System and method for damage prevention by improving the shock resistance of a hard disk actuator arm

Information

  • Patent Grant
  • 7522383
  • Patent Number
    7,522,383
  • Date Filed
    Thursday, August 24, 2006
    17 years ago
  • Date Issued
    Tuesday, April 21, 2009
    15 years ago
Abstract
A system and method are disclosed for improving the vibration/ mechanical shock-resistance of a hard disk actuator arm. A guide block is located behind the actuator arm's angular range of motion, preventing over-flexure/vibration during operation, and/or the drive's actuator screw head diameter is increased to minimize arm vibration.
Description
BACKGROUND INFORMATION

The present invention relates to magnetic hard disk drives. More specifically, the present invention relates to a system for damage prevention by improving the shock resistance of a hard disk actuator arm.


There are several types of computer data storage devices. One is a hard disk drive (HDD). The HDD utilizes one or more magnetic disks to store the data and one or more heads to read data from and write data to the disk(s). As advances have occurred in the art of hard drive and other computer technology, hard drives and their associated computer systems have become small enough to enable portability. Along with the portability of such systems, comes an increased risk of shock or vibration causing either impaired read/write ability or damage to the hard drive.


If a hard drive experiences severe vibration or mechanical shock, the actuator arm, which positions the head over the magnetic disk, may impact the disk, potentially damaging either the head or disk or both. In addition, damage may occur to components such as the arm suspension and physical and electrical connections. Further, if a micro-actuator system is utilized for fine-tuning of head placement, damage could occur to the micro-actuator itself. In the art today, different methods are utilized to prevent such damage.



FIG. 1 illustrates a typical method utilized to prevent damage caused by shock or vibration to a hard drive. A stationary ramp 102 is located near the outer edge of the disk 104. When the head 106 is moved beyond the edge of the disk, it rides onto the ramp 102, where it is ‘parked’ in a safe, restrained position. One problem with this design is that it is only effective during hard drive non-operation. It is unable to prevent damage during normal drive operation when the head 106 is reading data from and writing data to the disk 104. Further, a ramp 102 may only be used with ‘diagonal arm orientation’ hard drives 108, as shown in FIG. 1a. Because of space limitations, a ramp 112 may not be utilized with ‘perpendicular arm orientation’ hard drives 110, as shown in FIG. 1b.



FIG. 2 provides an illustration of another method of preventing shock/vibration-associated damage, which involves the utilization of a stationary ‘comb’. As shown in FIGS. 2a (top view) and 2b (side view), the comb 206 is affixed to the hard drive casing 212 in a location such that each of the disks 202 and each of the arms 204 has a position interposed between ‘teeth’ 208 of the comb 206 throughout the arm's 204 range of motion (See FIG. 3, also).



FIG. 3 provides another illustration of the ‘comb’ method of arm stabilization. FIGS. 3a and 3b show the arms 304 at the opposite end of their range of motion 314. One disadvantage of the ‘comb’ method is that there is a substantial portion (the load beam 316) of the arm 304 that is unconstrained by the comb 306. This portion 316 of the arm is free to move toward and away from the disk 302 under vibration or mechanical shock in a ‘spring-like’ manner. Another disadvantage is that the comb 306 supports only the base plate portion 318 of the arm and not the suspension (load beam 316) of the head 320 (discussed below). Further, the distance from the support of the comb 306 to the head 320 is relatively large, allowing for substantial displacement of the head under shock/vibration. It is therefore desirable to have a system for improving the shock resistance of a hard drive actuator arm in addition to other advantages.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the ‘ramp’ method for preventing damage caused by shock or vibration to a hard drive.



FIG. 2 provides an illustration of another method of preventing shock/vibration-associated damage, which involves the utilization of a stationary ‘comb’.



FIG. 3 provides another illustration of the ‘comb’ method of arm stabilization.



FIG. 4 illustrates a single-head hard drive utilizing an actuator arm guide block under principles of the present invention.



FIG. 5 illustrates increasing the diameter of the actuator screw under principles of the present invention.





DETAILED DESCRIPTION

To improve shock resistance of the hard drive, in one embodiment of the present invention, a guide block is provided to support/restrain the actuator arm from behind (i.e., the side facing away from the surface of the disk). FIG. 4 illustrates a single-head hard drive utilizing an actuator arm guide block under principles of the present invention. FIG. 4a provides a perspective view of a hard drive with guide block, and FIG. 4b provides a side view of the actuator arm and guide block under principles of the present invention. In one embodiment, an ‘arc’-shaped guide block 402 is coupled to the hard drive casing 404 behind the actuator arm 406 to prevent the arm 406 from flexing away from the disk 408 during shock or vibration. The arm 406 is thus not allowed to bend away (downward, in this illustration) from the disk 408, preventing damage to the arm (over-flexure) and/or disk (by impact upon return swing). In one embodiment, the guide block 402 is shaped to follow the path of the head suspension (load beam) 410 through the arm's 406 angular range of motion.


In one embodiment, the guide block 402 is made of a metal, such as stainless steel; in another embodiment, the guide block 402 is made of a polymer, such as polyethylene, polyester, or polyamide; and in another embodiment, the guide block 402 is ceramic.


In one embodiment, the guide block 402 has two different surfaces (steps). The first step 412 supports the main portion of the arm 406, and the second step 418 supports the load beam portion (suspension) 410. This design allows the load beam 410, which can articulate somewhat with respect to the main portion of the arm 406, to be supported independently. In one embodiment, a portion of the guide block 402 near the center of the disk 408 serves as a load/unload station 420 to constrain the arm 406 during non-operation of the hard drive.


In one embodiment of the present invention, an actuator screw is utilized that has ahead (crown) large enough to reduce arm vibration. FIG. 5 illustrates increasing the diameter of the actuator screw 502 under principles of the present invention. Common in the art today is a screw head diameter of 5.3 millimeters (mm). In one embodiment, a screw with a larger-diameter head 502 provides axially-directed compression upon the arm over a greater area, thus reinforcing and stabilizing the arm 504 under that area. Further, it provides pressure farther away from the axis, giving a greater moment for resisting vibration/shock-induced flexure (torsion). In one embodiment, an actuator screw 502 with a head diameter of 8.4 millimeter (mm) is utilized with a 3.0 inch hard drive. In one embodiment, an 8.4 mm screw head 502 is utilized with a 3.5 inch hard drive. Preferably, in 3.5 inch hard drives, the head diameter of the screw is between 8.4 mm and 9.4 mm to achieve the vibration/shock resistance of the present invention. In another embodiment, a generally 8.4 mm head diameter screw 502 is utilized to provide the benefits of a large-headed screw 502, yet satisfy space limitations of a 3.5 inch hard drive such as the Maxtor Nike 3.5 inch drive. This provides a screw head diameter 508 that is 44.9% the width 510 of the arm (at the midpoint of the screw and perpendicular to the length of the arm 504) for a hard drive such as the Maxtor Nike 3.5 inch platform, which has an arm width 510 of 18.7 mm. Preferably, in 3.5 inch hard drives, the ratio between head diameter and arm width is between 28.3% and 50.3% to achieve the vibration/shock resistance of the present invention.


Although several embodiments are specifically illustrated and described herein, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

Claims
  • 1. A system to improve shock resistance of a magnetic storage device comprising: an actuator screw to secure an arm element and to provide an axis of rotation for said arm element, whereinsaid actuator screw includes a crown portion of a diameter and a shaft portion;said crown portion is in direct contact with a surface of the arm element so as to secure said arm element by uniformly applying axially-imposed compression upon the arm element; andsaid diameter is between 28.3% and 50.3% of a width of said arm element, said width taken midpoint of said actuator screw and perpendicular to said arm element.
  • 2. The system of claim 1, wherein the actuator screw is to be secured to a threaded receptor.
  • 3. The system of claim 1, wherein the actuator screw is to secure said arm element to a storage device casing.
  • 4. A method to improve shock resistance of a magnetic storage device comprising: providing, by an actuator screw, an axis of rotation for said arm element, said actuator screw including a crown portion of a diameter and a shaft portion; andsecuring, by said actuator screw, an arm element via axially-imposed compression of said crown portion upon said arm element, whereinsaid diameter is greater than 5.3 millimeters but does not exceed 9.4 millimeters so as to minimize vibration of said arm element.
  • 5. The method of claim 4, wherein the actuator screw is to be secured to a threaded receptor.
  • 6. The method of claim 4, wherein the actuator screw is to secure said arm element to a storage device casing.
  • 7. A system to improve shock resistance of a magnetic storage device comprising: an actuator screw to secure an arm element and to provide an axis of rotation for said arm element, whereinsaid actuator screw includes a crown portion of a diameter and a shaft portion;said crown portion is in direct contact with a surface of the arm element so as to secure said arm element by uniformly applying axially-imposed compression upon the arm element; andsaid diameter is between 8.4 millimeters and 9.4 millimeters.
  • 8. A system to improve shock resistance of a magnetic storage device comprising: an actuator screw to secure an arm element and to provide an axis of rotation for said arm element, whereinsaid actuator screw includes a crown portion of a diameter and a shaft portion;said crown portion is in direct contact with a surface of the arm element so as to secure said arm element by uniformly applying axially-imposed compression upon the arm; andsaid diameter is greater than 5.3 millimeters but does not exceed 9.4 millimeters.
Priority Claims (1)
Number Date Country Kind
PCT/CN02/00391 Jun 2002 WO international
RELATED APPLICATIONS

This application is a Divisional of patent application Ser. No. 10/289,908, filed on Nov. 6, 2002, now U.S. Pat. No. 7,142,396 which claims the benefit of priority to PCT/CN02/00391, filed on 05 Jun. 2002.

US Referenced Citations (17)
Number Name Date Kind
4945435 Boigenzahn et al. Jul 1990 A
5239431 Day et al. Aug 1993 A
5583721 Kim Dec 1996 A
5640290 Khanna et al. Jun 1997 A
5754372 Ramsdell et al. May 1998 A
5847902 Clifford, Jr. et al. Dec 1998 A
5864441 Coffey et al. Jan 1999 A
5870252 Hanrahan Feb 1999 A
6205004 Kim Mar 2001 B1
6301073 Gillis et al. Oct 2001 B1
6341051 Hachiya et al. Jan 2002 B2
6373666 Iida et al. Apr 2002 B2
6417991 Onda Jul 2002 B1
6473270 McDonald et al. Oct 2002 B1
6781791 Griffin et al. Aug 2004 B1
6801386 Niroot et al. Oct 2004 B1
6956723 Suzuki Oct 2005 B2
Foreign Referenced Citations (4)
Number Date Country
03-168985 Jul 1991 JP
2001-035131 Feb 2001 JP
2001-067856 Mar 2001 JP
2001-176257 Jun 2001 JP
Related Publications (1)
Number Date Country
20060291103 A1 Dec 2006 US
Divisions (1)
Number Date Country
Parent 10289908 Nov 2002 US
Child 11510472 US