |
Cai et al., A shape-based helmet fitting system for concussion protection, 4 pages (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20210195982 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
61883087 | Sep 2013 | US | |
61875603 | Sep 2013 | US | |
61812666 | Apr 2013 | US | |
61754469 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17026475 | Sep 2020 | US |
Child | 17201813 | US | |
Parent | 16231805 | Dec 2018 | US |
Child | 17026475 | US | |
Parent | 14156269 | Jan 2014 | US |
Child | 16231805 | US |