System and method for data collection to validate location data

Information

  • Patent Grant
  • 11182383
  • Patent Number
    11,182,383
  • Date Filed
    Wednesday, November 14, 2018
    6 years ago
  • Date Issued
    Tuesday, November 23, 2021
    3 years ago
  • CPC
    • G06F16/245
    • G06F16/29
    • H04W4/029
  • Field of Search
    • CPC
    • G06F16/245
    • G06F16/29
    • H04W4/02
    • H04W4/021
    • H04W4/029
    • H04W4/025
    • H04W4/04
  • International Classifications
    • G06F16/245
    • H04W4/00
    • G06F16/29
    • H04W4/029
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
A data collection system that provides the means to collect, store and make data available for a location analytics inference pipeline. The system incorporates a feedback mechanism enabling algorithms produced from the inference pipeline to drive the collection strategy to yield higher data quality and to produce reference data for model validation.
Description
BACKGROUND

There are a variety of existing technologies which track and monitor location data. One example is a Global Positioning Satellite (GPS) system which captures location information at regular intervals from earth-orbiting satellites. Another example is radio frequency identification (RFID) systems which identify and track the location of assets and inventory by affixing a small microchip or tag to an object or person being tracked.


Additional technologies exist which use geographical positioning to provide information or entertainment services based on a user's location. In one example, an individual uses a mobile device to identify the nearest ATM or restaurant based on his or her current location. Another example is the delivery of targeted advertising or promotions to individuals whom are near a particular eating or retail establishment.


The need exists for systems and methods for collecting data that validates location data based on a variety of information sources, as well as provide additional benefits. Overall, the examples herein of some prior or related systems and their associated limitations are intended to be illustrative and not exclusive. Other limitations of existing or prior systems will be become apparent to those skilled in the art upon reading the following Detailed Description.





BRIEF DESCRIPTION OF THE DRAWINGS

The details of one or more implementations are set forth in the accompanying drawings and the description below. Further features of the invention, its nature and various advantages, will be apparent from the following detailed description and drawings, and from the claims.


Examples of a system and method for a data collection system are illustrated in the figures. The examples and figures are illustrative rather than limiting.



FIG. 1 depicts an example environment in which one implementation of the data collection system can operate.



FIG. 2 depicts a high-level representation of data flow in the data collection system.



FIG. 3 depicts an example structure of observation data.



FIG. 4 depicts example user interactions with various services whereby place query data can be collected.



FIG. 5 depicts an example user interface that represents the search query results from various services.



FIG. 6 depicts an example user interface.



FIG. 7 depicts example user interactions with various services whereby offline profile and place confirmations can be collected.



FIG. 8 depicts an example user interface displaying a place survey.



FIG. 9 depicts an example process by which places are generated in a place survey.



FIG. 10 depicts a high-level architecture of an analytics agent assisting data flow between a device system and a device storage.



FIG. 11 depicts a high-level architecture of an analytics agent assisting data flow between a device and an analytics server.



FIG. 12 depicts example systems and applications that can integrate the analytics agent of the data collection system.



FIG. 13 depicts a high-level layout of backend components and data flow.



FIG. 14 depicts a high-level segmentation of observation data by device, user, and session.



FIG. 15 depicts an example process by which the analytics server receives observation data from a device.



FIG. 16 depicts a suitable process and environment in which implementations of the data collection system can operate.



FIG. 17 depicts an example user interface whereby a user may configure a profile and service(s) to register a sign-in.





DETAILED DESCRIPTION

In existing systems, both user data and place data are noisy. User location data can be noisy due to poor GPS reception, poor Wi-Fi reception, or weak cell phone signals. Similarly, mobile electronic devices can lack certain types of sensors or have low quality sensor readings. In the same way, the absence of a comprehensive database of places with large coverage and accurate location information causes place data to also be noisy.


A system and method for collecting and validating location data from a mobile device are described herein that overcome at least the above limitations and provide additional benefits. The data collection system gathers data and measurements from a user's mobile device. Using various sources, the data collection system can directly and indirectly validate location data. One way location data can be validated is by directly querying the user of the mobile device. For example, a survey question may appear on the user's device which prompts him or her to confirm a location. Another way location data can be validated is through indirect sources such as third-party websites, sensor measurements, and user activity.


The data collection system can gather relevant data via bulk import from third-parties. The data collected includes profile data, such as user account information, demographics, user preferences, etc. and observation data, such as location, sensor, device information, and activity streams, reference data, answers to survey questions, etc. The data collection system supports a feedback mechanism that pushes data to devices and is used for tuning the data collection strategy.


In some cases, the data collection system is part of a larger platform for determining a user's location. For example, the data collection system can be coupled to an inference pipeline which further processes location information. Additional details of the inference pipeline can be found in the assignee's concurrently filed U.S. patent application Ser. No. 13/405,190.


The data collection system can include an analytics agent. In one implementation, this analytics agent includes an application programming interface (API) that can easily be integrated with any device and referenced by a third-party. The API facilitates the data collection by abstracting the underlying implementation details of data collection specific to a device. An example of this API is referred to sometimes herein as a Placed™ Agent. An analytics agent can collect device data including location and sensor data from a device and make this data available for an inference pipeline. This data may be high volume de-normalized Observation Data (described below) that may be stored in any data storage.


The analytics agent can also collect user and device information that can be used to identify the source of each data observation. This profile data may be stored in any data storage. The analytics agent also exposes public interfaces which in turn become reference data. This data may be used for the training and validation of models in an inference pipeline.


The analytics agent is can be easily integrated with any device. This allows exponential growth of data collection as the analytics agent is integrated with devices by third-parties. These third-parties include software developers on mobile devices, web application developers, device manufacturers, service providers including mobile carriers, in addition to any company or organization that incorporates location into their offering.


Various examples of the invention will now be described. The following description provides certain specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant technology will understand, however, that the invention may be practiced without many of these details. Likewise, one skilled in the relevant technology will also understand that the invention may include many other obvious features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below, to avoid unnecessarily obscuring the relevant descriptions of the various examples.


The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the invention. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.



FIG. 1 and the following discussion provide a brief, general description of a representative environment 100 in which a data collection system 120 can operate. A user device 102 is shown which moves from one location to another. As an example, user device 102 moves from a location A 104 to location B 106 to location C 108. The user device 102 may be any suitable device for sending and receiving communications and may represent various electronic systems, such as personal computers, laptop computers, tablet computers, mobile phones, mobile gaming devices, or the like. Those skilled in the relevant art will appreciate that aspects of the invention can be practiced with other communications, data processing, or computer system configurations, including: Internet appliances, hand-held devices [including personal digital assistants (PDAs)], wearable computers, all manner of cellular or mobile phones [including Voice over IP (VoIP) phones], dumb terminals, media players, gaming devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, and the like.


As the user device 102 changes locations, the data collection system 120 collects and validates information through a communication network 110. Network 110 is capable of providing wireless communications using any suitable short-range or long-range communications protocol (e.g., a wireless communications infrastructure including communications towers and telecommunications servers). In other implementations, network 110 may support Wi-Fi (e.g., 802.11 protocol), Bluetooth, high-frequency systems (3.g., 900 MHz, 2.4 GHz, and 5.6 GHz communication systems), infrared, or other relatively localized wireless communication protocol, or any combination thereof. As such, any suitable circuitry, device, and/or system operative to create a communications network may be used to create network 110. In some implementations, network 110 supports protocols used by wireless and cellular phones. Such protocols may include, for example, 2G, 3G, 4G, and other cellular protocols. Network 110 also supports long range communication protocols (e.g., Wi-Fi) and protocols for placing and receiving calls using VoIP or LAN.


As will be described in additional detail herein, the data collection system 120 comprises of an analytics server 122 coupled to a database 124. Indeed, the terms “system.” “platform,” “server,” “host,” “infrastructure,” and the like are generally used interchangeably herein, and may refer to any computing device or system or any data processor.


1. Introduction


Before describing the data collection and storage strategy of the data collection system, the characteristics of this data is first described.



FIG. 2 illustrates a high-level representation of data flow 210 in the data collection system, as between a user device (including an analytics agent) 220, web server 230, data storage 240, and an inference pipeline 250. On a user device (e.g., 102), an analytics agent collects relevant data. The data may be stored anywhere and made available for an inference pipeline. There is a feedback loop that drives the data collection strategy based on models generated by the inference pipeline.


This feedback technique provides a means of collecting validation data for the models used in the inference pipeline.


2. The Data


2.1 Profile Data


This broadly includes data about the user and device.


2.1.1 User Data


This is data that provides details about the characteristics of the user. This includes, but is not limited, the user contact information, preferences, demographics, etc. This data can be combined with observation data to generate critical location based analytics.


Demographics include age, gender, income, education, relationship status, ethnicity, and a range of other characteristics that can be leveraged when analyzing observation data stream of the user.


2.1.2 Device Data


This is data that provides more details about the characteristics of the device. This includes the device identifiers, configuration, etc.


Since there could be multiple identifiers that can be associated with a device, all available identifiers are collected from the device.


2.2 Observations


This broadly includes data that is collected from the device. The type of the observation could be a location, sensor, reference, etc. As shown in FIG. 3, the structure of observation data may be packed into data packets and transmitted to the analytics server.



FIG. 3 explains the components of an observation data packet 310 that links the data 360 collected from the device to a user 320 and device 330. It associates the data with the timestamp 340 when the data was observed and the type of data 350.


2.2.1 Location


This data is associated with the location of a device includes the latitude, longitude, altitude, accuracy of measurement, bearing, speed, etc. of the device.


Device provides location data from various sources including GPS, cell tower ID, Wi-Fi, Bluetooth, geolocation tagged images, temperature, light, sound, assisted GPS. Third-parties provide access to bulk feeds of location-related data.


2.2.2 Sensor


This data is associated with measurements from device sensors that include acceleration, magnetic orientation, proximity, light intensity, battery status, gyroscope, temperature, etc. The data collection system is also set up to collect sensor data that includes reading from the device accelerometer, compass, gyroscope, light detection, motion, etc. Data from one or more sensor readings can be used to determine the user activity or situation.


In one implementation, data from the accelerometer and gyroscope can indicate that a user is walking, running, biking, driving, etc., or that the user is inside versus outside based on natural daylight and dark or dim interior lights.


This data could be made available to an inference pipeline in a raw form of sensor measurements, or a derived form as hints to user behavior.


Advanced usage of these sensor readings include utilizing Bluetooth detection, temperature, weather, zip code, high-frequency audio/sound, WiFi points, altitude, proximity, etc. to derive a more accurate insight into the location of a user.


2.2.3 Reference Data


In order to validate the results generated by an inference model, reference data is collected. Reference data includes accurate observations that link a user with a place at an instance of time. This data is used to train and validate the inference models downstream for improved accuracy of prediction.


The following sections describe what is included in reference data.


2.2.4 Data Collected Directly from the User:


2.2.4.1 Place Queries


The data collection system collects location data from the device. In order to collect candidate places that correspond to this location data, the data collection system utilizes services that enable users to register a visit to a specific place and time.


A service includes a data source that provides contextual data associated with a location. This contextual data can include information about places nearby a location, along with characteristics of the places. Different services will have variations on what is considered to be in a user's vicinity.


To aid the user in the identification of the various candidate places in the vicinity, a service allows a user to search for places of interest in the user's vicinity. When the user conducts a search for places in his vicinity, the data collection system extracts the results of the search from a service and sends these place-query results along with the location where the query was made back to the data collection system.



FIG. 4 illustrates example user interactions on with various services 410A-N whereby place query data 420 can be collected. As shown in FIG. 4, when a user 430 requests for nearby places an electronic device 440, multiple services retrieve candidate places in the user's vicinity.



FIG. 5 shows an example user interface 500 that represents the search query results 510A-N from various services 520A-N. These results are then aggregated and associated with the user's location, and can produce place query reference data for the inference pipeline.


2.2.4.2 Place Confirmation


After users request contextual data based on their location from services, they review the list of places, and confirm the actual place associated with their location. If a place is not listed, the user has the ability to manually add a place. The data collection system associates the confirmed place with the location data at and around the time of place confirmation. The data collected as part of a place confirmation can be made available as reference data for an inference pipeline.



FIG. 6 illustrates an example interface 600 that a user can use to check-in to a specific place. In this example interface, a user can choose the services (620A-N) that will register the user's check-in. Information 610 such as a place name, place address, and a corresponding location on a map is reflected on the interface. The user can select the specific service by toggling an indicator (630 and 640).


Place confirmation is not limited to manual confirmation. Measurements from sensors on the device, like sound, proximity, near field communication (NFC) chipsets can be utilized based on distinct characteristics for each place. As an example of a place confirmation can be obtained by utilizing the device to detect high frequency audio signals that encode the details of a place. A grocery store could be equipped with a device that generates audio signals that can be detected by sensors on a user's device. Place confirmations associated with these methods may be available to the inference pipeline as a form of reference data.


The data collection system facilitates easy means of allowing a user to confirm a visit to a place, and provides this data back to the server as reference data for the inference pipeline.


2.2.4.3 Offline Place Confirmation



FIG. 7 illustrates example user interactions with various services 710A-N whereby offline profile and place confirmations can be collected. As illustrated in FIG. 7, offline place confirmations occur when the analytics agent 730 is actively collecting data on a user 720, but does not directly receive a place confirmation. Offline place confirmations occur on another platform where a place confirmation has occurred. In other words, when the data collection system accesses place information provided by another service 710, the data collection system is accessing the place conformation offline because it is granted access to user data not available within the analytics agent.


User data made available from services include user profile data, activities, demographics, behavioral markers, and Place Confirmations. Offline place confirmations are transferred to the data collection system via the analytics agent and married with the data collected in the analytics agent to generate reference data that is used in the inference pipeline.


2.2.4.4 Place Survey Answers


Place surveys are used to validate that a user is currently visiting, or has visited a place at a specific block of time. A place survey enables users to validate a location via a survey. Place surveys can take many formats including multiple choice, single affirmation, and open field response. FIG. 8 illustrates an example user interface 800 displaying a place survey 810. Place surveys can include known incorrect places 820A-N as options to identify users that provide false or bad data.


Place surveys are delivered digitally, typically via the device utilizing the analytics agent, with responses sent back digitally, typically via the device. Registered responses are treated as a form of reference data and utilized by an inference pipeline.


The data collection platform regularly prompts for survey questions based on various criteria which includes:

    • Restriction by time of day: Ensuring that a user is not prompted when asleep
    • Frequency cap: Ensuring a user is not overwhelmed by a large number of surveys
    • Targeted users: Selection of users that could be incentivized to provide more accurate data



FIG. 9 shows an example process 900 by which places are generated in a place survey. As illustrated in FIG. 9, a user visits a place called George's Grocery at 9 AM at block 910. At block 920, the inference pipeline generates multiple possible places the user could have been at 9 AM. Subsequently, the inference pipeline generates survey questions for the user at block 930. The user then, at block 940, selects the correct answer from the list of choices and this answer serves as a place confirmation at block 950. Place confirmations act as a reference data source used in the inference pipeline. The places not selected also provide data used in the inference pipeline in that it if a known incorrect answer is selected, the inference pipeline discounts all responses, and the inference pipeline is able to tune itself by understanding which nearby places the user did not visit.


2.2.4.5 Census Reference Data


By combining a digital log with a mobile device, a user can be associated with a verified location in order to produce validated place data. The device registers observations that include location data, and the digital log enables an individual to log actual place and time data. Using time stamps, the place and time data of the digital log are combined with device observation data as a “join point.” A join point can use time to correlate digital log data with device observation data. This joining of two sources of data generates reference data for the inference pipeline. For example, when a user enters information into a digital log that he was at a coffee shop at 9 AM and when there is observation data collected at 9 AM, a join point is created for 9 AM that associates the device observations with a location of the user (i.e., coffee shop).


Reference data is considered highly accurate and generates quality-based entries for the digital log and is designed to generate pinpoint accuracy in terms of location, place, time, and activity.

















TABLE 1








Walk-


Path




Place
Mall/

In-
Leave
Entry/
to
Actions
Notes/


Nate
Area
Date
Time
Time
Exit
Place
at Place
Issues







General
Main
Nov. 8,
11:52
12:01
South
Took
Stood
NA


Store
St
2011
am
pm
Door
side-
near









walk
entrance









from










parking










lot









Table 1 provides example fields in the digital log completed by a census. The values in these fields assign information to device observation data. The level of precision and accuracy is considered high based on the details collected by the digital logs. This census level data is considered high value across reference data sources.


2.3 Indirect Data Sources


Indirect data sources are acquired outside of the analytics agent. These indirect data sources provide markers including place, time, and location. These indirect data sources are acquired through various methods including imported data, crawled web content, third-party APIs, travel logs, photos, purchase data, calendars, call logs, geo-tagged content, and social networks. Social network activity and content data includes sharing of location information through status updates, geo-tagged content, including pictures and video, displayed or scheduled events, set preferences and associations, content interaction, profile information, and social network connections.


2.3.1 Third-Party Sites


2.3.1.1 Geotagged Content


Any content with markers explicit or implicit qualifies as geotagged content. Explicit content is content that is tagged with a specific location in the form of address, latitude and longitude, or any other identifier of location. Implicit content is deriving signals from non-location specific data to infer a location.


Explicit content includes geo-tagged photos, events tracked digitally, social network activity, directions from one place to another, purchase data, rewards programs, membership cards, and online reservations. All explicit content has a location identifier that acts as a form of reference data to infer that user has visited a location. Examples of explicit content include a restaurant reservation made online which would include explicit location data with the address of the restaurant, and time of reservation.


Implicit content includes blog posts, social network activity, measurable activity across personal and professional connections, web content, and call logs. This type of content does not have a specific location, but can be inferred through data mining techniques. As an example, a person who visits a restaurant website, and then calls the restaurant, has a higher probably to be placed at restaurant than if this content was not available. As another example, when a user places an online food order for delivery or takeout, this information may also serve as implicit content through which location can be inferred.


2.3.1.2 Device Content and Activity:


Media and activity on the device can provide relevant information related to the location of a user. This may include calendar appointments, geo-tagged photos, phone calls and voicemails, reminders, texts, emails, email tags, internet search activity, etc.


The data collection system may extract address, place and time information from calendar appointments and associate it with measured location data from the analytics agent. Another example of device content is extracting time, latitude, and longitude from a geo-tagged photo and then using image recognition technology to identify or estimate a place to associated with device data.


Most modern devices equipped with a camera support the ability to associate the picture taken with the camera with metadata including date, time, and the location information (latitude, longitude, etc.) and the time at which the picture was taken.


In addition to the latitude and longitude, additional data can be garnered from the image, including accessing tags associated with the image. As an example, a photo on a social network might include tags that describe features of the place the image was taken (e.g., “Space Needle”, “Visiting Seattle's Space Needle”, “With Jill at the Space Needle”). Using image recognition technology, the place in the picture can be determined. This processing can occur on the device or by using a service to process the image and return a resulting place.


Using call logs, and voice and sound recognition, data can be converted to identify place information associated with the mobile device. Call logs can be mapped to a place, and tying in latitude and longitude act as a form of reference data. With voice and sound recognition, conversations can be mined for details on the current location, as well as past and future activities. An example conversation would be:


Receiver: This is Judy's Hair Salon.


Caller: This is Jill. I'd like to schedule a haircut with Sandy this Sunday at 7:30 pm.


Additionally by taking into account background sounds, it is possible to narrow down places a user may be. As an example, noise from a subway station including the sound of trains on rails, schedule announcements, and crowd noise can act as signals to identify a place.


Digital calendars typically include metadata that indicates time, date, location, and people to be at a certain location at a certain time. This information can be utilized to validate and expand reference data sets.


Using text searches, the inference pipeline can identify place and time associations on the mobile device. For example, if the user has an email that mentions his itinerary for a vacation, it is most likely going to have place and time information for the period of the vacation. This information identifies or estimates the place of the user and can be associated with device data at that time.


Device activity, such as battery status, can provide indicators of location. For example, when a metric of battery life increases, this is indicative of a charging device whereby a user may be limited to select locations. This data is used in the inference pipeline to further refine the list of places a user maybe at a given point in time.


2.3.1.3 In-Store Activity


Users store activity sourced from credit card activity, coupon redemptions, credit reports, membership cards, and reward or loyalty programs are an additional source of data that provide insight to the places visited by a user at a given instance of time. Store activity incrementally provides details around a purchase including items, and price.


Store activity married with location data act as a form of automated place confirmation. The act of a purchase identifies a place where purchase occurred, and a time when the purchase occurred. These values joined with location data act as a form of place confirmation and is treated as reference data for an inference pipeline.


Without the location data, store activity is still used in an inference pipeline as identifying the user has visited place attributed by purchase, and the frequency of purchases determines frequency of visits. This store activity can serve as a behavioral roadmap of past activity and can be indicative of future behavior in the form of places visited.


This data could be collected in real time or offline via bulk imports and made available for the inference pipeline.


2.3.1.4 Network Data


Network data includes a network of devices that registers location data at various levels of precision. Sources of network data include mobile carriers, network service providers, device service providers and the data and metadata may be collected as a byproduct of core services.


As an example a mobile carrier provides cell phone service to millions of customers via their cellular network. This network as a byproduct of providing core cell service registers location data because the mobile device is connected to an access point. Aggregating this data across all customers creates a density map of carrier activity associated with location, which the data collection system defines at Network Data. This network data can act as a proxy of baseline location activity for millions of customers. In addition, the network data may help to identify popular sites or more trafficked areas so that more accurate predictions for a user's location can be made.


The network data acting as baseline location activity enables the data collection system to identify location biases and build models to normalize against those biases. As more sources of network data are incorporated, the models become more robust and diversified as a single source may not accurately represent a population in a given geographic area.


3. The Client


In order to collect data in a consistent manner from devices, the data collection system includes an analytics agent that is architected to collect location relevant data from a device and store this data anywhere making it available for the inference pipeline.


3.1 The Analytics Agent


The analytics agent provides a simple interface that easily integrates with user devices. It exposes simple public interfaces that can be used to collect profile and observation data. The analytics agent has device-specific means of collecting device data including location and sensor data from the device. The API is architected for easy set up and integration with devices.



FIG. 10 illustrates a high-level architecture of an analytics agent 1030 assisting data flow between a a device storage (not shown) on an analytics server 1020 and user system 1010 and analytics agent 1030 on a device 1010. FIG. 11 illustrates a high-level architecture of an analytics agent 1120 assisting data flow between a user system 1130 and a device storage 1110 on the device 1140. In FIGS. 10 and 11, the analytics agent receives/collects data from the device that may be stored on the device storage or may be transmitted back to the analytics server. The analytics agent also provides a feedback mechanism by which data collection in the device can be tuned.


3.1.1 Location/Sensor Data Collection


The analytics agent has a background activity that collects observation data at intervals of time that are determined by algorithms that are optimized to gather as many data points required for the inference pipeline with the least impact on the device resources. This data collection activity runs as a background thread on the device and does not block the normal functioning of the device.


3.1.2 Data Storage on the Device


The analytics agent may provide abstractions over the device data storage to store data on the device if necessary. The device data can be made available to the inference pipeline on the client. The device data may also be transmitted to the analytics server in raw form, batched, compressed, or by various other means of data transmission.


3.1.3 Data Transmission


The analytics agent may provide abstractions over the device data transmission protocols to send/receive data to the analytics servers.


Data transmission may be batched to improve efficiency of data transfer. To avoid single large data transmission, the maximum size of data may be capped per sync batch. The analytics agent may include transmission failure handling that mitigates data Sync failures due to various reasons such as the network is unavailable, client errors, server error, etc. If the data transmission fails, the agent may choose to retry the transmission an acceptable number of times, after which the data may be deemed corrupt and marked for purge. Purging of data may be necessary to ensure efficient usage of the device storage.


3.2 Third-Parties



FIG. 12 illustrates example systems and applications (e.g., 1220-1250) that can integrate the analytics agent (1210A-N) of the data collection system. As shown in FIG. 12, the independent and generalized mechanism of data collection in the analytics agent enables third-parties to easily integrate the analytics agent in their devices. The analytics agent provides the third-party an API library in exchange for location-based analytics from a device.


This approach enables the data collection system to exponentially scale the rate of data collection as more and more individuals utilize the analytics agent.


An example of this scenario could be a mobile application that allows customers to scan the barcode of consumer products in a shop to obtain more product information, and to even purchase the product. The developer of this application may choose to integrate the application with the analytics agent API to tag barcode scans with location and other sensor-related data. In turn, the data collection system can collect location-related data from third-party applications, thus exponentially scaling the rate of a data collection.


4. Data Collection Implementations


4.1 Standalone Client Implementation


One form of the data collection system has the inference pipeline running on the device. In this scenario the inference pipeline accesses this data directly on the device and runs the inference modeling on the device to generate the feedback that may be used by the data collection system. This process enables the entire cycle from data collection to inference modeling, as well as a feedback loop to be encapsulated on the device.


4.2 Client and Server Implementation


Client and server implementation is when the data collection system the analytics agent transmits data from the device to the analytics server. This allows for inference and data aggregation to be done on the server and feedback to be transmitted back to the device via the analytics server.


This also allows for hybrid approaches where inference and feedback occurs both on the client and server.


5. The Analytics Server


5.1 Representative Environment of the Analytics Server


The analytics server receives incoming data collected from the devices. The server may also push data to the devices creating a feedback loop that drives efficient data collection.



FIG. 13 shows a high-level layout of the backend components and data flow. Devices 1320A-N may transmit data that is received by the analytics server 1310. Profile data is stored in relational databases 1330 while the large volume Observation data is stored in distributed file storage 1340. Data processing jobs are used to normalize the large volume data in a distributed files storage, which is then merged with profile data and made available for reports and dashboards. The raw observations are made available for the inference pipeline.


5.1.1 Storage of Profile Data


Profile data typically scales linearly as the number of users and devices increases. This data is usually accessed frequently. Hence the server directs this data to be stored in relational databases.


5.1.2 Storage of Observation Data


Observation data grows exponentially as the number of users and devices increases. This data is typically processed by offline processing jobs that de-normalize the data for easier access. The server directs this data to be stored in distributed file storage.


5.2 Data Segmentation


The data collected from the devices are stored with the following segmentations


5.2.1 Segmentation of Data by Device and User


Observation data has a reference to the user and device that made the observation. This allows for efficient storage and retrieval of data.



FIG. 14 illustrates a high-level segmentation of observation data by device 1410, user 1420, and session(s) 1430A-N. As shown in FIG. 14, a user 1420 is associated with a device 1410. Each user, when active can create multiple user sessions 1430A-N. Each session represents a window of time the application was in use and in which observations 1440 are clustered. While the user is in a session, all observations that occur are associated with this session.


This provides the ability to track for example, multiple users using a single device. In another instance, a single user who has reinstalled the application multiple times can be tracked, wherein each installation signifies a new session.


5.2.2 Panels


A panel is an abstraction of a business grouping. Abstraction called panels are used to associate users with specific business groupings. Users may be invited to join panels based on the business goals of the panel. Inference and analytics may leverage this panel abstraction to correlate and/or aggregate results against a panel.


5.2.3 Panelists


A panelist represents the association of a user's association with a panel. Abstractions called panelists are used to identify a user who is associated with a specific panel. Users are invited to join a panel. They may choose to join the panel to become panelists. Location related data may be segmented by panelists.


5.2.4 Usage


Usage refers to the abstraction of the availability of observation data for a user. Usage is associated with the availability of observation data. This usage may be segmented by panelist thereby identifying the activity of a user in the context of a panel.


5.2.5 Usage Redemption


When a panelist utilizes a device that is enabled with the data collection system, they may accrue usage. This usage may be redeemed for rewards that may be distributed by the panel owner.


5.2.6 Custom Questions


Survey questions may be pushed to panelists within the context of a panel segmentation. Questions are segmented by panel and can be targeted to specific panelists if necessary.


5.3 Data Storage


5.3.1 Profile Data


The profile data received from devices are stored in a relational database. This data is used to drive the device, web dashboards and internal/external reports. This data is also used by the inference pipeline and provides the analytics when mapping observations to user, device and demographics, etc.


5.3.2 Observation Data



FIG. 15 illustrates an example process 1500 by which the analytics server 1520 receives observation data from a device 1510. It is buffered 1525 on each server node 1520 and periodically uploaded to the storage 1540 by a sync service 1530.


5.3.3 Normalization of Observation Data


In order to report and act upon the large volume of de-normalized observation data in storage, the observation data is normalized. The first stage is to sort and group observations by user, device and/or timestamp. The next stage is to iterate through the grouped data and compute aggregated metrics like session and location counts per user, activity per user on an hourly basis, etc. The normalized data is then stored in a relational database and available to the front end application and reports. In one implementation, reports include predicted place visits. Predicted place visits are a set of places that user may have visited at an instance of time. Each visited place is associated with a probability that the person was at that place.


5.3.4 Denormalized Observation Data


The denormalized observations collected from the device are made available for the inference pipeline to process for inference and analytics.


6. The Feedback Loop



FIG. 16 illustrates a process and environment in which implementations of the data collection system can operate.


As shown in FIG. 16, a feedback loop 1610 in the data collection system which allows characteristics of observation data to tune the data collection strategy for higher accuracy and efficient usage of device resources. As discussed above, observation and reference data can originate from an electronic device 1640 of a user 1630 or from services 1620A-N via data import 1650. The data collection system 1660 receives and processes the observation and reference data and forwards the necessary information (e.g., raw data) to the inference pipeline 1670 for further analysis.


7. User Interface



FIG. 17 depicts example user interfaces (1700 and 1710) whereby a user may configure a profile and service(s) to register a check-in. FIG. 17 illustrates an example user interface 1700 whereby a user may enter various personal characteristics 1730 to establish a profile in the data collection system. FIG. 17 illustrates another example user interface 1710 whereby a user may configure the services which may register a check-in. In one implementation of interface 1710, a user may toggle certain indicators (1720A-N) to select the default services that will register a check-in upon signing-in to the data collection system. In another implementation, a user may toggle the indicators to reflect the services in which a user has an account. Those skilled in the relevant art will appreciate that the user interfaces (1700 and 1710) may be configured in a variety of ways.


8. The Inference Pipeline


The inference pipeline takes as input a user's data collected by a mobile electronic device, recognizes when, where and for how long the user makes stops, generates possible places visited, and predicts the likelihood of the user visiting those places. The function of this pipeline is, given a user's information collected by a mobile electronic device, recognize whether a user visited a place, and if so, what is the probability the user is at a place, and how much time the user spent at the place. It also produces user location profiles which include information about users' familiar routes and places.


8.1 Data Input


The input to the inference pipeline is a sequence of location readings and sensor readings the mobile electronic device logged. There are three sources of locations: GPS, Wi-Fi and cell tower, and multiple types of sensors. Each location reading includes time stamp, location source, latitude, longitude, altitude, accuracy estimation, bearing and speed. Each sensor reading includes time stamp, type of sensor, and values.


The data collection system provides the data required for the inference pipeline.


8.2 Generating Models to Tune Data Collection


Various models in an inference pipeline can be used to tune the data collection strategy. Tuning helps maximize the quantity and quality of the data collected while minimizing the impact on the device resources like battery, processor, location data accuracy, etc.


The models in the inference pipeline instruct the data collection to increase the rate of data collection when higher data fidelity is required, and reduce the rate of data collection when data fidelity is not significant.


Another implementation of an Inference algorithm to improve the data accuracy is to apply a high rate of data collection when the device or application is turned on/awoken. Over time, the rate of data collection may decrease so as to maintain a high fidelity of data collection in the initial phase of a session of device usage. For example, the rate of data collection may initially be every tenth of a second for the first four minutes after the device is turned on; and then reduced to twice a minute thereafter.


Examples of how feedback from the inference pipeline is used to tune the rate of data collection includes:

  • 1. Reducing data collection rate when a user is at home or at work
  • 2. Reducing data collection rate when a location/area is not as accessible by GPS (e.g., downtown area)
  • 3. Reducing data collection rate when a user is commuting (as detected by time or observation data)
  • 4. Adjusting data collection rate in accordance to a user's schedule
  • 5. Adjusting data collection rate in accordance to a user's history of visits (e.g., if a user does not typically go out for lunch, data collection rate is reduced at lunch time)


    8.2.1 Improved Device Resource Utilization


In one implementation, inference generates a model that indicates when the user is at a location where in tracking location is not significant. An example of this model is the home/work model.


Home/work is incorporated to the data collection device. When a user is detected to be around home location or work location, a higher interval is used in data collection, to conserve device's resources, for example, battery and data transmission.


In another implementation, Inference models running on the device can detect user activity and situations that serve as indicators to increase or decrease the rate of data collection. Examples of these include:

  • 1. Using device orientation and acceleration to determine the usage scenario of the device.
    • a. Inclined and fast moving for a sustained period of time could imply driving
    • b. Bouncing pattern could imply walking or running
  • 2. Using in audible high frequency audio to detect the visit to a place
  • 3. Using Bluetooth to detect the presence of a device in a place
  • 4. Using temperature and light to detect probable location of the device
  • 5. Using audio sensors to detect characteristic sounds like bus, airplane, music concerts, railway station, ocean, wind, climate (thunder, rain), mood (crowded market versus peaceful vacation), etc. to tune data collection strategy and provide valuable indicators to an inference pipeline


    9. Conclusion


Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single implementation of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an implementation is included in at least one implementation of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same implementation.


Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more implementations. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular implementation. In other instances, additional features and advantages may be recognized in certain implementations that may not be present in all implementations of the invention.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling or connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above Detailed Description of examples of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific examples for the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative implementations may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed or implemented in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.


The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various examples described above can be combined to provide further implementations of the invention. Some alternative implementations of the invention may include not only additional elements to those implementations noted above, but also may include fewer elements.


Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further implementations of the invention.


These and other changes can be made to the invention in light of the above Detailed Description. While the above description describes certain examples of the invention, and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in its specific implementation, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific examples disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed examples, but also all equivalent ways of practicing or implementing the invention under the claims.


To reduce the number of claims, certain aspects of the invention are presented below in certain claim forms, but the applicant contemplates the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as a means-plus-function claim under 35 U.S.C. sec. 112, sixth paragraph, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. § 112, ¶6 will begin with the words “means for”, but use of the term “for” in any other context is not intended to invoke treatment under 35 U.S.C. § 112, 916.) Accordingly, the applicant reserves the right to pursue additional claims after filing this application to pursue such additional claim forms, in either this application or in a continuing application.

Claims
  • 1. A method comprising: receiving a place query that includes location data from a client device, the location data of the place query identifying a current location of the client device;accessing a data source associated with the current location of the client device, the data source comprising contextual data that identifies a set of locations proximate to the current location of the client device;causing display of a presentation of the set of locations at the client device in response to the receiving the place query that includes the location data from the client device, the presentation of the set of locations comprising a known incorrect location;receiving a selection of at least a location from among the presentation of the set of locations; andvalidating the current location of the client device based on the user input.
  • 2. The method of claim 1, wherein the receiving the place query includes: receiving a response to a place survey associated with the current location of the client device.
  • 3. The method of claim 1, wherein the location data is derived from at least one of the list comprising: a geo-tagged image, a user profile, email, calendar appointment, call log, or Short Message Service (SMS) activity.
  • 4. The method of claim 1, wherein the method further comprises: associating the location from the selection to the location data responsive to the receiving the selection of the location from among the presentation of the set of locations.
  • 5. The method of claim 1, wherein a portion of the set of location within the presentation of the set of locations comprise one or more incorrect locations.
  • 6. The method of claim 1, wherein the presentation of the set of locations comprises a set of multiple choice selections.
  • 7. The method of claim 1, wherein the causing display of the presentation of the set of locations includes: determining a time of day; andcausing display of the presentation of the set of locations responsive to the determining the time of day.
  • 8. The method of claim 1, wherein validating the current location further comprises, when the selection is the known incorrect location, identifying a user associated with the selection as providing false data.
  • 9. A system comprising: a memory; andat least one hardware processor coupled to the memory and comprising instructions that causes the system to perform operations comprising:receiving a place query that includes location data from a client device, the location data of the place query identifying a current location of the client device;accessing a data source associated with the current location of the client device, the data source comprising contextual data that identifies a set of locations proximate to the current location of the client device;causing display of a presentation of the set of locations at the client device in response to the receiving the place query that includes the location data from the client device, the presentation of the set of locations comprising a known incorrect location;receiving a selection of at least a location from among the presentation of the set of locations; andvalidating the current location of the client device based on the user input.
  • 10. The system of claim 9, wherein the receiving the place query includes: receiving a response to a place survey associated with the current location of the client device.
  • 11. The system of claim 9, wherein the location data is derived from at least one of the list comprising: a geo-tagged image, a user profile, email, calendar appointment, call log, or Short Message Service (SMS) activity.
  • 12. The system of claim 9, wherein the instructions cause the system to perform operations further comprising: associating the location from the selection to the location data responsive to the receiving the selection of the location from among the presentation of the set of locations.
  • 13. The system of claim 9, wherein a portion of the set of location within the presentation of the set of locations comprise one or more incorrect locations.
  • 14. The system of claim 9, wherein the presentation of the set of locations comprises a set of multiple choice selections.
  • 15. The system of claim 9, wherein the causing display of the presentation of the set of locations includes: determining a time of day; andcausing display of the presentation of the set of locations responsive to the determining the time of day.
  • 16. A non-transitory machine-readable storage medium comprising instructions that, when executed by one or more processors of a machine, cause the machine to perform operations including: receiving a place query that includes location data from a client device, the location data of the place query identifying a current location of the client device;accessing a data source associated with the current location of the client device, the data source comprising contextual data that identifies a set of locations proximate to the current location of the client device;causing display of a presentation of the set of locations at the client device in response to the receiving the place query that includes the location data from the client device, the presentation of the set of locations comprising a known incorrect location;receiving a selection of at least a location from among the presentation of the set of locations; andvalidating the current location of the client device based on the user input.
  • 17. The non-transitory machine-readable storage medium of claim 16, wherein the receiving the place query includes: receiving a response to a place survey associated with the current location of the client device.
  • 18. The non-transitory machine-readable storage medium of claim 16, wherein the location data is derived from at least one of the list comprising: a geo-tagged image, a user profile, email, calendar appointment, call log, or Short Message Service (SMS) activity.
  • 19. The non-transitory machine-readable storage medium of claim 16, wherein the instructions cause the machine to perform operations further comprising: associating the location from the selection to the location data responsive to the receiving the selection of the location from among the presentation of the set of locations.
  • 20. The non-transitory machine-readable storage medium of claim 16, wherein a portion of the set of location within the presentation of the set of locations comprise one or more incorrect locations.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/892,201, filed on May 10, 2013, now issued as U.S. Pat. No. 10,204,137, which is a divisional of U.S. application Ser. No. 13/405,182, filed on Feb. 24, 2012, now issued as U.S. Pat. No. 8,972,357, and entitled “SYSTEM AND METHOD FOR DATA COLLECTION TO VALIDATE LOCATION DATA” and is related to U.S. application Ser. No. 13/405,190 filed Feb. 24, 2012, now issued as U.S. Pat. No. 8,768,876, and entitled “INFERENCE PIPELINE SYSTEM AND METHOD” each of the above-referenced applications being incorporated herein by reference in their entirety.

US Referenced Citations (642)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5855008 Goldhaber et al. Dec 1998 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6446004 Cao et al. Sep 2002 B1
6449485 Anzil Sep 2002 B1
6449657 Stanbach et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6484196 Maurille Nov 2002 B1
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Camut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7269426 Kokkonen et al. Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7315823 Brondrup Jan 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7508419 Toyama et al. Mar 2009 B2
7512649 Faybishenko et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7587053 Pereira Sep 2009 B1
7607096 Oreizy et al. Oct 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7770137 Forbes et al. Aug 2010 B2
7778973 Choi Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7856360 Kramer et al. Dec 2010 B2
7966658 Singh et al. Jun 2011 B2
8001204 Burtner et al. Aug 2011 B2
8010685 Singh et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8082255 Carlson, Jr. et al. Dec 2011 B1
8090351 Klein Jan 2012 B2
8098904 Ioffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8131597 Hudetz Mar 2012 B2
8135166 Rhoads Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8195203 Tseng Jun 2012 B1
8199747 Rojas et al. Jun 2012 B2
8200247 Starenky et al. Jun 2012 B1
8208943 Petersen Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8220034 Hahn et al. Jul 2012 B2
8229458 Busch Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind et al. Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8296842 Singh et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8301639 Myllymaki et al. Oct 2012 B1
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8509761 Krinsky et al. Aug 2013 B2
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8588942 Agrawal Nov 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8613088 Varghese et al. Dec 2013 B2
8613089 Holloway et al. Dec 2013 B1
8624725 MacGregor Jan 2014 B1
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8732168 Johnson May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8909679 Root et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8942953 Yuen et al. Jan 2015 B2
8972357 Shim Mar 2015 B2
8995433 Rojas Mar 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs et al. Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9256832 Shim et al. Feb 2016 B2
9258459 Hartley Feb 2016 B2
9344606 Hartley et al. May 2016 B2
9385983 Sehn Jul 2016 B1
9396354 Murphy et al. Jul 2016 B1
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9489661 Evans et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9628950 Noeth et al. Apr 2017 B1
9710821 Heath Jul 2017 B2
9854219 Sehn Dec 2017 B2
10204137 Shim Feb 2019 B2
20020047868 Miyazawa Apr 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040111467 Willis Jun 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070136228 Petersen Jun 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244633 Phillips et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080062141 Chandhri Mar 2008 A1
20080076505 Ngyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109844 Baldeschwieler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080189360 Kiley et al. Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080214210 Rasanen et al. Sep 2008 A1
20080222545 Lemay Sep 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090005987 Vengroff et al. Jan 2009 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090089558 Bradford et al. Apr 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090089710 Wood et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090132341 Klinger May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090177299 Van De Sluis Jul 2009 A1
20090192900 Collision Jul 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090204354 Davis et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090276235 Benezra et al. Nov 2009 A1
20090278738 Gopinath Nov 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20100041378 Aceves et al. Feb 2010 A1
20100062794 Han Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100130233 Lansing May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161720 Colligan et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100211425 Govindarajan Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100223346 Dragt Sep 2010 A1
20100250109 Johnston et al. Sep 2010 A1
20100257036 Khojastepour et al. Oct 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100281045 Dean Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110050909 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110076653 Culligan et al. Mar 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110099046 Weiss et al. Apr 2011 A1
20110099047 Weiss Apr 2011 A1
20110099048 Weiss et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215903 Yang et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110264663 Verkasalo Oct 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf Nov 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120047147 Redstone et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120150978 Monaco Jun 2012 A1
20120158472 Singh et al. Jun 2012 A1
20120165100 Lalancette et al. Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120191512 Wuoti Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco Lopez et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120246004 Book Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120264446 Xie et al. Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormald et al. Nov 2012 A1
20120307096 Ford et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120319904 Lee et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130036364 Johnson Feb 2013 A1
20130041866 Simske et al. Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129252 Lauper May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130185324 Bouchard et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130225202 Shim et al. Aug 2013 A1
20130226857 Shim et al. Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130254227 Shim et al. Sep 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140043204 Basnayake et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140082651 Sharifi Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140114565 Aziz et al. Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140304212 Shim et al. Oct 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150071619 Brough Mar 2015 A1
20150087263 Branscomb et al. Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150169827 Laborde Jun 2015 A1
20150172534 Miyakawaa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150222814 Li et al. Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160048869 Shim et al. Feb 2016 A1
20160078485 Shim et al. Mar 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160157062 Shim et al. Jun 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn et al. Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160239248 Sehn Aug 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160321708 Sehn Nov 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
Foreign Referenced Citations (31)
Number Date Country
2887596 Jul 2015 CA
2051480 Apr 2009 EP
2151797 Feb 2010 EP
2399928 Sep 2004 GB
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2006118755 Nov 2006 WO
WO-2007092668 Aug 2007 WO
WO-2009043020 Apr 2009 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO-2013008238 Jan 2013 WO
WO-2013045753 Apr 2013 WO
WO-2014006129 Jan 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
Non-Patent Literature Citations (58)
Entry
“A Whole New Story”, Snap, Inc., URL: https://www.snap.com/en-US/news/, (2017), 13 pgs.
“Adding photos to your listing”, eBay, URL: http://pages.ebay.com/help/sell/pictures.html, (accessed May 24, 2017), 4 pgs.
“U.S. Appl. No. 13/405,182, 312 Amendment filed Jan. 8, 2015”, 13 pgs.
“U.S. Appl. No. 13/405,182, Advisory Action dated Apr. 10, 2014”, 5 pgs.
“U.S. Appl. No. 13/405,182, Examiner Interview Summary dated Sep. 11, 2013”, 3 pgs.
“U.S. Appl. No. 13/405,182, Final Office Action dated Dec. 19, 2013”, 40 pgs.
“U.S. Appl. No. 13/405,182, Non Final Office Action dated Jun. 6, 2013”, 32 pgs.
“U.S. Appl. No. 13/405,182, Notice of Allowance dated Nov. 24, 2014”, 7 Pgs.
“U.S. Appl. No. 13/405,182, Preliminary Amendment filed Sep. 6, 2012”, 3 pgs.
“U.S. Appl. No. 13/405,182, PTO Response to Rule 312 Communication dated Jan. 30, 2015”, 2 pgs.
“U.S. Appl. No. 13/405,182, Response filed Mar. 19, 2014 to Final Office Action dated Dec. 19, 2013”, 18 pgs.
“U.S. Appl. No. 13/405,182, Response filed Apr. 10, 2013 to Restriction Requirement dated Mar. 14, 2013”, 11 pgs.
“U.S. Appl. No. 13/405,182, Response filed May 19, 2014 to Advisory Action dated Apr. 10, 2014”, 30 Pgs.
“U.S. Appl. No. 13/405,182, Response filed Sep. 6, 2013 to Non Final Office Action dated Jun. 6, 2013”, 17 pgs.
“U.S. Appl. No. 13/405,182, Restriction Requirement dated Mar. 14, 2013”, 6 pgs.
“U.S. Appl. No. 13/405,182, Supplemental Amendment filed Dec. 12, 2013”, 14 pgs.
“U.S. Appl. No. 13/892,201, Advisory Action dated Jul. 12, 2018”, 3 pgs.
“U.S. Appl. No. 13/892,201, Advisory Action dated Aug. 15, 2017”, 3 pgs.
“U.S. Appl. No. 13/892,201, Examiner Interview Summary dated May 16, 2018”, 3 pgs.
“U.S. Appl. No. 13/892,201, Examiner Interview Summary dated Nov. 23, 2015”, 3 pgs.
“U.S. Appl. No. 13/892,201, Examiner Interview Summary dated Dec. 1, 2016”, 3 pgs.
“U.S. Appl. No. 13/892,201, Final Office Action dated Mar. 9, 2017”, 19 pgs.
“U.S. Appl. No. 13/892,201, Final Office Action dated Apr. 19, 2018”, 20 pgs.
“U.S. Appl. No. 13/892,201, Final Office Action dated Jul. 29, 2015”, 19 pgs.
“U.S. Appl. No. 13/892,201, Non Final Office Action dated Mar. 16, 2015”.
“U.S. Appl. No. 13/892,201, Non Final Office Action dated May 19, 2016”, 21 pgs.
“U.S. Appl. No. 13/892,201, Non Final Office Action dated Sep. 29, 2017”, 20 pgs.
“U.S. Appl. No. 13/892,201, Notice of Allowance dated Sep. 19, 2018”, 8 pgs.
“U.S. Appl. No. 13/892,201, Response Filed Jun. 8, 2018Final Office Action dated Apr. 19, 2018”, 12 pgs.
“U.S. Appl. No. 13/892,201, Response filed Jun. 16, 2015 to Non Final Office Action dated Mar. 16, 2015”, 12 pgs.
“U.S. Appl. No. 13/892,201, Response filed Jul. 10, 2017 to Final Office Action dated Mar. 9, 2017”, 12 pgs.
“U.S. Appl. No. 13/892,201, Response filed Nov. 18, 2016 to Non Final Office Action dated May 19, 2016”, 10 pgs.
“U.S. Appl. No. 13/892,201, Response filed Dec. 8, 2017 to Non Final Office Action dated Sep. 29, 2017”, 12 pgs.
“U.S. Appl. No. 13/892,201, Response filed Dec. 29, 2015 to Final Office Action dated Jul. 29, 2015”, 11 pgs.
“BlogStomp”, StompSoftware, URL: http://stompsoftware.com/blogstomp, (accessed May 24, 2017), 12 pgs.
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, URL: http://techpp.com/2013/02/15/instaplace-app-review, (2013), 13 pgs.
“InstaPlace Photo App Tell the Whole Story”, URL: https://youtu.be/uF_gFkg1hBM, (Nov. 8, 2013), 113 pgs, 1:02 min.
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs.
Gregorich, et al., “Verification of AIRS boresight Accuracy Using Coastline Detection”, IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Year: 2003, vol. 41, Issue: 2, DOI: 10.11 09/TGRS.2002.808311 Referenced in: IEEE Journals & Magazines, (2003), 1-5.
Janthong, Isaranu, “Instaplace ready on Android Google Play store”, Android App Review Thailand, URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html, (Jan. 23, 2013), 9 pgs.
Jurdak, Raja, “An Acoustic Identification Scheme for Location Systems”, IEEE, (Jan. 17, 2005), 1-10.
Kun, Hsu-Yang, et al., “Using RFID Technology and SOA with 4D Escape Route”, Wireless Communications, Networking and Mobile Computing, WiCOM '08. 4th International Conference on Year: 2008 DOI: 10.11 09/WiCom.2008.3030 Referenced in: IEEE Conference Publications, (2008), 1-4.
Tripathi, Rohit, “Watermark Images in PHP and Save File on Server”, URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server, (Dec. 28, 2012), 4 pgs.
Xia, Ning, et al., “GeoEcho: Inferring User Interests from Geotag Reports in Network Traffic”, Web Intelligence (WI) and Intelligent Agent Technologies (IAT), IEEE/WIC/ACM International Joint Conferences, vol. 2 DOI: 10.1109/WI-IAT.2014.73 Referenced in: IEEE Conference Publications, (2014), 1-8.
U.S. Appl. No. 13/405,182 U.S. Pat. No. 8,972,357, filed Feb. 24, 2012, System and Method for Data Collection to Validate Location Data.
U.S. Appl. No. 13/892,201 U.S. Pat. No. 10,204,137, filed May 10, 2013, System and Method for Data Collection to Validate Location Data.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, Blast Radius, [Online] Retrieved from the internet: <URL: https://web.archive.org/web/20160711202454/http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs.
“Introducing Snapchat Stories”, [Online] Retrieved from the internet: <URL: https://web.archive.org/web/20131026084921/https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs; 00:47 min.
“Macy's Believe-o-Magic”, [Online] Retrieved from the internet: <URL: https://web.archive.org/web/20190422101854/https://www.youtube.com/watch?v=xvzRXy3J0Z0&feature=youtu.be>, (Nov. 7, 2011), 102 pgs.; 00:51 min.
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, Business Wire, [Online] Retrieved from the internet: <URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country>, (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, [Online] Retrieved from the internet: <URL: https://www.youtube.com/watch?v=RWwQXi9RG0w>, (Nov. 8, 2011), 87 pgs.; 00:47 min.
“Starbucks Cup Magic for Valentine's Day”, [Online] Retrieved from the internet: <URL: https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.; 00:45 min.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, Business Wire, [Online] Retrieved from the internet: <URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, TechCrunch, [Online] Retrieved from the internet: <URL: https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs.
Macleod, Duncan, “Macys Believe-o-Magic App”, [Online] Retrieved from the internet: <URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs.
Macleod, Duncan, “Starbucks Cup Magic Lets Merry”, URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic, (Nov. 12, 2011), 8 pgs.
Notopoulos, Katie, “A Guide to the New Snapchat Filters and Big Fonts”, [Online] Retrieved from the internet: <URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, A Replay Function and for Whatever Reason, Time, Temperature and Speed Overlays”, TechCrunch, [Online] Retrieved form the internet: <URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs.
Divisions (1)
Number Date Country
Parent 13405182 Feb 2012 US
Child 13892201 US
Continuations (1)
Number Date Country
Parent 13892201 May 2013 US
Child 16190997 US