System and method for customizing a replay of one or more game events in a video game

Information

  • Patent Grant
  • 12059627
  • Patent Number
    12,059,627
  • Date Filed
    Friday, May 6, 2022
    2 years ago
  • Date Issued
    Tuesday, August 13, 2024
    4 months ago
Abstract
A system and method for customizing a replay of one or more game events in a video game is provided. During a gameplay session, a trigger event is detected prompting a replay of the trigger event in-game. One or more system-defined customization templates and/or user-defined customization templates may be applied to customize the trigger event replay.
Description
FIELD OF THE INVENTION

The invention relates generally to video games, and more particularly to a system and method for customizing a replay of one or more game events in a video game.


BACKGROUND OF THE INVENTION

In most video games, players typically control a character (e.g., an athlete, soldier, “rock-star,” superhero, monster, animal, imaginary creature or beast, etc.) or object (e.g., race car, spaceship, etc.) to perform various game actions in order to accomplish a game event. For example, in a “shooter” game, a player may lead his or her character through a series of actions (e.g., tracking an opponent, positively identifying the opponent, aiming a gun at the opponent, and shooting the opponent) that comprise (or culminate in) a game event (e.g., the killing of the opponent). Depending on the particular video game, one or more game events may be necessary to reach a certain status, level, goal, or other game objective.


In some video games, one or more game events may be replayed for a player (and/or a number of other players) in certain instances. As an example, in “Call of Duty®,” the first-person shooter video game franchise published by Activision Publishing, Inc., a “KillCam” is utilized to show a player his or her death, after-the-fact, from the perspective of the killer. The KillCam is useful for, among other things, identifying how a player was killed, and locating enemy positions.


It may be desirable to “replay” one or more game events for a player and/or a number of other players (e.g., in a multiplayer game) for a variety of reasons. For instance, it may be educational for a player to view one or more past actions or events to understand how or why they were successful in accomplishing a particular game objective, or to likewise appreciate why they may have been unsuccessful in failing to accomplish an objective. Further, in a multiplayer game, it may provide a winning or victorious player with an opportunity to boast or brag to a defeated opponent by making them view and relive their defeat or demise again.


While the replay of game events enables players to view and learn from their actions (and the actions of others) in gameplay sessions in which they are involved, current replay functionality does not appear to allow for player interaction or customization. These and other drawbacks exist.


SUMMARY OF THE INVENTION

The invention addressing these and other drawbacks relates to a system and method for customizing a replay of one or more game events in a video game.


As used herein, a “game event” (or event) may comprise an occurrence or incident during gameplay. An event may further include one or more “game actions” (or actions) that comprise the event. As a non-limiting example, in a shooter game, killing an enemy combatant (typically a game opponent or competitor) may comprise a game event. Tracking the enemy combatant, positively identifying the enemy combatant, aiming a gun at the enemy combatant, and pulling the trigger are non-limiting examples of actions that may comprise the game event. In some implementations, depending on the particular video game, one or more game events may be necessary to reach a certain status, level, goal, or other game objective associated with gameplay, or to access or “unlock” certain in-game benefits (extra equipment, special powers, etc.). For instance, continuing with the “shooter” example, a certain number or type of enemy combatants may have to be killed by the player (either alone or in cooperation with other players) in order to reach, access, or experience a different facet of gameplay.


While aspects of the invention may be described herein with reference to various game levels or modes, characters, roles, game items, etc. associated with a “shooter” game, it should be appreciated that any such examples are for illustrative purposes only, and are not intended to be limiting. The system and method described in detail herein may be used in any genre of video game, without limitation. Additionally, while aspects of the invention may be further described with reference to multiplayer video games, it should be recognized that the features and functionality described herein are equally applicable to a single player video game.


According to an aspect of the invention, one or more game events may be defined as trigger events for a particular video game. When a trigger event occurs during gameplay, an in-game replay of one or more actions comprising the trigger event may occur as explained in greater detail below. Trigger events may be system-defined (e.g., defined by the game logic) or user-defined (e.g., through one or more user interfaces prior to the commencement of a gameplay session). It should be appreciated that trigger events may be different for different video games. As an example, in a shooter game, a trigger event may comprise a kill in a match, or a last kill in any match, among other examples.


Once any trigger events have been defined, and a gameplay session begins, an event log engine may record gameplay state information. The gameplay state information may include user commands (e.g., click, touch, button presses, other inputs, etc.) and associated timing information of the commands for one or more players, audio/video information, positions and attributes of characters and objects, depiction of surrounding game environment and conditions, and any other type of game state information that may be used to recreate the game state for any given time or period of time of a gameplay session. The event log engine may capture gameplay state information continuously, or in predetermined segments, and the captured gameplay state information may be stored in one or more databases.


According to an aspect of the invention, gameplay may be monitored in real-time for the detection of a trigger event (e.g., by the event log engine, or other game logic). When a trigger event is detected, a replay engine may generate a replay of one or more of the game actions comprising the trigger event. As described herein, the “replay” of a trigger event comprises a playback of the actions comprising the trigger event, by the replay engine, based on the gameplay state information retrieved from the event log engine. The retrieved gameplay state information is used to generate (or recreate) the one or more actions and associated game state information for the trigger event.


In one implementation, gameplay state information may be retrieved from the event log engine for a predetermined time period that includes the trigger event, as well as a period of time before and/or after the trigger event. The predetermined time periods may vary depending on the nature of the trigger event, and may be defined by game logic and/or by users via one or more user interfaces. In an alternative implementation, gameplay state information may be retrieved from the event log engine relevant to a predetermined number of game actions that occurred prior to, and are associated with, the trigger event. For example, if a trigger event comprises a final kill in a match, the replay engine may retrieve gameplay state information for a predetermined number of predefined prior game actions including, for instance, identification of the enemy combatant, aiming of the weapon, and pulling of the trigger. Gameplay state information representing the final kill may also be retrieved along with gameplay state information for one or more actions occurring after the trigger event (e.g., the character raising his or her arms in victory, etc.). The predetermined number of associated game actions (for retrieval) occurring before, during, and/or after the trigger event may vary depending on the nature of the trigger event, and may be defined by game logic and/or by users via one or more user interfaces.


According to an aspect of the invention, a trigger event may be replayed for a player that caused the trigger event, for a player affected by the trigger event, and/or a number of other players that may have witnessed or were otherwise associated with the trigger event. A trigger event may also be replayed to depict a number of different player perspectives of the trigger event. The trigger event replay may also be provided to one or more players participating in the gameplay session.


In one implementation, gameplay may be paused while the trigger event is replayed. In an alternative implementation, gameplay may continue while the trigger event is replayed and the one or more players that view the replay may rejoin the game in-progress after the trigger event has been replayed. In some implementations, the trigger event may be replayed in a pop-up window or other on-screen display mechanism so as not to disrupt gameplay. In other implementations, the trigger event may be replayed on the full screen. In other words, a trigger event may be replayed to one or more players, in various screen displays (e.g., full screen, partial screen, in a separate window, etc.), from one or more different perspectives, while gameplay is either paused or allowed to continue. Various configurations may be implemented.


According to an aspect of the invention, replay of a trigger event may be customized in a variety of ways. For example, and as described in greater detail herein, graphical content, message content (e.g., text-based messages), audio content, video content, advertising content, and other types of customization content may be added to a replay of a trigger event to customize the replay.


In one implementation, a customization engine may apply customization content to a playback of a trigger event using system-defined customization templates and/or user-defined customization templates. The customization content available for any given trigger event may depend on a variety of factors including the video game, the type of game event that constitutes the trigger event, the intended audience for the trigger event replay, the perspective(s) from which replay of the trigger event may be viewed, and/or other factors.


According to an aspect of the invention, a player may select a system-defined customization template for one or more trigger events from a user interface prior to commencing gameplay. A player may further generate user-defined customization templates via a customization interface (described in detail below).


If a single customization template is selected or created by the user for a trigger event, or if game logic permits only one customization template to be applied during a trigger event replay (regardless of whether it is a system-selected or user-defined template), the template may be applied automatically and the trigger event replay may occur automatically when the trigger event is detected. If no customization templates are selected or created, a default customization template may be applied when a trigger event is detected, or no customization content may be added to a trigger event replay.


In certain implementations, a player may assign two or more customization templates (e.g., system-selected and/or user-defined templates) as being applicable to a given trigger event. For instance, in a shooter game, a player may create multiple customization templates to be used for a kill trigger event depending on a variety of factors including the identify of an opponent he kills in the game, the weapon that he uses to kill an opponent, the number of other game players that will see the trigger event replay, or other factors. In this implementation, each customization template may be assigned to a particular input used for gameplay (e.g., a controller button, mouse click, certain motion-based input, etc.). Accordingly, when a trigger event occurs, a player may be provided with an opportunity to activate the input corresponding to whatever customization template he or she wishes to apply in that moment based on the gameplay. For example, if PLAYER A kills a known friend that happens to be an opponent in a multiplayer game, he may select the button corresponding to a user-defined customization template that is perhaps more personalized in nature and includes more taunting since he knows his opponent. On the other hand, if PLAYER A kills an opponent that he does not know, he may select the button corresponding to a system-defined customization template that is more generic and not as personal (or harsh).


In those instances where a player may select from among multiple customization templates to apply to a trigger event replay, gameplay may pause for a predetermined time after the trigger event occurs to provide the player with an opportunity to select the input corresponding to the desired customization template. If no customization template is selected during this predetermined time period, a default customization template may be applied, or no customization content may be added to a trigger event replay. In another implementation, gameplay may continue while the customization template is selected by the player, and the trigger event is replayed. The one or more players that view the replay may rejoin the game in-progress after the trigger event has been replayed.


According to an aspect of the invention, a customization interface may be provided to enable a user to customize trigger event replays.


These and other objects, features, and characteristics of the system and/or method disclosed herein, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary system for customizing a replay of one or more game events in a video game, according to an implementation of the invention.



FIG. 2A illustrates an exemplary system configuration in which a server hosts a plurality of computer devices to facilitate a multiplayer game, according to an implementation of the invention.



FIG. 2B illustrates an exemplary system configuration in which a plurality of networked servers communicate with one another to facilitate a multiplayer game, according to an implementation of the invention.



FIG. 2C illustrates an exemplary system configuration in which a plurality of computer devices are networked together to facilitate a multiplayer game, according to an implementation of the invention.



FIG. 3 illustrates an exemplary screenshot of a replay of a game event in a video game, according to an implementation of the invention.



FIG. 4 illustrates an exemplary customization interface for customizing a replay of one or more game events in a video game, according to an implementation of the invention.



FIG. 5 illustrates a process of customizing a replay of one or more game events in a video game, according to an implementation of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The invention described herein relates to a system and method for customizing a replay of one or more game events in a video game.


Exemplary System Architecture



FIG. 1 depicts an exemplary architecture of a system 100 which may include one or more computer systems 110, one or more servers 150, one or more databases 160, and/or other components, according to one implementation of the invention.


Computer System 110


Computer system 110 may be configured as a gaming console, a handheld gaming device, a personal computer (e.g., a desktop computer, a laptop computer, etc.), a smartphone, a tablet computing device, and/or other device that can be used to interact with an instance of a video game.


Computer system 110 may include one or more processors 112 (also interchangeably referred to herein as processors 112, processor(s) 112, or processor 112 for convenience), one or more storage devices 114 (which may store a customization application 120), one or more peripherals 140, and/or other components. Processors 112 may be programmed by one or more computer program instructions. For example, processors 112 may be programmed by customization application 120 and/or other instructions (such as gaming instructions used to instantiate the game).


Depending on the system configuration, customization application 120 (or portions thereof) may be part of a game application, which creates a game instance to facilitate gameplay. Alternatively or additionally, customization application 120 may run on a device such as a server 150 to customize a replay of one or more game events in a video game.


Customization application 120 may include instructions that program computer system 110. The instructions may include, without limitation, a matchmaking engine 122, an event log engine 124, a replay engine 126, a customization engine 128, a User Interface (“UP”) engine 130, and/or other instructions 132 that program computer system 110 to perform various operations, each of which are described in greater detail herein. As used herein, for convenience, the various instructions will be described as performing an operation, when, in fact, the various instructions program the processors 112 (and therefore computer system 110) to perform the operation.


Peripherals 140


Peripherals 140 may be used to obtain an input (e.g., direct input, measured input, etc.) from a player. Peripherals 140 may include, without limitation, a game controller, a gamepad, a keyboard, a mouse, an imaging device such as a camera, a motion sensing device, a light sensor, a biometric sensor, and/or other peripheral device that can obtain an input from a player. Peripherals 140 may be coupled to a corresponding computer system 110 via a wired and/or wireless connection.


Server 150


Server 150 may include one or computing devices. Although not illustrated in FIG. 1, server 150 may include one or more physical processors programmed by computer program instructions. For example, server 150 may include all or a portion of customization application 120 and therefore provide all or a portion of the operations of customization application 120.


Although illustrated in FIG. 1 as a single component, computer system 110 and server 150 may each include a plurality of individual components (e.g., computer devices) each programmed with at least some of the functions described herein. In this manner, some components of computer system 110 and/or server 150 may perform some functions while other components may perform other functions, as would be appreciated. The one or more processors 112 may each include one or more physical processors that are programmed by computer program instructions. The various instructions described herein are exemplary only. Other configurations and numbers of instructions may be used, so long as the processor(s) 112 are programmed to perform the functions described herein.


Furthermore, it should be appreciated that although the various instructions are illustrated in FIG. 1 as being co-located within a single processing unit, in implementations in which processor(s) 112 includes multiple processing units, one or more instructions may be executed remotely from the other instructions.


The description of the functionality provided by the different instructions described herein is for illustrative purposes, and is not intended to be limiting, as any of instructions may provide more or less functionality than is described. For example, one or more of the instructions may be eliminated, and some or all of its functionality may be provided by other ones of the instructions. As another example, processor(s) 112 may be programmed by one or more additional instructions that may perform some or all of the functionality attributed herein to one of the instructions.


The various instructions described herein may be stored in a storage device 114, which may comprise random access memory (RAM), read only memory (ROM), and/or other memory. The storage device may store the computer program instructions (e.g., the aforementioned instructions) to be executed by processor 112 as well as data that may be manipulated by processor 112. The storage device may comprise floppy disks, hard disks, optical disks, tapes, or other storage media for storing computer-executable instructions and/or data.


The various components illustrated in FIG. 1 may be coupled to at least one other component via a network, which may include any one or more of, for instance, the Internet, an intranet, a PAN (Personal Area Network), a LAN (Local Area Network), a WAN (Wide Area Network), a SAN (Storage Area Network), a MAN (Metropolitan Area Network), a wireless network, a cellular communications network, a Public Switched Telephone Network, and/or other network.


In FIG. 1, as well as in other drawing Figures, different numbers of entities than those depicted may be used. Furthermore, according to various implementations, the components described herein may be implemented in hardware and/or software that configure hardware.


The various databases 160 described herein may be, include, or interface to, for example, an Oracle™ relational database sold commercially by Oracle Corporation. Other databases, such as Informix™, DB2 (Database 2) or other data storage, including file-based, or query formats, platforms, or resources such as OLAP (On Line Analytical Processing), SQL (Structured Query Language), a SAN (storage area network), Microsoft Access™ or others may also be used, incorporated, or accessed. The database may comprise one or more such databases that reside in one or more physical devices and in one or more physical locations. The database may store a plurality of types of data and/or files and associated data or file descriptions, administrative information, or any other data.


The foregoing system architecture is exemplary only and should not be viewed as limiting. Other system configurations may be used as well, as would be appreciated by those having skill in the art.


Exemplary Multiplayer System Configurations


Multiplayer video games have exploded in popularity due, in part, to services such as Microsoft's Xbox LIVE® and Sony's PlayStation Network® which enable gamers all over the world to play with or against one another. Generally, a multiplayer video game is a video game in which two or more players play in a gameplay session in a cooperative or adversarial relationship. Typically, when a player logs in to a game system or platform to play a multiplayer video game, the player may engage in a gameplay session in which he or she is matched with other players to play together (on the same team or as opponents).



FIG. 2A illustrates an exemplary system configuration 200A in which a server hosts a plurality of computer devices to facilitate a multiplayer game, according to an implementation of the invention. In one implementation, one or more servers 150 may host a number of computer systems 110 (illustrated as computer systems 110A, 110B, . . . , 110N) via a network 102. Each computer system 110 may include one or more peripherals (illustrated as peripherals 140A, 140B, . . . , 140N). In this manner, one or more servers 150 may facilitate the gameplay of different players using different computer systems 110 and/or otherwise provide one or more operations of customization application 120 (illustrated in FIG. 1).


In some instances, a given server 150 may be associated with a proprietary gameplay network system, such as, without limitation, Microsoft's Xbox LIVE® and Sony's PlayStation Network®, and/or another type of gameplay network system. In this implementation, a given computer system 110 may be associated with a particular type of gaming console. Other types of computer systems 110 using other types of gameplay networks may be used as well.



FIG. 2B illustrates an exemplary system configuration 200B in which a plurality of computer systems 110 are networked together to facilitate a multiplayer game, according to an implementation of the invention. Any one or more of the computer devices 110 may serve as a host and/or otherwise provide one or more operations of customization application 120 (illustrated in FIG. 1).



FIG. 2C illustrates an exemplary system configuration 200C in which a computer system 110 is used by a plurality of users to facilitate a multiplayer game, according to an implementation of the invention. In an implementation, computer system 110 may be considered to host the multiplayer game and/or otherwise provide one or more operations of customization application 120 (illustrated in FIG. 1).


Referring to FIGS. 2A-2C, in an implementation, a host may facilitate the multiplayer game and/or perform other operations described herein. In an implementation, at least some of these operations may also or instead be performed by an individual computer system 110. Furthermore, the illustrated system configurations are exemplary only and should not be viewed as limiting in any way. Other system configurations may be used as well, as would be appreciated by those having skill in the art.


As previously noted, while aspects of the invention may be described with reference to multiplayer video games, it should be recognized that the features and functionality described herein are equally applicable to a single player video game.


Gameplay Session


In one implementation of the invention, in a multiplayer mode, matchmaking engine 122 may use known or hereafter developed matchmaking techniques to generate a match (e.g., interchangeably referred to herein as engaging in “matchmaking”) between two or more players (e.g., one or more human players and/or one or more non-player characters). The match, if accepted by the matched players, may result in initiation of a gameplay session that includes the matched players.


According to an aspect of the invention, during gameplay, event log engine 124 may record gameplay state information. The gameplay state information may include user commands (e.g., click, touch, button presses, other inputs, etc.) and associated timing information of the commands for one or more players, audio/video information, positions and attributes of characters and objects, depiction of surrounding game environment and conditions, and any other type of game state information that may be used to recreate the game state for any given time or period of time of a gameplay session. Event log engine 124 may capture gameplay state information continuously, or in predetermined time segments. The gameplay state information may be stored in one or more databases, such as database 160.


Trigger Events and Trigger Event Detection


In one implementation of the invention, one or more game events may be defined as trigger events. When a trigger event occurs during gameplay, an in-game replay of one or more actions comprising the trigger event may occur as explained in greater detail below.


According to an aspect of the invention, trigger events may be system-defined (e.g., defined by the game logic) or user-defined (e.g., through one or more user interfaces prior to the commencement of a gameplay session). It should be appreciated that trigger events may be different for different video games. As an example, in a shooter game, a trigger event may comprise a kill in a match, or a last kill in any match, among other examples. In a game of capture the flag, for instance, a trigger event may include a kill in the match, a flag capture, a flag defend, a final flag capture or kill in a match, or other game event.


According to an aspect of the invention, gameplay may be monitored in real-time for the detection of a trigger event (e.g., by event log engine 124, or other game logic). When a trigger event is detected, a replay of the one or more game actions comprising the trigger event may be generated.


In some instances, two or more trigger events may occur during gameplay (and be detected) at substantially the same time. For example, a final kill in a match may occur at the same time that a flag is captured. In these situations, one or more of the trigger events may be replayed. For example, in one implementation, the most significant trigger event, as defined by game logic or a user, may be replayed. Alternatively, each trigger event may be replayed in an order of significance ascribed to the trigger event by game logic or by a user. As yet another example, each trigger event may be replayed simultaneously, each in its own window generated on the game's user interface (e.g., 2 windows may be generated on the user interface for replaying each of 2 trigger events). Other configurations may be implemented.


Trigger Event Replay


According to an aspect of the invention, when a trigger event is detected, replay engine 126 may generate a replay of one or more of the game actions comprising the trigger event. In particular, replay engine 126 may retrieve gameplay state information associated with the trigger event recorded by event log engine 124.


As described herein, the replay of a trigger event comprises a playback of the actions comprising the trigger event, by replay engine 126, based on the gameplay state information retrieved from event log engine 124. In other words, the retrieved gameplay state information (e.g., user inputs, character movements and actions, positions and attributes of other characters and objects, depiction of surrounding game environment and conditions, and other captured gameplay state information) is used by replay engine 126 to generate (or recreate) the one or more actions and associated game state information for the trigger event.


In one implementation, gameplay state information may be retrieved from event log engine 124 for a predetermined time period that includes the trigger event, as well as a period of time before and/or after the trigger event. For example, if a final kill in a match takes 3 seconds, replay engine may retrieve 20 seconds of gameplay state information prior to the final kill (e.g., to capture actions leading up to the final kill such as a chase, etc.), the 3 seconds associated with the final kill, and an additional 5 seconds after the kill (e.g., to capture the aftermath), for a total of 28 seconds. The predetermined time periods may vary depending on the nature of the trigger event, and may be defined by game logic and/or by users via one or more user interfaces (e.g., generated via UI engine 130).


In an alternative implementation, gameplay state information may be retrieved from event log engine 124 relevant to a predetermined number of game actions that occurred prior to, and are associated with, the trigger event. For example, if a trigger event comprises a final kill in a match, the replay engine may retrieve gameplay state information for a predetermined number of predefined prior game actions including, for instance, identification of the enemy combatant, aiming of the weapon, and pulling of the trigger. Gameplay state information representing the final kill may also be retrieved along with gameplay state information for one or more actions occurring after the trigger event (e.g., the character raising his or her arms in victory, etc.). The predetermined number of associated game actions (for retrieval) occurring before, during, and/or after the trigger event may vary depending on the nature of the trigger event, and may be defined by game logic and/or by users via one or more user interfaces (e.g., generated via UI engine 130).


According to an aspect of the invention, a trigger event may be replayed for a player that caused the trigger event, for a player affected by the trigger event, and/or a number of other players that may have witnessed or were otherwise associated with the trigger event. A trigger event may also be replayed to depict a number of different player perspectives of the trigger event. As a non-limiting example, when a player is killed in a first person shooter multiplayer video game, a trigger event replay may show the player his or her death from the perspective of the killer. The trigger event replay may also be provided to one or more players participating in the gameplay session. For example, if one or more players were killed by a grenade in a first person shooter multiplayer video game, all of the players killed may be shown the trigger event replay from the perspective of the player that threw the grenade.


In one implementation, gameplay may be paused while the trigger event is replayed. In an alternative implementation, gameplay may continue while the trigger event is replayed and the one or more players that view the replay may rejoin the game in-progress after the trigger event has been replayed. In some implementations, the trigger event may be replayed in a pop-up window or other on-screen display mechanism so as not to disrupt gameplay. In other implementations, the trigger event may be replayed on the full screen. In other words, a trigger event may be replayed to one or more players, in various screen displays (e.g., full screen, partial screen, in a separate window, etc.), from one or more different perspectives, while gameplay is either paused or allowed to continue. Various configurations may be implemented.


Replay Customization


According to an aspect of the invention, replay of a trigger event may be customized in a variety of ways via customization engine 128. For example, and as described in greater detail below, graphical content, message content (e.g., text-based messages), audio content, video content, advertising content, and other types of customization content may be added to a replay of a trigger event to customize the replay.


In one implementation, customization engine 128 may apply customization content to a playback (by replay engine 126) of a trigger event using system-defined customization templates and/or user-defined customization templates created using a customization interface (described in detail below). The customization content available for any given trigger event may depend on a variety of factors including the video game, the type of game event that constitutes the trigger event, the intended audience for the trigger event replay, the perspective(s) from which replay of the trigger event may be viewed, and/or other factors.


As an example, in a shooter game where a trigger event comprises the death of a player, the trigger event replay may show a player his or her death from the perspective of the killer. As such, each player may be provided with an option to select one or more system-defined customization templates (including customization content) that will be added to the trigger event replay shown to opponents that he kills during gameplay (that is, when he is the killer). Each player may also be given the option of creating one or more individual (or personalized) customization templates that include customization content that will be added to the trigger event replay shown to opponents that he kills. For example, PLAYER A may be mean-spirited or aggressive, and therefore wish to taunt other game players that he kills when they view the replay of their death at his hands. Accordingly, PLAYER A may create a customization template with customization content including one or more of a message (e.g., “I got you good!”), audio content (e.g., sound of a soldier laughing), video content, graphical content, or other customization content. Further, PLAYER A may create multiple customization templates to be used depending on a variety of factors including the identify of an opponent he kills in the game (e.g., friends versus strangers in a multiplayer game), the weapon that he uses to kill an opponent (e.g., a gun versus a grenade), the number of other game players that will see the trigger event replay (e.g., a more personalized message if he kills one player, or a different, more generic message if he kills multiple players), or other factors.


According to an aspect of the invention, a player may select a system-defined customization template for one or more trigger events from a user interface prior to commencing gameplay. A player may further generate user-defined customization templates via a customization interface described in detail below. If no customization templates are selected or created, a default customization template may be applied when a trigger event is detected, or no customization content may be added to a trigger event replay.


Graphical Content


According to an aspect of the invention, customization engine 128 enables graphical customization content to be added to a trigger event replay. Any type of graphics may be utilized. For example, in one implementation, a user may select graphics from a library of graphics stored in database 160. Users may also import graphics. In one implementation, users may also edit graphics by, for example, adding objects to a graphic, deleting objects in a graphic, changing the color, shade, size, shape and contrast in a graphic, or otherwise changing the appearance of a graphic.


Message Content


According to an aspect of the invention, customization engine 128 enables message customization content (e.g., text-based messages) to be added to a trigger event replay. Users may create customized messages in any color and style with various fonts, font sizes, and colors. Users may also select messages from a library of messages stored in database 160.


Audio Content


According to an aspect of the invention, customization engine 128 enables audio customization content to be added to a trigger event replay. For example, in one implementation, a user may select (e.g., sounds, songs, snippets of songs, etc.) from a library of audio clips stored in database 160. Users may also import audio clips. Further, customization engine 128 may also comprise an audio editor tool that enables editing of audio clips. The audio editor tool may further enable editing of the audio associated with the retrieved gameplay state information associated with the trigger event recorded by event log engine 124.


Video Content


According to an aspect of the invention, customization engine 128 enables video customization content to be added to a trigger event replay. For example, in one implementation, a user may select video clips from a library of video clips stored in database 160. Users may also import video clips. Additionally, customization engine 128 may further comprise a video editor tool that enables editing of video clips.


The video editor tool may further enable editing of the video associated with the retrieved gameplay state information associated with the trigger event recorded by event log engine 124. For example, the video editor tool may enable edits including deleting, adding, inserting, a file insertion, an advertisement insertion, blending, blanking, fading, appearing (opposite of fading), a layover, a contrast, a brightness, a color, an appearance, a shading, a focus, a sharpen, a transform, a graininess, an erase, a cut, cut frames, a paste, pasting frames, painting, patterning, airbrushing, a crop, a copy, adding text, adding audio, a rotate, an annotation, inversion, or the like.


Advertising Content


In some implementations, customization engine 128 may enable advertising content to be added to a trigger event replay. For example, third-party advertisements may be inserted into a trigger event replay as a way to generate additional revenue for the game publisher.


In yet another example, to drive in-game purchases, certain gameplay items may be accentuated in a trigger event replay. As an example, if a player is killed by an opponent that has a superior weapon, the trigger event replay may include additional text or audio highlighting the benefits, strength, advantages, etc. of the weapon as a way to encourage the killed player to make game-related purchases of the weapon possessed by the opponent that killed them.


System-defined customization templates and user-defined customization templates may be stored in database 160 for retrieval and application when a trigger event is detected. If a single customization template is selected or created by the user for a trigger event, or if game logic permits only one customization template to be applied during a trigger event replay (regardless of whether it is a system-selected or user-defined template), the template may be applied automatically and the trigger event replay may occur automatically when the trigger event is detected. As previously noted, if no customization templates are selected or created, a default customization template may be applied when a trigger event is detected, or no customization content may be added to a trigger event replay.


In certain implementations, a player may assign two or more customization templates (e.g., system-selected and/or user-defined templates) as being applicable to a given trigger event. For instance, in the shooter example noted above, a player may create multiple customization templates to be used for a kill trigger event depending on a variety of factors including who he kills in the game, the weapon that he uses to kill another player, the number of other game players that will see the trigger event replay, or other factors. In this implementation, each customization template maybe assigned (by customization engine 128) to a particular input used for gameplay (e.g., a controller button, mouse click, certain motion-based input, etc.). Accordingly, when a trigger event occurs, a player may be provided with an opportunity to activate the input corresponding to whatever customization template he or she wishes to apply in that moment based on the gameplay. For example, if PLAYER A kills a known friend that happens to be an opponent in a multiplayer game, he may select the button corresponding to a user-defined customization template that is perhaps more personalized in nature and includes more taunting since he knows his opponent. On the other hand, if PLAYER A kills an opponent that he does not know, he may select the button corresponding to a system-defined customization template that is more generic and not as personal (or harsh).


In those instances where a player may select from among multiple customization templates to apply to a trigger event replay, gameplay may pause for a predetermined time after the trigger event occurs to provide the player with an opportunity to select the input corresponding to the desired customization template. If no customization template is selected during this predetermined time period, a default customization template may be applied, or no customization content may be added to a trigger event replay. In another implementation, gameplay may continue while the customization template is selected by the player, and the trigger event is replayed. The one or more players that view the replay may rejoin the game in-progress after the trigger event has been replayed.


EXAMPLE


FIG. 3 depicts an exemplary screenshot capture 300 of a trigger event replay for a shooter game that includes customization content, according to an implementation of the invention. In this example, a player that has been killed by an enemy combatant is viewing the replay of his or her death from the perspective of the shooter. The customization content that is applied to the trigger event replay by customization engine 128 includes a graphic 304 depicting fuzzy dice, a graphic 306 depicting a general's star, and a text-based message 302 that recites “Better Luck Next Time!!!!!”


Continuing with the example in FIG. 3, customization content may further include information relating to (or associated with) one or more actions comprising the trigger event that is the subject of the replay. For example, the identity or screen name 308 of the player responsible for the trigger event (the shooter in this example) may be displayed. Player attributes or associated characteristics of the player responsible for the trigger event may also be displayed, such as, for example, information about the player's weapon load out 310, perks or skills 312, and the like.


In yet another example, a trigger event replay may include a display of a timer 314 that counts down to the actual trigger event (in this instance the shooting death of the player). Again, a trigger event replay may include a number of actions comprising the trigger event. A countdown timer (or other indicator) may display the time remaining as the various actions (e.g., identification of the enemy combatant, aiming of the weapon, and pulling of the trigger) are replayed leading up to the until the substantially final action of the trigger event occurs (the bullet hitting and killing the player).


As set forth above, graphical content, message content (e.g., text-based messages), audio content, video content, and advertising content are all non-limiting examples of customization content that may be added to a replay of a trigger event (via system-selected and/or user-defined customization templates) to customize the replay.


Customization Interface



FIG. 4 depicts an example of a customization interface 400 (generated by customization engine 128) for customizing a trigger event replay, according to an implementation of the invention. Customization interface 400 may be accessed via a user profile, or one or more other user interfaces (e.g., generated via UI engine 130). Interface 400 depicts various navigational tools that enable users to select, access, display, or navigate through the features and functionality of the customization interface, including selection objects (or buttons), drop-down menus, and the like. The layout of interface 400 is exemplary in nature, and should not be viewed as limiting.


In one implementation, using trigger event interface object 402, a user accessing customization interface 400 may scroll through a list of one or more game events that may be defined as trigger event for the particular game. As previously noted, trigger events may be system-defined (e.g., defined by the game logic) or user-defined (e.g., through one or more user interfaces prior to the commencement of a gameplay session). It should be appreciated that trigger events may be different for different video games.


When a particular trigger event is selected, such as the “KILL” trigger event in this example, a user may make a number of selections regarding the appearance of a trigger event replay of a kill during gameplay. For example, if the player does not wish to add any customization content to a trigger event replay, he or she may indicate as such (e.g., through selection of interface object 404). In this event, when a trigger event is detected during gameplay, no customization content may be added to a trigger event replay.


A user may view, browse, and select one or more system-defined customization templates via selection of interface object 406. Additionally, or in the alternative, a user may generate one or more user-defined customization templates for a trigger event (e.g., the KILL event), via a suite of tools, shown here in display portion 408. These tools may enable a user to add graphical content, message content (e.g., text-based messages), audio content, video content, and other types of customization content to a replay of a trigger event to customize the replay.


Generation of user-defined customization templates may be implemented using known or hereafter-developed layering techniques (or other customization techniques), as would be appreciated by one having ordinary skill in the art.


Preview pane 410 may display previews of both system-defined and user-generated customization templates. Previews may comprise a static image, series of images, or an animation or video clip.


In one implementation, display portion 412 may list a summary of the various customization templates that have been selected or created for the selected trigger event (e.g., the “KILL” trigger event) along with the (controller) inputs that have been mapped to each for selection during gameplay. Depending on the video game, the nature of the trigger event, or other factors, one or more customization templates may be possible. As shown in the exemplary display portion 412 of FIG. 4, a user has assigned 3 different customization templates (out of a possible total of 4) to the “KILL” trigger event. Particularly, the user has created two different custom templates (e.g., “custom #1,” and “custom #2”) and selected one system-defined customization template (e.g., “system #7”) for potential use. In one implementation, each customization template may be assigned (by customization engine 128) to a particular input used for gameplay (e.g., a controller button, mouse click, certain motion-based input, etc.). A user may also select which inputs will correspond to which customization templates. Accordingly, when a trigger event occurs, a player may be provided with an opportunity to activate the input corresponding to whatever customization template he or she wishes to apply in that moment based on the gameplay.


Exemplary Flowchart



FIG. 5 depicts a process 500 of customizing a trigger event replay, according to an implementation of the invention. The various processing operations and/or data flows depicted in FIG. 5 are described in greater detail herein. The described operations may be accomplished using some or all of the system components described in detail above and, in some implementations, various operations may be performed in different sequences and various operations may be omitted. Additional operations may be performed along with some or all of the operations shown in the depicted flow diagrams. One or more operations may be performed simultaneously. Accordingly, the operations as illustrated (and described in greater detail below) are exemplary by nature and, as such, should not be viewed as limiting.


In an operation 502, one or more trigger events may be defined. Trigger events may be system-defined (e.g., defined by the game logic) or user-defined (e.g., through one or more user interfaces prior to the commencement of a gameplay session). It should be appreciated that trigger events may be different for different video games.


In an operation 504, a gameplay session may commence.


In an operation 506, gameplay state information may be recorded during gameplay. The gameplay state information may include user commands (e.g., click, touch, button presses, other inputs, etc.) and associated timing information of the commands for one or more players, audio/video information, positions and attributes of characters and objects, depiction of surrounding game environment and conditions, and any other type of game state information that may be used to recreate the game state for any given time or period of time of a gameplay session. The gameplay state information may be captured (e.g., by an event log engine) continuously, or in predetermined time segments. The gameplay state information may be stored in one or more databases.


In an operation 508, gameplay may be monitored to determine whether a trigger event is detected.


Upon detection of a trigger event, in an operation 510, gameplay state information may be retrieved (e.g., from an event log engine) for a predetermined time period that includes the trigger event, as well as a period of time before and/or after the trigger event. The predetermined time periods may vary depending on the nature of the trigger event, and may be defined by game logic and/or by users via one or more user interfaces.


In an alternative implementation, gameplay state information may be retrieved (e.g., from an event log engine) relevant to a predetermined number of game actions that occurred prior to, and are associated with, the trigger event. The predetermined number of associated game actions (for retrieval) occurring before, during, and/or after the trigger event may vary depending on the nature of the trigger event, and may be defined by game logic and/or by users via one or more user interfaces.


In an operation 512, a customization template may be applied. System-defined customization templates and user-defined customization templates may be stored for retrieval and application when a trigger event is detected. If a single customization template is selected or created by the user for a trigger event, or if game logic permits only one customization template to be applied during a trigger event replay (regardless of whether it is a system-selected or user-defined template), the template may be applied automatically and the trigger event replay may occur automatically when the trigger event is detected.


In those instances where a player may select from among multiple customization templates to apply to a trigger event replay, gameplay may pause for a predetermined time after the trigger event occurs to provide the player with an opportunity to select the input corresponding to the desired customization template. If no customization template is selected during this predetermined time period, a default customization template may be applied, or no customization content may be added to a trigger event replay. In another implementation, gameplay may continue while the customization template is selected by the player, and the trigger event is replayed. The one or more players that view the replay may rejoin the game in-progress after the trigger event has been replayed.


As previously noted, if no customization templates are selected or created, a default customization template may be applied when a trigger event is detected, or no customization content may be added to a trigger event replay.


In an operation 514, one or more game actions comprising the trigger event may be replayed with the customization template. In one implementation, a replay engine may generate a replay of one or more of the game actions comprising the trigger event. The replay of a trigger event comprises a playback of the actions comprising the trigger event based on retrieved gameplay state information (e.g., retrieved from an event log engine). The retrieved gameplay state information (e.g., user inputs, character movements and actions, positions and attributes of other characters and objects, depiction of surrounding game environment and conditions, and other captured gameplay state information) is used to generate (or recreate) the one or more actions and associated game state information for the trigger event.


In an operation 516, a determination may be made as to whether the gameplay session should continue. Upon determining that the gameplay session should continue, processing may resume at operation 508. Otherwise processing may end at operation 518.


Other implementations, uses and advantages of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification should be considered exemplary only, and the scope of the invention is accordingly intended to be limited only by the following claims.

Claims
  • 1. A computer-implemented method of customizing a replay of one or more game events in a video game, the method being implemented in a computer system having one or more physical processors programmed with computer program instructions that, when executed by the one or more physical processors, cause the computer system to perform the method, the method comprising: defining, by the computer system, one or more game events as trigger events in a video game;recording, by the computer system, gameplay state information associated with a gameplay session of the video game;detecting, by the computer system, the occurrence of a trigger event during the gameplay session;generating, by the computer system, a trigger event replay of the trigger event based in part on the recorded gameplay state information;customizing, by the computer system, the trigger event replay comprising performing at least one of: a) receiving, from the user using a controller input, a selection of one of a number of customization templates available for the trigger event and applying the selected customization template to the trigger event replay or b) not receiving a selection of one of a number of customization templates available for the trigger event and applying a default customization template to the trigger event replay; anddisplaying, by the computer system, the customized trigger event replay to one or more players in the gameplay session of the video game.
  • 2. The method of claim 1, wherein the gameplay state information is recorded either continuously or in predetermined time segments during the gameplay session of the video game.
  • 3. The method of claim 1, wherein generating the trigger event replay further comprises: retrieving recorded gameplay state information for a predetermined number of game actions that occurred prior to, during, and after the trigger event; andrecreating the game actions based on the retrieved recorded gameplay state information.
  • 4. The method of claim 1, wherein generating the trigger event replay further comprises: retrieving recorded gameplay state information for a predetermined time period that spans a period of time before and after the trigger event; andrecreating game actions that occurred during the predetermined time period based on the retrieved recorded gameplay state information.
  • 5. The method of claim 1, wherein customizing the trigger event replay further comprises: applying a customization template to the trigger event replay, the customization template comprising one or more of graphical customization content, message customization content, audio customization content, or video customization content.
  • 6. The method of claim 5, wherein the customization template comprises a user-defined customization template.
  • 7. The method of claim 1, wherein each available customization template for the trigger event is mapped to a different controller input, and wherein the controller comprises one of a video game controller, a peripheral device, or a motion-based input detection device.
  • 8. The method of claim 1, wherein displaying the customized trigger event replay further comprises: pausing the gameplay session for the one or more players while the customized trigger event replay is displayed to the one or more players.
  • 9. The method of claim 8, further comprising: allowing the gameplay session to continue for players for which the customized trigger event replay is not displayed; andallowing the one or more players that have viewed the customized trigger event replay to rejoin the gameplay session in progress after viewing the customized trigger event replay.
  • 10. The method of claim 1, wherein displaying the customized trigger event replay further comprises: displaying the customized trigger event replay to the one or more players in an on-screen window while the gameplay session continues.
  • 11. The method of claim 1, wherein displaying the customized trigger event replay further comprises: displaying the customized trigger event replay to the one or more players in a perspective that is different from the perspective in which the trigger event was displayed to the one or more players.
  • 12. A system for customizing a replay of one or more game events in a video game, the system comprising: one or more physical processors programmed with one or more computer program instructions which, when executed, cause the one or more physical processors to: define one or more game events as trigger events in a video game;record gameplay state information associated with a gameplay session of the video game;detect the occurrence of a trigger event during the gameplay session;generate a trigger event replay of the trigger event based in part on the recorded gameplay state information;customize the trigger event replay by performing at least one of a) receiving, from the user using a controller input, a selection of one of a number of customization templates available for the trigger event and applying the selected customization template to the trigger event replay or b) not receiving a selection of one of a number of customization templates available for the trigger event and applying a default customization template to the trigger event replay; anddisplay the customized trigger event replay to one or more players in the gameplay session of the video game.
  • 13. The system of claim 12, wherein the gameplay state information is recorded either continuously or in predetermined time segments during the gameplay session of the video game.
  • 14. The system of claim 12, wherein, to generate the trigger event replay, the one or more physical processors are further caused to: retrieve recorded gameplay state information for a predetermined number of game actions that occurred prior to, during, and after the trigger event; andrecreate the game actions based on the retrieved recorded gameplay state information.
  • 15. The system of claim 12, wherein, to generate the trigger event replay, the one or more physical processors are further caused to: retrieve recorded gameplay state information for a predetermined time period that spans a period of time before and after the trigger event; andrecreate game actions that occurred during the predetermined time period based on the retrieved recorded gameplay state information.
  • 16. The system of claim 12, wherein, to customize the trigger event replay, the one or more physical processors are further caused to: apply a customization template to the trigger event replay, the customization template comprising one or more of graphical customization content, message customization content, audio customization content, or video customization content.
  • 17. The system of claim 16, wherein the customization template comprises a user-defined customization template.
  • 18. The system of claim 12, wherein, to customize the trigger event replay, the one or more physical processors are further caused to: map each available customization template for the trigger event to a different controller input, and wherein the controller comprises one of a video game controller, a peripheral device, or a motion-based input detection device.
CROSS-REFERENCE

The present application is a continuation application of U.S. patent application Ser. No. 14/561,801, entitled “System and Method for Customizing a Replay of One or More Game Events in a Video Game” and filed on Dec. 5, 2014, which is herein incorporated by reference in its entirety.

US Referenced Citations (404)
Number Name Date Kind
5031089 Liu Jul 1991 A
5442569 Osano Aug 1995 A
5530796 Wang Jun 1996 A
5535276 Ganesan Jul 1996 A
5539883 Allon Jul 1996 A
5561736 Moore Oct 1996 A
5563946 Cooper Oct 1996 A
5630129 Wheat May 1997 A
5685775 Bakoglu Nov 1997 A
5706507 Schloss Jan 1998 A
5708764 Borrel Jan 1998 A
5736985 Lection Apr 1998 A
5736990 Barrus Apr 1998 A
5737416 Cooper Apr 1998 A
5745678 Herzberg Apr 1998 A
5762552 Vuong Jun 1998 A
5768511 Galvin Jun 1998 A
5774668 Choquier Jun 1998 A
5796393 MacNaughton Aug 1998 A
5825877 Dan Oct 1998 A
5835692 Cragun Nov 1998 A
5860137 Raz Jan 1999 A
5875296 Shi Feb 1999 A
5878233 Schloss Mar 1999 A
5883628 Mullaly Mar 1999 A
5884024 Lim Mar 1999 A
5900879 Berry May 1999 A
5903266 Berstis May 1999 A
5903271 Bardon May 1999 A
5908469 Botz Jun 1999 A
5911045 Leyba Jun 1999 A
5920325 Morgan Jul 1999 A
5923324 Berry Jul 1999 A
5938722 Johnson Aug 1999 A
5944824 He Aug 1999 A
5963915 Kirsch Oct 1999 A
5969724 Berry Oct 1999 A
5977979 Clough Nov 1999 A
5990888 Blades Nov 1999 A
6008848 Tiwari Dec 1999 A
6009455 Doyle Dec 1999 A
6014145 Bardon Jan 2000 A
6021268 Johnson Feb 2000 A
6025839 Schell Feb 2000 A
6049819 Buckle Apr 2000 A
6058266 Megiddo May 2000 A
6059842 Dumarot May 2000 A
6069632 Mullaly May 2000 A
6081270 Berry Jun 2000 A
6081271 Bardon Jun 2000 A
6088727 Hosokawa Jul 2000 A
6091410 Lection Jul 2000 A
6094196 Berry Jul 2000 A
6098056 Rusnak Aug 2000 A
6101538 Brown Aug 2000 A
6104406 Berry Aug 2000 A
6111581 Berry Aug 2000 A
6134588 Guenthner Oct 2000 A
6141699 Luzzi Oct 2000 A
6144381 Lection Nov 2000 A
6148328 Cuomo Nov 2000 A
6179713 James Jan 2001 B1
6185614 Cuomo Feb 2001 B1
6201881 Masuda Mar 2001 B1
6222551 Schneider Apr 2001 B1
6271842 Bardon Aug 2001 B1
6271843 Lection Aug 2001 B1
6282547 Hirsch Aug 2001 B1
6308208 Jung Oct 2001 B1
6311206 Malkin Oct 2001 B1
6314465 Paul Nov 2001 B1
6330281 Mann Dec 2001 B1
6334141 Varma Dec 2001 B1
6336134 Varma Jan 2002 B1
6337700 Kinoe Jan 2002 B1
6345287 Fong Feb 2002 B1
6349091 Li Feb 2002 B1
6351775 Yu Feb 2002 B1
6353449 Gregg Mar 2002 B1
6356297 Cheng Mar 2002 B1
6370560 Robertazzi Apr 2002 B1
6393467 Potvin May 2002 B1
6411312 Sheppard Jun 2002 B1
6418462 Xu Jul 2002 B1
6426757 Smith Jul 2002 B1
6445389 Bossen Sep 2002 B1
6452593 Challener Sep 2002 B1
6462760 Cox, Jr. Oct 2002 B1
6466550 Foster Oct 2002 B1
6469712 Hilpert, Jr. Oct 2002 B1
6473085 Brock Oct 2002 B1
6473597 Johnson Oct 2002 B1
6499053 Marquette Dec 2002 B1
6505208 Kanevsky Jan 2003 B1
6509925 Dermler Jan 2003 B1
6525731 Suits Feb 2003 B1
6539415 Mercs Mar 2003 B1
6549933 Barrett Apr 2003 B1
6567109 Todd May 2003 B1
6567813 Zhu May 2003 B1
6574477 Rathunde Jun 2003 B1
6580981 Masood Jun 2003 B1
6601084 Bhaskaran Jul 2003 B1
6618751 Challenger Sep 2003 B1
RE38375 Herzberg Dec 2003 E
6657617 Paolini Dec 2003 B2
6657642 Bardon Dec 2003 B1
6684255 Martin Jan 2004 B1
6699127 Lobb Mar 2004 B1
6717600 Dutta Apr 2004 B2
6734884 Berry May 2004 B1
6765596 Lection Jul 2004 B2
6781607 Benham Aug 2004 B1
6801930 Dionne Oct 2004 B1
6819669 Rooney Nov 2004 B2
6832239 Kraft Dec 2004 B1
6836480 Basso Dec 2004 B2
6845389 Sen Jan 2005 B1
6886026 Hanson Apr 2005 B1
6941236 Huelsbergen Sep 2005 B2
6948168 Kuprionas Sep 2005 B1
RE38865 Dumarot Nov 2005 E
6970929 Bae Nov 2005 B2
6993596 Hinton Jan 2006 B2
7006616 Christofferson Feb 2006 B1
7028296 Irfan Apr 2006 B2
7062533 Brown Jun 2006 B2
7089266 Stolte Aug 2006 B2
7124071 Rich Oct 2006 B2
7139792 Mishra Nov 2006 B1
7143409 Herrero Nov 2006 B2
7159217 Pulsipher Jan 2007 B2
7185067 Viswanath Feb 2007 B1
7209137 Brokenshire Apr 2007 B2
7230616 Taubin Jun 2007 B2
7249123 Elder Jul 2007 B2
7263511 Bodin Aug 2007 B2
7287053 Bodin Oct 2007 B2
7305438 Christensen Dec 2007 B2
7308476 Mannaru Dec 2007 B2
7353295 Crow Apr 2008 B1
7404149 Fox Jul 2008 B2
7426538 Bodin Sep 2008 B2
7427980 Partridge Sep 2008 B1
7428588 Berstis Sep 2008 B2
7429987 Leah Sep 2008 B2
7436407 Doi Oct 2008 B2
7439975 Hsu Oct 2008 B2
7443393 Shen Oct 2008 B2
7447996 Cox Nov 2008 B1
7467180 Kaufman Dec 2008 B2
7467181 McGowan Dec 2008 B2
7475354 Guido Jan 2009 B2
7478127 Creamer Jan 2009 B2
7484012 Hinton Jan 2009 B2
7503007 Goodman Mar 2009 B2
7506264 Polan Mar 2009 B2
7515136 Kanevsky Apr 2009 B1
7525964 Astley Apr 2009 B2
7548948 Klemets Jun 2009 B2
7552177 Kessen Jun 2009 B2
7565650 Bhogal Jul 2009 B2
7571224 Childress Aug 2009 B2
7571389 Broussard Aug 2009 B2
7580888 Ur Aug 2009 B2
7590984 Kaufman Sep 2009 B2
7596596 Chen Sep 2009 B2
7640587 Fox Dec 2009 B2
7667701 Leah Feb 2010 B2
7698656 Srivastava Apr 2010 B2
7702784 Berstis Apr 2010 B2
7714867 Doi May 2010 B2
7719532 Schardt May 2010 B2
7719535 Tadokoro May 2010 B2
7734691 Creamer Jun 2010 B2
7737969 Shen Jun 2010 B2
7743095 Goldberg Jun 2010 B2
7747679 Galvin Jun 2010 B2
7765478 Reed Jul 2010 B2
7768514 Pagan Aug 2010 B2
7773087 Fowler Aug 2010 B2
7774407 Daly Aug 2010 B2
7782318 Shearer Aug 2010 B2
7792263 Bruce Sep 2010 B2
7792801 Hamilton, II Sep 2010 B2
7796128 Radzikowski Sep 2010 B2
7808500 Shearer Oct 2010 B2
7814152 McGowan Oct 2010 B2
7827318 Hinton Nov 2010 B2
7843471 Doan Nov 2010 B2
7844663 Boutboul Nov 2010 B2
7847799 Taubin Dec 2010 B2
7856469 Chen Dec 2010 B2
7873485 Castelli Jan 2011 B2
7882222 Dolbier Feb 2011 B2
7882243 Ivory Feb 2011 B2
7884819 Kuesel Feb 2011 B2
7886045 Bates Feb 2011 B2
7890623 Bates Feb 2011 B2
7893936 Shearer Feb 2011 B2
7904829 Fox Mar 2011 B2
7921128 Hamilton, II Apr 2011 B2
7940265 Brown May 2011 B2
7945620 Bou-Ghannam May 2011 B2
7945802 Hamilton, II May 2011 B2
7970837 Lyle Jun 2011 B2
7970840 Cannon Jun 2011 B2
7985138 Acharya Jul 2011 B2
7990387 Hamilton, II Aug 2011 B2
7996164 Hamilton, II Aug 2011 B2
8001161 George Aug 2011 B2
8004518 Fowler Aug 2011 B2
8005025 Bodin Aug 2011 B2
8006182 Bates Aug 2011 B2
8013861 Hamilton, II Sep 2011 B2
8018453 Fowler Sep 2011 B2
8018462 Bhogal Sep 2011 B2
8019797 Hamilton, II Sep 2011 B2
8019858 Bauchot Sep 2011 B2
8022948 Garbow Sep 2011 B2
8022950 Brown Sep 2011 B2
8026913 Garbow Sep 2011 B2
8028021 Reisinger Sep 2011 B2
8028022 Brownholtz Sep 2011 B2
8037416 Bates Oct 2011 B2
8041614 Bhogal Oct 2011 B2
8046700 Bates Oct 2011 B2
8051462 Hamilton, II Nov 2011 B2
8055656 Cradick Nov 2011 B2
8056121 Hamilton, II Nov 2011 B2
8057307 Berstis Nov 2011 B2
8062130 Smith Nov 2011 B2
8063905 Brown Nov 2011 B2
8070601 Acharya Dec 2011 B2
8082245 Bates Dec 2011 B2
8085267 Brown Dec 2011 B2
8089481 Shearer Jan 2012 B2
8092288 Theis Jan 2012 B2
8095881 Reisinger Jan 2012 B2
8099338 Betzler Jan 2012 B2
8099668 Garbow Jan 2012 B2
8102334 Brown Jan 2012 B2
8103640 Lo Jan 2012 B2
8103959 Cannon Jan 2012 B2
8105165 Karstens Jan 2012 B2
8108774 Finn Jan 2012 B2
8113959 De Judicibus Feb 2012 B2
8117551 Cheng Feb 2012 B2
8125485 Brown Feb 2012 B2
8127235 Haggar Feb 2012 B2
8127236 Hamilton, II Feb 2012 B2
8128487 Hamilton, II Mar 2012 B2
8131740 Cradick Mar 2012 B2
8132235 Bussani Mar 2012 B2
8134560 Bates Mar 2012 B2
8139060 Brown Mar 2012 B2
8139780 Shearer Mar 2012 B2
8140340 Bhogal Mar 2012 B2
8140620 Creamer Mar 2012 B2
8140978 Betzler Mar 2012 B2
8140982 Hamilton, II Mar 2012 B2
8145676 Bhogal Mar 2012 B2
8145725 Dawson Mar 2012 B2
8149241 Do Apr 2012 B2
8151191 Nicol, II Apr 2012 B2
8156184 Kurata Apr 2012 B2
8165350 Fuhrmann Apr 2012 B2
8171407 Huang May 2012 B2
8171408 Dawson May 2012 B2
8171559 Hamilton, II May 2012 B2
8174541 Greene May 2012 B2
8176421 Dawson May 2012 B2
8176422 Bergman May 2012 B2
8184092 Cox May 2012 B2
8184116 Finn May 2012 B2
8185450 McVey May 2012 B2
8185829 Cannon May 2012 B2
8187067 Hamilton, II May 2012 B2
8199145 Hamilton, II Jun 2012 B2
8203561 Carter Jun 2012 B2
8214335 Hamilton, II Jul 2012 B2
8214433 Dawson Jul 2012 B2
8214750 Hamilton, II Jul 2012 B2
8214751 Dawson Jul 2012 B2
8217953 Comparan Jul 2012 B2
8219616 Dawson Jul 2012 B2
8230045 Kawachiya Jul 2012 B2
8230338 Dugan Jul 2012 B2
8233005 Finn Jul 2012 B2
8234234 Shearer Jul 2012 B2
8234579 Do Jul 2012 B2
8239775 Beverland Aug 2012 B2
8241131 Bhogal Aug 2012 B2
8245241 Hamilton, II Aug 2012 B2
8245283 Dawson Aug 2012 B2
8265253 Bruce Sep 2012 B2
8310497 Comparan Nov 2012 B2
8334871 Hamilton, II Dec 2012 B2
8360886 Karstens Jan 2013 B2
8364804 Childress Jan 2013 B2
8425326 Chudley Apr 2013 B2
8442946 Hamilton, II May 2013 B2
8506372 Chudley Aug 2013 B2
8514249 Hamilton, II Aug 2013 B2
8550920 Allen Oct 2013 B1
8554841 Kurata Oct 2013 B2
8607142 Bergman Dec 2013 B2
8607356 Hamilton, II Dec 2013 B2
8624903 Hamilton, II Jan 2014 B2
8626836 Dawson Jan 2014 B2
8692835 Hamilton, II Apr 2014 B2
8721412 Chudley May 2014 B2
8827816 Bhogal Sep 2014 B2
8838640 Bates Sep 2014 B2
8849917 Dawson Sep 2014 B2
8856650 Off Oct 2014 B1
8893012 Zhang Nov 2014 B1
8911296 Chudley Dec 2014 B2
8992316 Smith Mar 2015 B2
9005030 Laakkonen Apr 2015 B2
9005036 Laakkonen Apr 2015 B2
9083654 Dawson Jul 2015 B2
9152914 Haggar Oct 2015 B2
9199165 Zahn Dec 2015 B2
9205328 Bansi Dec 2015 B2
9286731 Hamilton, II Mar 2016 B2
9299080 Dawson Mar 2016 B2
9364746 Chudley Jun 2016 B2
9403090 Harris Aug 2016 B2
9474973 Perry Oct 2016 B2
9525746 Bates Dec 2016 B2
9583109 Kurata Feb 2017 B2
9621622 Ueda Apr 2017 B2
9630097 Paradise Apr 2017 B2
9641592 Thompson May 2017 B2
9682324 Bansi Jun 2017 B2
9764244 Bansi Sep 2017 B2
9789406 Marr Oct 2017 B2
9808722 Kawachiya Nov 2017 B2
10223449 Smith Mar 2019 B2
20020007317 Callaghan Jan 2002 A1
20020010776 Lerner Jan 2002 A1
20020023159 Vange Feb 2002 A1
20020056006 Vange May 2002 A1
20020065870 Baehr-Jones May 2002 A1
20020078192 Kopsell Jun 2002 A1
20020107918 Shaffer Aug 2002 A1
20020124137 Ulrich Sep 2002 A1
20030008712 Poulin Jan 2003 A1
20030037131 Verma Feb 2003 A1
20030055892 Huitema Mar 2003 A1
20030056002 Trethewey Mar 2003 A1
20030084172 Dejong May 2003 A1
20030084302 De May 2003 A1
20030110399 Rail Jun 2003 A1
20030135621 Romagnoli Jul 2003 A1
20030149781 Yared Aug 2003 A1
20030163733 Barriga-Caceres Aug 2003 A1
20030177187 Levine Sep 2003 A1
20040014514 Yacenda Jan 2004 A1
20040073773 Demjanenko Apr 2004 A1
20040103079 Tokusho May 2004 A1
20040210627 Kroening Oct 2004 A1
20040228291 Huslak Nov 2004 A1
20040244006 Kaufman Dec 2004 A1
20050015571 Kaufman Jan 2005 A1
20050246711 Berstis Nov 2005 A1
20060059223 Klemets Mar 2006 A1
20070060359 Smith Mar 2007 A1
20070294089 Garbow Dec 2007 A1
20080046956 Kulas Feb 2008 A1
20080086459 Ryan Apr 2008 A1
20080139301 Holthe Jun 2008 A1
20080270605 Berstis Oct 2008 A1
20080301405 Kaufman Dec 2008 A1
20090082095 Walker Mar 2009 A1
20090113448 Smith Apr 2009 A1
20090131177 Pearce May 2009 A1
20090147010 Russell Jun 2009 A1
20090258708 Figueroa Oct 2009 A1
20090298585 Cannon Dec 2009 A1
20100153653 El-Mahdy Jun 2010 A1
20100167816 Perlman Jul 2010 A1
20110151971 Altshuler Jun 2011 A1
20120100910 Eichorn Apr 2012 A1
20120289346 Van Luchene Nov 2012 A1
20140031121 Kern Jan 2014 A1
20140194211 Chimes Jul 2014 A1
20140221084 Morrison, III Aug 2014 A1
20140235336 Morimoto Aug 2014 A1
20140344725 Bates Nov 2014 A1
20140370979 Zahn Dec 2014 A1
20150141140 Lampe May 2015 A1
20150224395 Trombetta Aug 2015 A1
20150224399 Melo Aug 2015 A1
20150317945 Andress Nov 2015 A1
20150375102 George Dec 2015 A1
20150379407 Woon Dec 2015 A1
20160140637 Szabo May 2016 A1
20160171835 Washington Jun 2016 A1
20160180647 Webb Jun 2016 A1
20160191671 Dawson Jun 2016 A1
20160214012 Nishikawa Jul 2016 A1
20170014718 Ceraldi Jan 2017 A1
Foreign Referenced Citations (89)
Number Date Country
768367 Mar 2004 AU
2005215048 Oct 2011 AU
2143874 Jun 2000 CA
2292678 Jul 2005 CA
2552135 Jul 2013 CA
1334650 Feb 2002 CN
1202652 Oct 2002 CN
1141641 Mar 2004 CN
1494679 May 2004 CN
1219384 Sep 2005 CN
1307544 Mar 2007 CN
100407675 Jul 2008 CN
100423016 Oct 2008 CN
100557637 Nov 2009 CN
101001678 May 2010 CN
101436242 Dec 2010 CN
101801482 Dec 2014 CN
668583 Aug 1995 EP
0940960 Sep 1999 EP
0998091 May 2000 EP
1020804 Jul 2000 EP
0627728 Sep 2000 EP
1089516 Apr 2001 EP
0717337 Aug 2001 EP
1207694 May 2002 EP
0679977 Oct 2002 EP
0679978 Mar 2003 EP
0890924 Sep 2003 EP
1377902 Aug 2004 EP
0813132 Jan 2005 EP
1380133 Mar 2005 EP
1021021 Sep 2005 EP
0930584 Oct 2005 EP
0883087 Aug 2007 EP
1176828 Oct 2007 EP
2076888 Jul 2015 EP
2339938 Oct 2002 GB
2352154 Jul 2003 GB
H1198134 Apr 1999 JP
H11191097 Apr 1999 JP
11191097 Jul 1999 JP
3033956 Apr 2000 JP
3124916 Jan 2001 JP
3177221 Jun 2001 JP
2001204973 Jul 2001 JP
3199231 Aug 2001 JP
3210558 Sep 2001 JP
3275935 Feb 2002 JP
3361745 Jan 2003 JP
3368188 Jan 2003 JP
3470955 Sep 2003 JP
3503774 Dec 2003 JP
3575598 Jul 2004 JP
3579823 Jul 2004 JP
3579154 Oct 2004 JP
3701773 Oct 2005 JP
3777161 Mar 2006 JP
3914430 Feb 2007 JP
3942090 Apr 2007 JP
3962361 May 2007 JP
4009235 Sep 2007 JP
4225376 Dec 2008 JP
4653075 Dec 2010 JP
5063698 Aug 2012 JP
5159375 Mar 2013 JP
5352200 Nov 2013 JP
5734566 Jun 2015 JP
20020038229 May 2002 KR
20030039019 May 2003 KR
117864 Aug 2004 MY
55396 Dec 1998 SG
424213 Mar 2001 TW
527825 Apr 2003 TW
9642041 Dec 1996 WO
9900960 Jan 1999 WO
0203645 Jan 2002 WO
2002073457 Sep 2002 WO
20020087156 Oct 2002 WO
03049459 Jun 2003 WO
03058518 Jul 2003 WO
2004086212 Oct 2004 WO
2005079538 Sep 2005 WO
2007101785 Sep 2007 WO
2008037599 Apr 2008 WO
2008074627 Jun 2008 WO
2008095767 Aug 2008 WO
2009037257 Mar 2009 WO
2009104564 Aug 2009 WO
2010096738 Aug 2010 WO
Non-Patent Literature Citations (18)
Entry
Ma et al., “A Scalable Parallel Cell-Projection vol. Rendering Algorithm for Three-Dimensional Unstructured Data”, IEEE 1997, pp. 1-10.
Hassen et al., “A Task-and Data-Parallel Programming Language Based on Shared Objects,” ACM Transactions on Programming Languages and Systems, vol. 20, No. 6, Nov. 1998, pp. 1131-1170.
Kormann et al., “Risks of the Passport Single Signon Protocol”< 9th Intl. WWW Conf., May 15, 2000.
Syverson, “Limitations on design principles for public key protocols”, Proc. of 1996 IEEE Symposium on Security and Privacy, pp. 62-72, May 6, 1996.
Abadi et al., “Prudent Engineering Practice for Cryptogrphic Protocols”, Proc. of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 122-136, May 16, 1994.
EverQuest Wiki, “EverQuest Classes”, Aug. 19, 2011, <http://everquest.wikia.com/wiki/Classes?oldid=3773>.
Planet Unreal, “Unreal Tournament Game Guide”, game released Nov. 1999 with earliest article cmment on Sep. 6, 2007, IGN Entertainment, <http://planetunreal.gamespy.com/View.php?view=UTGameInfo.Detail&id=28&game=6><http://planetunreal.gamespy.com/View.php?view=UTGameInfo.Detail&id=1&game=6>.
IBM developer Works, OptimalGrid—autonomic computing on the Grid, James H. Kaufman; Tobin J. Lehman; Glenn Deen; and John Thomas, Jun. 2003.
IBM, Transcoding: Extending e-business to new environments, Britton et al., Sep. 22, 2000.
Duong et al; “A dynamic load sharing algorithm for massivly multiplayer online games” published Sep. 28, 2003-Oct. 1, 2003.http://ieeexplore.ieee.org/iel5/8945/28322/01266179.pdf?tp=&arnumber-=1266179&isnumber=28322http://ieeexplore.ieee.org/xpl/absprintf.jsp?arnumb-er=1266179.
“A multi-server architecture for distributed virtual walkthrough” http://delivery.acm.org/10.1145/590000/585768/p163-ng.pdf?key1=585768&key-2=0554824911&coll=GUIDE&dl=GUIDE&CFID=41712537&CFTOKEN=50783297. Nov. 11, 2002.
Mauve, M., Fischer, S., and Widmer, J. 2002. A generic proxy system for networked computer games. In Proceedings of the 1st Workshop on Network and System Support for Games (Braunschweig, Germany, Apr. 16-17, 2002). NetGames '02. ACM, New York, NY, 25-28. DOI= http://doi.acm.org/10.1145/566500.566504.
Lee et al., “A Self-Adjusting Data Distribution Mechanism for Multidimensional Load Balancing in Multiprocessor-Based Database Systems,” Information Systems vol. 19, No. 7, pp. 549-567, 1994.
Feng et al., “A Parallel Hierarchical Radiosity Algorithm for Complex Scenes,” Proceedings IEEE Symposium on Parallel Rendering (PRS) '97), IEEE Computer Society Technical Committee on Computer Graphics in cooperation with ACM SIGGRAPH pp. 71-79, 1997.
Andert, “A Simulation of Dynamic Task Allocation in a Distributed Computer System,” Proceedings of the 1987 Winter Simulation Conference, 1987, pp. 1-9.
Derek Stanley, “What bitrate should I use when encoding my video? How do I optimize my video for the web?”, Feb. 12, 2012, ezs3. com, <https://web.archive.Org/web/20120212171320/https://www.ezs3.com/public/What_bitrate_should_I_use_when_encoding_my_video_How_do_I_optimize_my_video_for_ the_web.cfm> (Year: 2012).
International Search Report as Published as WO2005/079538 in corresponding international application No. PCT/US2005/005550. Jul. 5, 2006.
Surelya, “CS:Go Winter Update Adds Killer Replay”, MMOs.com, published Dec. 13, 2015 retrieved from Internet URL <https://mmos.com/news/csgo-winter-update-adds-killer-replay>. (Year: 2015).
Related Publications (1)
Number Date Country
20220331703 A1 Oct 2022 US
Continuations (1)
Number Date Country
Parent 14561801 Dec 2014 US
Child 17662253 US