The present invention relates to computer networks and, more particularly, to a system and a method for data mining and security policy management.
Computer networks have become indispensable tools for modern business. Enterprises can use networks for communications and, further, can store data in various forms and at various locations. Critical information frequently propagates over a network of a business enterprise. Modern enterprises employ numerous tools to control the dissemination of such information and many of these tools attempt to keep outsiders, intruders, and unauthorized personnel from accessing valuable or sensitive information. Commonly, these tools can include firewalls, intrusion detection systems, and packet sniffer devices.
The ability to offer a system or a protocol that offers an effective data management system, capable of securing and controlling the movement of important information, provides a significant challenge to security professionals, component manufacturers, service providers, and system administrators alike.
The present invention is illustrated by way of example, and not by way of limitation, in the FIGURES of the accompanying drawings in which like reference numerals refer to similar elements and in which:
Although the present system will be discussed with reference to various illustrated examples, these examples should not be read to limit the broader spirit and scope of the present invention. Some portions of the detailed description that follows are presented in terms of algorithms and symbolic representations of operations on data within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the art of computer science to most effectively convey the substance of their work to others skilled in the art. An algorithm is generally conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared and otherwise manipulated.
It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Keep in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise, it will be appreciated that throughout the description of the present invention, use of terms such as “processing”, “computing”, “calculating”, “determining”, “displaying”, etc., refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
In this prior configuration, LAN 100 is connected to the Internet 102 via a router 110. Router 110 may be used to implement a firewall. Firewalls are used to try to provide users of LANS with secure access to the Internet as well as to provide a separation of a public Web server (e.g., one of servers 104) from an internal network (e.g., LAN 100). Data leaving LAN 100 and going to Internet 102 passes through router 110. Router 110 simply forwards packets as is from LAN 100 to Internet 102. Router 110 routes packets to and from a network and the Internet. While the router may log that a transaction has occurred (i.e., packets have been routed), it does not capture, analyze, or store the content contained in the packets.
Clients 206 are endpoints or customers wishing to affect or otherwise manage a communication in the proffered architecture. The term ‘client’ may be inclusive of devices used to initiate a communication, such as a computer, a personal digital assistant (PDA), a laptop or electronic notebook, a cellular telephone, or any other device, component, element, or object capable of initiating voice, audio, or data exchanges within the proffered architecture. The endpoints may also be inclusive of a suitable interface to the human user, such as a microphone, a display, or a keyboard or other terminal equipment. The endpoints may also be any device that seeks to initiate a communication on behalf of another entity or element, such as a program, a database, or any other component, device, element, or object capable of initiating a voice or a data exchange within the proffered architecture. Data, as used herein in this document, refers to any type of numeric, voice, or script data, or any type of source or object code, or any other suitable information in any appropriate format that may be communicated from one point to another.
In operation, capture system 200 intercepts data leaving a network [such as LAN 212]. In an embodiment, the capture system also intercepts data being communicated internally to a network such as LAN 212. Capture system 200 can reconstruct documents leaving the network and store them in a searchable fashion. Capture system 200 is then used to search and sort through all documents that have left the network. There are many reasons why such documents may be of interest, including: network security reasons, intellectual property concerns, corporate governance regulations, and other corporate policy concerns. Example documents include, but are not limited to, Microsoft Office documents (such as Word, Excel, etc.), text files, images (such as JPEG, BMP, GIF, PNG, etc.), Portable Document Format (PDF) files, archive files (such as GZIP, ZIP, TAR, JAR, WAR, RAR, etc.), email messages, email attachments, audio files, video files, source code files, executable files, etc.
Capture System
This captured data is passed from network interface module 300 to a packet capture module 302, which extracts packets from the captured data. Packet capture module 302 may extract packets from streams with different sources and/or destinations. One such case is asymmetric routing where a packet sent from source “A” to destination “B” travels along a first path and responses sent from destination “B” to source “A” travel along a different path. Accordingly, each path could be a separate “source” for packet capture module 302 to obtain packets. Additionally, packet data may be extracted from a packet by removing the packet's header and checksum.
When an object is transmitted, such as an email attachment, it is broken down into packets according to various data transfer protocols such as Transmission Control Protocol/Internet Protocol (“TCP/IP”), UDP, HTTP, etc. An object assembly module 304 reconstructs the original or a reasonably equivalent document from the captured packets. For example, a PDF document broken down into packets before being transmitted from a network is reassembled to form the original, or reasonable equivalent of the, PDF from the captured packets associated with the PDF document. A complete data stream is obtained by reconstruction of multiple packets. The process by which a packet is created is beyond the scope of this application.
In alternative embodiments, instead of being implemented in conjunction with (or included within) a router, capture system 200 may be included as part of other network appliances such as switches, gateways, bridges, loadbalancers, servers, or any other suitable device, component, element, or object operable to exchange information in a network environment. Moreover, these network appliances and/or capture systems may include any suitable hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof. This may be inclusive of appropriate algorithms and communication protocols that facilitate the data mining and policy management operations detailed herein.
One or more tables may be included in these network appliances (or within capture system 200). In other embodiments, these tables may be provided externally to these elements, or consolidated in any suitable fashion. The tables are memory elements for storing information to be referenced by their corresponding network appliances. As used herein in this document, the term ‘table’ is inclusive of any suitable database or storage medium (provided in any appropriate format) that is capable of maintaining information pertinent to the operations detailed herein in this Specification. For example, the tables may store information in an electronic register, diagram, record, index, list, or queue. Alternatively, the tables may keep such information in any suitable random access memory (RAM), read only memory (ROM), erasable programmable ROM (EPROM), electronically erasable PROM (EEPROM), application specific integrated circuit (ASIC), software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs.
Re-assembler 400 begins a new flow upon the observation of a starting packet. This starting packet is normally defined by the data transfer protocol being used. For example, the starting packet of a TCP flow is a “SYN” packet. The flow terminates upon observing a finishing packet (e.g., a “Reset” or “FIN” packet in TCP/IP) or via a timeout mechanism if the finished packing is not observed within a predetermined time constraint.
A flow assembled by re-assembler 400 is provided to a protocol demultiplexer (“demux”) 402. Protocol demux 402 sorts assembled flows using ports, such as TCP and/or UDP ports, by performing speculative classification of the flow's contents based on the association of well-known port numbers with specified protocols. For example, because web Hyper Text Transfer Protocol (HTTP) packets, such as, Web traffic packets, are typically associated with TCP port 80, packets that are captured over TCP port 80 are speculatively classified as being HTTP. Examples of other well-known ports include TCP port 20 (File Transfer Protocol (“FTP”)), TCP port 88 (Kerberos authentication packets), etc. Thus, protocol demux 402 separates the flows by protocols.
A protocol classifier 404 further sorts flows. Protocol classifier 404 (operating in either parallel or in sequence to protocol demux 402) applies signature filters to a flow to identify the protocol based solely on the transported data. Protocol classifier 404 uses a protocol's signature(s) (i.e., the characteristic data sequences of a defined protocol) to verify the speculative classification performed by protocol demux 402. If protocol classifier 404 determines that the speculative classification is incorrect, it overrides it. For example, if an individual or program attempted to masquerade an illicit communication (such as file sharing) using an apparently benign port (for example, TCP port 80), protocol classifier 404 would use the HTTP protocol signature(s) to verify the speculative classification performed by protocol demux 402.
Protocol classification helps identify suspicious activity over non-standard ports. A protocol state machine is used to determine which protocol is being used in a particular network activity. This determination is made independent of the port or channel on which the protocol is active. As a result, the capture system recognizes a wide range of protocols and applications, including SMTP, FTP, HTTP, P2P, and proprietary protocols in client-server applications. Because protocol classification is performed independent of which port number was used during transmission, the capture system monitors and controls traffic that may be operating over non-standard ports. Non-standard communications may indicate that an enterprise is at risk from spyware, adware, or other malicious code, or that some type of network abuse or insider threat may be occurring.
Object assembly module 304 outputs each flow, organized by protocol, representing the underlying objects being transmitted. These objects are passed to object classification module 306 (also referred to as the “content classifier”) for classification based on content. A classified flow may still contain multiple content objects depending on the protocol used. For example, a single flow using HTTP may contain over 100 objects of any number of content types. To deconstruct the flow, each object contained in the flow is individually extracted and decoded, if necessary, by object classification module 306.
Object classification module 306 uses the inherent properties and/or signature(s) of various documents to determine the content type of each object. For example, a Word document has a signature that is distinct from a PowerPoint document or an email. Object classification module 306 extracts each object and sorts them according to content type. This classification prevents the transfer of a document whose file extension or other property has been altered. For example, a Word document may have its extension changed from .doc to .dock but the properties and/or signatures of that Word document remain the same and detectable by object classification module 306. In other words, object classification module 306 functions beyond simple extension filtering.
According to an embodiment, a capture system uses one or more of six mechanisms for classification: 1) content signature; 2) grammar analysis; 3) statistical analysis; 4) file classification; 5) document biometrics; and 6) concept maps. Content signatures are used to look for predefined byte strings or text and number patterns (i.e., Social Security numbers, medical records, and bank accounts). When a signature is recognized, it becomes part of the classification vector for that content. While beneficial when used in combination with other metrics, signature matching alone may lead to a high number of false positives.
Grammar analysis determines if an object's content is in a specific language and filters accordingly based on this information. Various types of content have their own grammar or syntax. For example, “C” source code uses “if/then” grammar. Legal documents, resumes, and earnings results also have a particular grammar. Grammar analysis also enables an organization to detect the presence of non-English language-based content on their network.
File classification identifies content types regardless of the extensions applied to the file or compression. The file classification mechanism looks for specific file markers instead of relying on normal telltale signs such as .xls or .pdf. Document biometrics identifies sensitive data even if the data has been modified. Document biometrics recognizes content rich elements in files regardless of the order or combination in which they appear. For example, a sensitive Word document may be identified even if text elements inside the document or the file name itself have been changed. Excerpts of larger files, e.g., a single column exported from an Excel spreadsheet containing Social Security numbers, may also be identified. Document biometrics takes “snapshots” of protected documents in order to build a signature set for protecting them. In an embodiment, document biometrics distinguishes between public and confidential information within the same document.
Statistical analysis assigns weights to the results of signature, grammar, and biometric analysis. That is, the capture system tracks how many times there was a signature, grammar, or biometric match in a particular document or file. This phase of analysis contributes to the system's overall accuracy.
Concept maps may be used to define and track complex or unique content, whether at rest, in motion, or captured. Concept maps are based on combinations of data classification mechanisms and provide a way to protect content using compound policies. Object classification module 306 may also determine whether each object should be stored or discarded. This determination is based on definable capture rules used by object classification module 306. For example, a capture rule may indicate that all Web traffic is to be discarded. Another capture rule may indicate that all PowerPoint documents should be stored except for ones originating from the CEO's IP address. Such capture rules are implemented as regular expressions or by other similar means.
Capture rules may be authored by users of a capture system and, further, may include virtually any item (in addition to those items discussed herein). The capture system may also be made accessible to any network-connected machine through network interface module 300 and/or user interface 310. In one embodiment, user interface 310 is a graphical user interface providing the user with easy access to the various features of capture system 312. For example, user interface 310 may provide a capture rule-authoring tool that allows any capture rule desired to be written. These rules are then applied by object classification module 306 when determining whether an object should be stored. User interface 310 may also provide pre-configured capture rules that the user selects from along with an explanation of the operation of such standard included capture rules. Generally, by default, the capture rule(s) implemented by object classification module 306 captures all objects leaving the network that the capture system can access. If the capture of an object is mandated by one or more capture rules, object classification module 306 may determine where in object store module 308 the captured object should be stored.
In regards to the tag data structure, in an embodiment, content store 502 is a canonical storage location that is simply a place to deposit the captured objects. The indexing of the objects stored in content store 502 is accomplished using tag database 500. Tag database 500 is a database data structure in which each record is a “tag” that indexes an object in content store 502 and contains relevant information about the stored object. An example of a tag record in tag database 500 that indexes an object stored in content store 502 is set forth in Table 1:
There are various other possible tag fields and some tag fields listed in Table 1 may not be used. In an embodiment, tag database 500 is not implemented as a database and another data structure is used. The mapping of tags to objects may be obtained by using unique combinations of tag fields to construct an object's name. For example, one such possible combination is an ordered list of the source IP, destination IP, source port, destination port, instance, and timestamp. Many other such combinations, including both shorter and longer names, are possible. A tag may contain a pointer to the storage location where the indexed object is stored. The tag fields shown in Table 1 can be expressed more generally, to emphasize the underlying information indicated by the tag fields in various embodiments. Some of the possible generic tag fields are set forth in Table 2:
For many of the above tag fields in Tables 1 and 2, the definition adequately describes the relational data contained by each field. For the content field, the types of content that the object can be labeled as are numerous. Some example choices for content types (as determined, in one embodiment, by the object classification module 30) are JPEG, GIF, BMP, TIFF, PNG (for objects containing images in these various formats); Skintone (for objects containing images exposing human skin); PDF, MSWord, Excel, PowerPoint, MSOffice (for objects in these popular application formats); HTML, WebMail, SMTP, FTP (for objects captured in these transmission formats); Telnet, Rlogin, Chat (for communication conducted using these methods); GZIP, ZIP, TAR (for archives or collections of other objects); Basic_Source, C++_Source, C_Source, Java_Source, FORTRAN_Source, Verilog_Source, VHDL_Source, Assembly_Source, Pascal_Source, Cobol_Source, Ada_Source, Lisp_Source, Perl_Source, XQuery_Source, Hypertext Markup Language, Cascaded Style Sheets, JavaScript, DXF, Spice, Gerber, Mathematica, Matlab, AllegroPCB, ViewLogic, TangoPCAD, BSDL, C_Shell, K_Shell, Bash_Shell, Bourne_Shell, FTP, Telnet, MSExchange, POP3, RFC822, CVS, CMS, SQL, RTSP, MIME, PDF, PS (for source, markup, query, descriptive, and design code authored in these high-level programming languages); C Shell, K Shell, Bash Shell (for shell program scripts); Plaintext (for otherwise unclassified textual objects); Crypto (for objects that have been encrypted or that contain cryptographic elements); Englishtext, Frenchtext, Germantext, Spanishtext, Japanesetext, Chinesetext, Koreantext, Russiantext (any human language text); Binary Unknown, ASCII Unknown, and Unknown (as catchall categories).
The signature contained in the Signature and Tag Signature fields can be any digest or hash over the object, or some portion thereof. In one embodiment, a well-known hash, such as MD5 or SHA1 can be used. In one embodiment, the signature is a digital cryptographic signature. In one embodiment, a digital cryptographic signature is a hash signature that is signed with the private key of capture system 200. Only capture system 200 knows its own private key, thus, the integrity of the stored object can be verified by comparing a hash of the stored object to the signature decrypted with the public key of capture system 200, the private and public keys being a public key cryptosystem key pair. Thus, if a stored object is modified from when it was originally captured, the modification will cause the comparison to fail.
Similarly, the signature over the tag stored in the Tag Signature field can also be a digital cryptographic signature. In such an embodiment, the integrity of the tag can also be verified. In one embodiment, verification of the object using the signature, and the tag using the tag signature is performed whenever an object is presented, e.g., displayed to a user. In one embodiment, if the object or the tag is found to have been compromised, an alarm is generated to alert the user that the object displayed may not be identical to the object originally captured.
When a user searches over the objects captured by capture system 200, it is desirable to make the search as fast as possible. One way to speed up searches is to perform searches over the tag database instead of the content store, since the content store will generally be stored on disk and is far more costly in terms of both time and processing power to search then a database.
The objects and tags stored in object store module 308 may be interactively queried by a user via user interface 310. In one embodiment, the user interface interacts with a web server (not shown) to provide the user with Web-based access to capture system 312. The objects in the object store module 308 are searchable for specific textual or graphical content using exact matches, patterns, keywords, and/or various other attributes. For example, user interface 310 may provide a query-authoring tool (not shown) to enable users to create complex searches of object store module 308. These search queries are provided to a data-mining engine (not shown) that parses the queries to the object store module. For example, tag database 500 may be scanned and the associated object retrieved from content store 502. Objects that matched the specific search criteria in the user-authored query are counted and/or displayed to the user (e.g., by user interface 310).
Searches may be scheduled to occur at specific times or at regular intervals. User interface 310 may provide access to a scheduler (not shown) that periodically executes specific queries. Reports containing the results of these searches are made available to the user at runtime or later such as generating an alarm in the form of an e-mail message, page, system log, and/or other notification format.
A user query for a pattern is generally in the form of a regular expression. A regular expression is a string that describes or matches a set of strings, according to certain syntax rules. There are various well-known syntax rules such as the POSIX standard regular expressions and the PERL scripting language regular expressions. Regular expressions are used by many text editors and utilities to search and manipulate bodies of text based on certain patterns. Regular expressions are well known in the art. For example, according to one syntax (UNIX), the regular expression 4\d{15} means the digit “4” followed by any fifteen digits in a row. This user query would return all objects containing such a pattern.
Certain useful search categories cannot be defined well by a single regular expression. As an example, a user may want to query all emails containing a credit card number. Various credit card companies used different numbering patterns and conventions. A card number for each company can be represented by a regular expression. However, the concept of credit card number can be represented by a union of all such regular expressions. For such categories, the concept of attribute is herein defined. An attribute, in one embodiment, represents a group of one or more regular expressions (or other such patterns). The term “attribute” is merely descriptive, such concept could just as easily be termed “category,” “regular expression list,” or any other descriptive term.
Generally, a capture system has been described above as a stand-alone device. However, capture systems may be implemented on any appliance capable of capturing and analyzing data from a network. For example, capture system 312 described above could be implemented on one or more of the servers or clients shown in
In one embodiment, the attributes are completely user-configurable. A user interface provides an attribute editor that allows a user to define attributes by creating an attribute and associating a group of one or more regular expressions with the created attribute. The capture device may come preconfigured with a list of common or popular attributes that may be tailored specifically to the industry into which the capture device is sold.
In one embodiment, a capture device may create new attributes automatically. For example, a capture device may observe that a certain regular expression is being searched with some threshold frequency (generally set to be above normal). The capture device creates an attribute to be associated with this regular expression and begins tagging the newly defined attribute when capturing new objects. In another embodiment, a capture device may suggest that a new attribute be created when a regular expression is searched frequently. In yet another embodiment, a capture device may suggest that an attribute be deleted if infrequently used to make room for another more useful attribute. In terms of the query generation, example embodiments of the present invention allow objects and/or their associated metadata to be searchable upon request. For example, emails, documents, images, etc. may be processed by a capture system and searched.
Document Registration
The capture system described above implements a document registration scheme. A user registers a document with a capture system, the system then alerts the user if all, or part, of the content in the registered document is attempting to, or leaving, the network. Thus, unauthorized documents of various formats (e.g., Microsoft Word, Excel, PowerPoint, source code of any kind, and text are prevented) are prevented from leaving an enterprise. There are great benefits to any enterprise that keeps its intellectual property, and other critical, confidential, or otherwise private and proprietary content from being mishandled. Sensitive documents are typically registered with the capture system 200, although registration may be implemented using a separate device.
After being received, classified, etc., a document to be registered is passed to registration module 610. Registration module 610 calculates a signature or a set of signatures of the document. A signature associated with a document may be calculated in various ways. An example signature consists of hashes over various portions of the document, such as selected or all pages, paragraphs, tables and sentences. Other possible signatures include, but are not limited to, hashes over embedded content, indices, headers, footers, formatting information, or font utilization. A signature may also include computations and meta-data other than hashes, such as word Relative Frequency Methods (RFM)—Statistical, Karp-Rabin Greedy-String-Tiling-Transposition, vector space models, diagrammatic structure analysis, etc.
The signature or set of signatures associated on a document is stored in signature database 612. The signature storage may be implemented as a database or other appropriate data structure as described earlier. In an embodiment, signature storage 608 is external to capture system 600. Registered documents are stored as objects in object store module 606 according to the rules set for the system. In an embodiment, only documents are stored in object store module 606 of the object system network. These documents have no associated tag since many tag fields do not apply to registered documents.
As set forth above, object capture modules 604 extract objects leaving the network and store various objects based on capture rules. In an embodiment, all extracted objects (whether subject to a capture rule or not) are also passed to the registration module for a determination whether each object is, or includes part of, a registered document. Registration module 610 calculates the set of one or more signatures of an object received from object capture modules 604 in the same manner as the calculation of the set of one or more signatures of a document received from user interface 602 to be registered. This set of signatures is then compared against all signatures in signature database 612. However, parts of the signature database may be excluded from a search to decrease the amount comparisons to be performed.
A possible unauthorized transmission is detectable if any one or more signatures in the set of signatures of an extracted object matches one or more signatures in signature database 612 associated with a registered document. Detection tolerances are usually configurable. For example, the system may be configured so that at least two signatures must match before a document is deemed unauthorized. Additionally, special rules may be implemented that make a transmission authorized (for example, if the source address is authorized to transmit any documents off the network).
An embodiment of a registration module is illustrated in
The registration engine calculates signatures for a captured object and forwards them to search engine 710. Search engine 710 queries signature database 612 to compare the signatures of a captured object to the document signatures stored in signature database 612. Assuming for the purposes of illustration, that the captured object is a Word document that contains a pasted paragraph from registered PowerPoint document, at least one signature of the registered PowerPoint signatures will match a signature of the captured Word document. This type of event is referred to as the detection of an unauthorized transfer, a registered content transfer, or other similarly descriptive term.
When a registered content transfer is detected, the transmission may be halted or allowed with or without warning to the sender. In the event of a detected registered content transfer, search engine 710 may activate notification module 712, which sends an alert to the registered document owner. Notification module 712 may send different alerts (including different user options) based on the user preference associated with the registration and the capabilities of the registration system.
An alert indicates that an attempt (successful or unsuccessful) to transfer a registered content off the network has been made. Additionally, an alert may provide information regarding the transfer, such as source IP, destination IP, any other information contained in the tag of the captured object, or some other derived information, such as the name of the person who transferred the document off the network. Alerts are provided to one or more users via e-mail, instant message (IM), page, etc. based on the registration parameters. For example, if the registration parameters dictate that an alert is only to be sent to the entity or user who requested registration of a document then no other entity or user will receive an alert.
If the delivery of a captured object is halted (the transfer is not completed), the user who registered the document may need to provide consent to allow the transfer to complete. Accordingly, an alert may contain some or all of the information described above and additionally contain a selection mechanism, such as one or two buttons—to allow the user to indicate whether the transfer of the captured object is eligible for completing. If the user elects to allow the transfer, (for example, because he is aware that someone is emailing a part of a registered document (such as a boss asking his secretary to send an email), the transfer is executed, and the captured object is allowed to leave the network.
If the user disallows the transfer, the captured object is not allowed off the network and delivery is permanently halted. Several halting techniques may be used such as having the registration system proxy the connection between the network and the outside, using a black hole technique (discarding the packets without notice if the transfer is disallowed), a poison technique (inserting additional packets onto the network to cause the sender's connection to fail), etc.
If there are no matches at step 808, then the captured object is routed toward its destination at step 822. This routing is allowed to take place because the captured object has been deemed to not contain any material that has been registered with the system as warranting protection. If there is a match at step 808, further processing is needed. In an embodiment, the delivery of the captured object is halted at step 810. Halting delivery prevents any questionable objects from leaving the network. Regardless if the delivery is halted or not, the registered document that has signatures that match the captured object's signatures is identified at step 812. Furthermore, the identity of the user or entity that registered the document is ascertained at step 814.
The user or entity of the matching registered document is alerted to this attempt to transmit registered material at step 816. This alert may be sent to the registered user or entity in real-time, be a part of a log to be checked, or be sent to the registered user or entity at a later point in time. In an embodiment, an alert is sent to the party attempting to transmit the captured object that the captured object contains registered information. A request to allow delivery of the captured object may be made to the registered user or entity at step 818. As described earlier, there are situations in which a captured object that contains registered material should be allowed to be delivered. If the permission is granted at step 820, the captured object is routed toward its destination at step 822. If permission is not granted, the captured object is not allowed to leave the network.
Signature Generation
There are various methods and processes by which the signatures are generated, for example, in registration engine 702 in
To perform the text extraction/decoding at step 910, the content type of the document is detected (for example, from the tag associated with the document). Then, the proper extractor/decoder is selected based on the content type. An extractor and/or decoder used for each content type extracts and/or decodes the content of the document as required. Several off the shelf products are available, such as the PDFtoText software, may be used for this purpose. In one embodiment, a unique extractor and/or decoder is used for each possible content type. In another embodiment, a more generic extractor and/or decoder is utilized.
The text content resulting from the extraction/decoding is normalized at step 920. Normalization includes removing excess delimiters from the text. Delimiters are characters used to separate text, such as a space, a comma, a semicolon, a slash, tab, etc. For example, the extracted text version of a Microsoft Excel spreadsheet may have two slashes between all table entries and the normalized text may have only one slash between each table entry or it may have one space between each table entry and one space between the words and numbers of the text extracted from each entry.
Normalization may also include delimiting items in an intelligent manner. For example, while credit card numbers generally have spaces between them they are a single item. Similarly, e-mail addresses that look like several words are a single item in the normalized text content. Strings and text identified as irrelevant can be discarded as part of the normalization procedure. In one embodiment, such evaluations are made by comparison to a pattern. For example, a pattern for a social security number may be XXX-XX-XXXX, XXXXXXXX, or XXX XX XXXX, where each X is a digit from 0-9. An example pattern for an email address is word@word.three-letter-word. Similarly, irrelevant (non-unique) stings, such as copyright notices, can have associated patterns.
The pattern comparison is prioritized in one embodiment. For example, if an email address is considered more restrictive than a proper name and a particular string could be either an email address or a proper name, the string is first tested as a possible email address. A string matching the email pattern is classified as an email address and normalized as such. If, however, it is determined that the string is not an email address, then the string is tested against the proper name pattern (for example, a combination of known names). If this produces a match, then the string is normalized as a proper name. Otherwise, the string is normalized as any other normal word.
By comparing the normalization patterns against the string to be normalized in sequence, an implicit pattern hierarchy is established. In one embodiment, the hierarchy is organized such that the more restrictive, or unique, a pattern is, the higher its priority. In other words, the more restrictive the pattern, the earlier it is compared with the string. Any number of normalization patterns useable and the list of patterns may be configurable to account for the needs of a particular enterprise.
Normalization may also include discarding text that is irrelevant for signature generation purposes. For example, text that is known not to be unique to the document may be considered irrelevant. The copyright notice that begins a source code document, such as a C++ source file, is generally not relevant for signature generation, since every source code document of the enterprise has the identical textual notice and would be ignored. Irrelevant text is identified based on matching an enumerated list of known irrelevant text or by keeping count of certain text and thus identifying frequently reoccurring strings (such as strings occurring above a certain threshold rate) as non-unique and thus irrelevant. Other processes to identify irrelevant text include, but are not limited to, identification through pattern matching, identification by matching against a template, and heuristic methods requiring parsing of examples of other documents of the same type.
The delimitated text items of the normalized text content are tokenized, and, converted into a list of tokens at step 930. In one embodiment, tokenizing involves only listing the delimited items. In another embodiment, each item is converted to a token of fixed size. Text items may be hashed into a fixed or configurable hash site such as binary number (for example, an 8-bit token). An example hash function that may be used for tokenizing is MD5. The document signatures are generated from the list of tokens at step 940.
An example embodiment of a flow for changing tokens into document signatures is described with reference to
Tokens may also have an associated priority value that may be used in selecting the special tokens. The priority value can be based on the priority of the normalization pattern matched by the token (for example, social security number, credit card number, email address, etc.) or based on additional signs of uniqueness, such as the frequency of capitalized letters, and the inclusion of special rare characters (for example, “A”, “*”, “@”, etc.)
A hash signature of the N special tokens is calculated, resulting in one of the document signatures at step 1030. The hash is calculable in a number or ways. Special tokens may be hashed individually, or in groups, and the resultant hashes concatenated to form a signature, concatenated prior to the calculation, or hashed without concatenation at all. Any appropriate hash function and/or any combination of these hashing techniques may be utilized. In one embodiment, before the next M tokens are selected, P tokens of the list of tokens are skipped from the first token of the M tokens. However, if P is zero, the next M tokens would be identical to the current M tokens, and therefore zero is not an allowed value for P. If P is less than M, then the next set of M tokens will overlap with the current set of M tokens. If P is equal to M, then the first token of the next M tokens will immediately follow the last token of the current M tokens. If P is greater than M, then some tokens are skipped between the next and the current M tokens.
A determination is made as to whether all signatures have been generated at step 1040. This is be done by observing if there are less than M tokens remaining on the list, hence, the next M tokens cannot be selected. If all signatures for the document have been generated, then the process terminates. However, if more signatures are to be generated for the document the next M tokens are selected by reverting to selecting tokens at step 1010.
There are numerous other ways to perform each of the proceedings of
An embodiment, of a registration engine that generates signatures for documents is illustrated in
Indexing
Searching for information about captured objects stored on a disk (either local or networked) is generally slow as each object must first be retrieved from the disk and then examined against the search criteria. As described below, by creating one or more fast storage (such as Random Access Memory, flash, processor cache, etc.) indexes containing information (such as metadata information and/or keywords) about the objects (and therefore the content) stored on a disk, the task of searching for information regarding captured objects is performed quicker.
Capture system 1212 also includes a capture indexer 1214 to create entries into word indexes 1216 consisting of a dictionary (or lists) of keywords found in all captured content (flows, documents, etc.) and/or entries into metadata indexes (or lists) 1218 based on captured content. In an embodiment, capture indexer 1214 is a part of object classification module 1206. Keyword entries may point to a data structure containing the objects containing the keyword and/or point to a list of objects containing the keyword. A keyword is a word, phrase, name, or other alphanumeric term that exists within common textual content such as an email, Microsoft Office document, or similar content. Typically, only currently used indexes are stored in cache or RAM on the capture device, however, one or more of these indexes may also be stored on disk either locally or remotely. The persistence of these indexes to disk may be done on command or periodically. However, searching is faster if more indexes that are in RAM or other fast storage device rather than on disk.
A metadata index is a tree structure for an individual property (such as IP address) and a subsequent list of captured objects in capture storage device that have said property (such as “transmitted from the specific IP addresses”). Metadata includes properties describing the network characteristics of the content containing keywords. Examples of network characteristics include, but are not limited to, the source and destination addresses (Internet Protocol (IP) addresses), time, and date of the transmission, size, and name of the content, and protocol used to transmit the content. Additional descriptive properties may be used to describe the device upon which the content was captured, the user, viewer of the captured content or security settings of the captured content, etc. Much of this information is also found in tags as described earlier. While keyword index 1216 and metadata index 1218 are illustrated as a being separate entities, they may be a part of a single file per time period.
Because of the two-index system, textual and numeric properties may be indexed using different indexing algorithms (for example, a keyword index may be a hash list and a metadata index a B-tree, etc.). Furthermore, metadata indexes that represent properties that may be enumerated (that have a limited number of possible values) may use different algorithms than those with unbounded properties. An example of an enumerated property is “protocol,” as there are a limited and known number of protocols that are supported by a network capture device. An example of an unbounded property is “size,” as an infinite number of possible sizes exist for the content that will be captured by a network capture device.
The capture indexer utilizes adaptive time-based dictionary granularity and creates new indexes over time, and therefore should prevent any specific index from growing unbounded. Accordingly, a specific maximum search time to find an arbitrary element in a tree or hash list is maintained. The temporal basis for creating a new index is determined by a plurality of factors including, but not limited to: a) the number of keywords or metadata elements that have been inserted into the index; b) the number of captured objects listed in the index; c) the aggregate size of the index; and d) the aggregate size of captured content being indexed. In an embodiment, the creation of new indices is additionally controlled by a user or administrator employing different heuristics to optimize search performance.
A search engine 1220 searches the indexes and returns a list of captured documents from object storage module 1208 that match specified search criteria. This search (or query) searches for each criteria component individually to retrieve a list of tags associated with objects in object storage module 1208 for each criteria and then selects only those tags associated with objects that exist within all returned lists. Alternatively, selections may be made based on a captured object not existing within a returned list. An example of such a selection is the evaluation of the criteria “contains keyword confidential but not keyword sample.” In this case, only objects that exist within the first returned list (contains “confidential”) but not within the second returned list (contains “sample”) would be qualified because of the search. While search engine 1220 is illustrated as a component inside of capture system 1212, it may exist on an external system. Additionally, search engine 1220 may also have capabilities similar to those of the earlier described search engine. Similarly, a capture/registration system, as described before, may also utilize a capture indexer, indexes, and search engine.
The use of both a keyword index 1216 and a metadata index 1218 allows for queries not possible with either a traditional keyword or metadata query. For example, by creating new index periodically (thereby having multiple indexes), a query of documents by time in addition to content is possible. In contrast, while a normal Internet search engine may be able to determine if a particular website has a particular keyword, that same search engine cannot determine if it had that same keyword 15 minutes ago, 1 week ago, etc. as these search engines employ one large index that does not account for time.
Additionally, previously there were no queries that could sort through both keyword and metadata. For example, a search for an email from a person named “Leopold,” that contains a PDF attachment, HCI, and includes (either in the PDF or in the body of the email) the words “confidential” and “information” was impossible. Database queries only search for metadata stored in indexed columns (e.g., such as if the content is a PDF file, mail from information, etc.). These queries do not account for keywords, in other words, they cannot search for a particular document containing the words “confidential” and “information.” Keyword queries (such as a Google query) cannot search for metadata such as the metadata described above.
Because this search was not bound by a time frame, all available keyword and metadata indexes would be queried for these keywords. However, the number of keyword indexes queried is reduced for a time frame limited search. At step 1505, the results of the previous queries are intersected to create a set of references that satisfy the overall query. In the example above, the result of this intersection would be reference 1. Accordingly, only reference 1 would satisfy the collective query, as it is the only reference to have all of the required criteria. At step 1507, the file information associated with the references from the intersection of step 1505 is retrieved. Typically, as described earlier, this information is stored as a tag in a tag database and is retrieved from there. However, the actual documents associated with the references may be retrieved.
While this simplified query flow queries a keyword index prior to a metadata index query the reverse order may be performed. Additionally, many other variations on the simplified flow are possible. For example, while not as efficient, a query flow that performs an intersection after each index query (or after two, three, etc. queries) may be utilized. Another example is performing a query for a first specific time period (querying a first particular set of one keyword and one metadata index that were created/updated during the same time period), intersecting the results of the first query, performing a query on a second specific time period (querying a second particular set of one keyword and one metadata index that were created/updated during the same time period), intersecting the results of first query with the results of the second query, etc. Yet another example is performing a query for a first specific time period (querying a first particular set of one keyword and one metadata index that were created/updated during the same time period), intersecting the results of the first query, performing a query on a second specific time period (querying a second particular set of one keyword and one metadata index that were created/updated during the same time period), intersecting the results of the second query, etc. and when all (or some pre-determined number of) queries have been performed and intersections calculated for each specific time period, intersecting all of the specific period intersection results.
An optimization for the above-described system uses adaptive cache alignment. Adaptive cache alignment means that the capture indexer (or some other entity including a user) aligns memory and/or disk data structures of the indexes (or index entries) to be the size of the system's processor's cache lines (for example, Level 2 (L2) memory cache within the system's processor—this processor has not been illustrated in this application in order to not unnecessarily clutter the FIGURES). If the processor's capabilities are unknown, upon initialization, the capture device's processor is examined and a determination of the appropriate cache alignment is made based upon that examination. Of course, the cache alignment may also be pre-determined if the exact system specifications are known. In another embodiment, the capture indexer (or other entity) examines the block size of the file system (of the fundamental storage unit) and uses this size as part of the cache alignment. Additionally, memory (such as RAM, cache, etc.) used by the capture indexer may be pre-allocated to remove the overhead of allocating memory during operation. Furthermore, algorithms operating on the memory are tolerant of uninitialized values being present upon first use. This allows for the usage of the memory without the latency associated with clearing or resetting the memory to a known state or value.
Another part of a typical rule 1605 is the content and/or sub-content types associated with the rule. Some example choices for content types (as determined, in one embodiment, by the object classification module 30) are JPEG, GIF, BMP, TIFF, PNG (for objects containing images in these various formats); Skintone (for objects containing images exposing human skin); PDF, MSWord, Excel, PowerPoint, MSOffice (for objects in these popular application formats); HTML, WebMail, SMTP, FTP (for objects captured in these transmission formats); Telnet, Rlogin, Chat (for communication conducted using these methods); GZIP, ZIP, TAR (for archives or collections of other objects); Basic_Source, C++_Source, C_Source, Java_Source, FORTRAN_Source, Verilog_Source, VHDL_Source, Assembly_Source, Pascal_Source, Cobol_Source, Ada_Source, Lisp_Source, Perl_Source, XQuery_Source, Hypertext Markup Language, Cascaded Style Sheets, JavaScript, DXF, Spice, Gerber, Mathematica, Matlab, AllegroPCB, ViewLogic, TangoPCAD, BSDL, C_Shell, K_Shell, Bash_Shell, Bourne_Shell, FTP, Telnet, MSExchange, POP3, RFC822, CVS, CMS, SQL, RTSP, MIME, PDF, PS (for source, markup, query, descriptive, and design code authored in these high-level programming languages); C Shell, K Shell, Bash Shell (for shell program scripts); Plaintext (for otherwise unclassified textual objects); Crypto (for objects that have been encrypted or that contain cryptographic elements); Englishtext, Frenchtext, Germantext, Spanishtext, Japanesetext, Chinesetext, Koreantext, Russiantext (any human language text); Binary Unknown, ASCII Unknown, and Unknown (as catch all categories).
Another part of a typical rule is concepts. Concepts are pattern-matching tools that use text patterns or regular expressions to identify collection of related objects. For example, credit cards use a wide range of different numbering patters, which may be collected into a single concept and applied against captured data. A rule may also include words or patterns associated with an object processed by the capture system. For example, a capture rule may dictate that all objects that have the phrase “Aw, hamburgers” be captured. Similarly, a query rule may search all tags and/or objects that contained the phrase “Aw, hamburgers.”
Finally, a rule may also include a signature or signatures associated with a particular object or some portion thereof. In one embodiment, a well-known hash, such as MD5 or SHA1 is used. In one embodiment, the signature is a digital cryptographic signature. In one embodiment, a digital cryptographic signature is a hash signature that is signed with the private key of capture system 200. Only capture system 200 knows its own private key, thus, the integrity of the stored object may be verified by comparing a hash of the stored object to the signature decrypted with the public key of capture system 200, the private and public keys being a public key cryptosystem key pair. Thus, if a stored object is modified from when it was originally captured, the modification will cause the comparison to fail.
Similarly, the signature over the tag stored in the Tag Signature field can also be a digital cryptographic signature. In such an embodiment, the integrity of the tag can also be verified. In one embodiment, verification of the object using the signature, and the tag using the tag signature is performed whenever an object is presented, e.g., displayed to a user. In one embodiment, if the object or the tag is found to have been compromised, an alarm is generated to alert the user that the object displayed may not be identical to the object originally captured.
A group of rules may be combined to form a policy. Policies describe a bigger picture such as “what information should be protected?”, “who is sending what, where?”, “what new policies are needed to best protect our assets?”, etc. Using rules and policies, a user may, for example, tune the system to perform certain actions when an incident is found, find specific concepts that have been programmed, or create and use templates to expedite search processes. Capture rules are stored either in one or more databases in the capture system, or external to the capture system. If the rules are stored externally, they will need to be loaded onto, or be accessible by, the capture system during operation.
As described earlier, a capture system includes a tag database 500 to store and historical content database 502. Within content store 502 are files 504 grouped by content type. Object store module 506 may be internal to a capture system or external (entirely or in part) using, for example, some network storage technique such as network attached storage (NAS), storage area network (SAN), or other database. In an embodiment, content store 502 is a canonical storage location that is simply a place to deposit the captured objects. The indexing of the objects stored in the content store 502 is accomplished using a tag database 500. Tag database 500 is a database data structure in which each record is a “tag” that indexes an object in content store 502 and contains relevant information about the stored object. Example tag structures have been illustrated in Tables 1 and 2 These databases are subjected to investigations, analytics, and/or data mining, etc. to help create a rule 1605 or policy.
The activities of
Text mining sifts through one or more of the databases (metadata (tag) and/or object) for specific textual information. For example, a search of “Attorney Client Privileged” may be performed using text mining. The process of discovery by a capture system classifies content at rest on the network associated with the capture system using predefined and custom policies. For example, one may desire to discover all documents with the phrase “Privileged and Confidential” in them. This phrase has a particular signature associated with it. As illustrated, through discovery signatures for objects are created.
For example,
At step 1803, the databases are preprocessed by applying a filter. The filter parameters are definable by a user (received by the capture system) and typically fall along the lines of the information stored by a tag. For example, any element of a tag (communication parameters, content type, concept, word, or signature) may be used to filter the results from the data mining operation. The preprocessed information is transformed into “buckets” at step 1805. A bucket consists of a group of related information. For example, one bucket shown in
At step 1807, the transformed data is mined and assembled into one or more OLAP cubes. Mining is the non-trivial extraction of previously unknown and potentially useful information from the stored data. The results of mining as shown by one or more OLAP cubes may include one or more of the following: 1) clustering of data or actions (for example, repeated email messages from an employee to a competitor); 2) classification of data or actions (for example, an object that was not previously thought to be important may be identified or reclassified); 3) association of actions or objects with a user, group, project, etc. (for example, an object emailed from one person to a collection of people may indicate that the objected is associated not only with the originator but also with the people in the group); 4) content; 5) users; 6) resources (for example, the bandwidth consumed by a particular user or at a particular time); 7) servers; 8) time; 9) visibility; 10) norms; and/or 11) exceptions. Mining answers the questions of “where is content going?”, “who is accessing the content?”, “when is content access?”, and “who or what is the content associated with?” Additionally, mining provides a time series to associate with content and anomalies by various dimensions such as content—location and content access thresholds.
Mining OLAP cubes are interpreted and evaluated (analytics are performed) at step 1809. At this point, a rule and/or policy may be created based on the OLAP cube(s). It should be noted that one or more of these operations may be performed in parallel or in a different order than that illustrated. Note also that from an initial starting point of simple data (e.g., in a database/repository), the system has achieved a new level of knowledge based on this data. This valuable progress is depicted in
One or more OLAP cubes are generated from the data retrieved from the mining operation(s) at step 1905. At step 1907, the parameters that define or refine a rule and/or policy are received from a user. These parameters are at least partly based on the information gleaned from the OLAP cubes. These parameters may include any one of the rule components described earlier. A rule and/or policy are created from these parameters at step 1909. The rule and/or policy are stored either in the capture system (RAM or disk) or in a database or other storage device accessible by the capture system at step 1911. At step 1913, the rule and/or policy are run against the existing databases to determine if it provides the desired result. If the rule and/or policy do not produce the desired result, it may be tuned at step 1915 by a user that provides different parameters for the rule and/or policy. In an alternative embodiment, the rule and/or stored after the rule and/or policy has been run.
An administration system 2023 includes the necessary modules for creating an OLAP, which is then used to create a rule and/or policy. Administration system 2023 may be a separate entity, as illustrated, or incorporated into either user system 2005, or capture system 2001. As shown, user system 2005 is a “dumb” terminal that has access to both capture 2001 and administration 2023 systems. For example, user system 2005 may connect through a software program such as a Web browser to receive information from capture system 2001 or administration system 2023.
There are several ways for mining modules 2007, 2009 to receive this information. Usually, a user supplies this information through a graphical user interface (GUI) provided by presentation module 2015. For example, in an embodiment the user uses a Web browser to provide the requirements. Alternatively, a user may supply a data mining request using a memory storage device such as a flash storage device, optical storage medium, etc. or via a network connection (such as an FTP connection).
As described earlier, the creation of an OLAP cube progresses through several stages. Typically, a user provides data mining module 2007 or other mining modules 2009 (text, image, etc.) with requirements for what should be retrieved from the tag and/or object database(s) (e.g., content storage 2003). If capture system 2001, and by extension content storage 2003, utilizes multiple hierarchies of storage by date (time), then the requirements may begin with a target date (or time) range to search and/or retrieve from content storage 2003. Retrieving from storage and copying the data to a local storage location (RAM, disk, etc.) normally provides a performance benefit over searching the storage 2003 directly because, unless capture system 2001 is not operational it will continue to access storage thereby slowing the seek timing of the disks of content storage 2003.
One or more filters 2011 are applied to the data retrieved from content storage 2003 to further narrow what has been mined. As discussed earlier, this “preprocessing” removes information that is not useful. Again, a user may supply this information via presentation module 2015 or other channels. It is preferred to work with tags and not objects for the creation of an OLAP for several reasons, but primarily because the process will be much quicker when working with tags instead of having to handle the processing an object to see what the object describes (this information presumably is already stored in the tags). Accordingly, filters are usually focused on the different components of a tag as described earlier. For example, a user may filter based on the communication parameters used, content type, concept, words, or fingerprint.
The filtered information is transformed by transform module 2025 into buckets. These buckets will help with the construction of an OLAP cube because they usually align with the axes of the cube. However, in some instances more filtering/re-arranging may be needed. Data-mining module 2007 and other mining modules 2009 (such as a text mining module) perform mining operations on the filtered and/or transformed data. The results of this mining are processed by the OLAP generator module to generate one or more OLAP cubes. Using these cubes, it is easier for patterns to emerge for a rule and/or policy creator to see and create a rule and/or policy accordingly.
Presentation module 2015 displays the OLAP cube to a user (either directly or through another conveyance such as a Web page or print out). Additionally, presentation module 2015 also has access to the other modules of administration system 2023. Accordingly, a user may input the filter parameters, see the mining results, etc. A rule and/or policy generator 2017 to generate a rule or policy is also incorporated into administration system 2023. A user may input the parameters of a rule and/or policy to be created by rule and/or policy generator 2017 via presentation module 2015 or other channels.
Note that in one example implementation of the present invention, capture system 200 (and 312) includes software to achieve the optimal data mining and security policy management operations, as outlined herein in this document. These capture systems may be included within a network appliance, or provided as a separate component. In other embodiments, this feature may be provided external to a network appliance and/or capture systems 200 and 312 or included in some other network device to achieve this intended functionality.
The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by the discussed system in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings of the present invention. Some of these outlined steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of the present invention. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably.
In one non-limiting example implementation of one embodiment of the present invention, an article of manufacture may be used to store program code. An article of manufacture that stores program code may be embodied as, but is not limited to, one or more memories (e.g., one or more flash memories, random access memories (static, dynamic or other)), optical disks, CD-ROMs, DVD ROMs, EPROMs, EEPROMs, magnetic or optical cards or other type of machine-readable medium suitable for storing electronic instructions. In one embodiment, a capture system is an appliance constructed using commonly available computing equipment and storage systems capable of supporting the software requirements.
Closing Comments
An article of manufacture (such as a machine-readable medium) may be used to store program code. An article of manufacture that stores program code may be embodied as, but is not limited to, a machine-readable storage medium such as one or more memories (e.g., one or more flash memories, random access memories (static, dynamic or other)), optical disks, CD-ROMs, DVD ROMs, EPROMs, EEPROMs, magnetic or optical cards or other type of machine-readable media suitable for storing electronic instructions. Program code may also be downloaded from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a propagation medium (e.g., via a communication link (e.g., a network connection)). In one embodiment, a capture system is an appliance constructed using commonly available computing equipment and storage systems capable of supporting the software requirements.
One or more processors 2101 execute instructions in order to perform whatever software routines the computing system implements. The instructions frequently involve some sort of operation performed upon data. Both data and instructions are stored in system memory 2103 and cache 2104. Cache 2104 is typically designed to have shorter latency times than system memory 2103. For example, cache 2104 might be integrated onto the same silicon chip(s) as the processor(s) and/or constructed with faster SRAM cells, while system memory 2103 might be constructed with slower DRAM cells. By tending to store more frequently used instructions and data in the cache 2104 as opposed to system memory 2103, the overall performance efficiency of the computing system improves.
System memory 2103 is deliberately made available to other components within the computing system. For example, the data received from various interfaces to the computing system (e.g., keyboard and mouse, printer port, LAN port, modem port, etc.) or retrieved from an internal storage element of the computing system (e.g., hard disk drive) are often temporarily queued into system memory 2103 prior to their being operated upon by one or more processor(s) 2101 in the implementation of a software program. Similarly, data that a software program determines should be sent from the computing system to an outside entity through one of the computing system interfaces, or stored into an internal storage element, is often temporarily queued in system memory 2103 prior to its being transmitted or stored.
ICH 2105 is responsible for ensuring that such data is properly passed between system memory 2103 and its appropriate corresponding computing system interface (and internal storage device if the computing system is so designed). MCH 2102 is responsible for managing the various contending requests for system memory 2103 access amongst processor(s) 2101, interfaces, and internal storage elements that may proximately arise in time with respect to one another.
One or more I/O devices 2108 are also implemented in a typical computing system. I/O devices generally are responsible for transferring data to and/or from the computing system (e.g., a networking adapter), or for large-scale non-volatile storage within the computing system (e.g., hard disk drive). ICH 2105 has bi-directional point-to-point links between itself and observed I/O devices 2108. A capture program, classification program, a database, a filestore, an analysis engine, and/or a graphical user interface may be stored in a storage device or devices 2108 or in memory 2103.
In the foregoing specification, the invention has been described with reference to specific example embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended Claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Thus, a capture system and a document/content registration system have been described. In the forgoing description, various specific values were given names, such as “objects” and “documents,” and various specific modules, such as the “registration module” and “signature database” have been described. However, these names are merely to describe and illustrate various aspects of the present invention, and in no way limit the scope of the present invention. Furthermore, various modules may be implemented as software or hardware modules, combined, or without dividing their functionalities into modules at all. The present invention is not limited to any modular architecture either in software or in hardware, whether described above or not.
This application is a continuation (and claims the benefit under 35 U.S.C. §120) of U.S. patent application Ser. No. 13/896,210, filed May 16, 2013, entitled “SYSTEM AND METHOD FOR DATA MINING AND SECURITY POLICY MANAGEMENT,” Inventors Ratinder Ahuja et al., which application is a continuation (and claims the benefit under 35 U.S.C. §120) of U.S. patent application Ser. No. 12/410,875, filed Mar. 25, 2009, entitled ‘SYSTEM AND METHOD FOR DATA MINING AND SECURITY POLICY MANAGEMENT,” Inventors Ratinder Paul Singh Ahuja et al., now issued as U.S. Pat. No. 8,447,722. The disclosures of the prior applications are considered a part of and are incorporated by reference in the disclosure of this application.
Number | Name | Date | Kind |
---|---|---|---|
4286255 | Siy | Aug 1981 | A |
4710957 | Bocci et al. | Dec 1987 | A |
5249289 | Thamm et al. | Sep 1993 | A |
5465299 | Matsumoto et al. | Nov 1995 | A |
5479654 | Squibb | Dec 1995 | A |
5497489 | Menne | Mar 1996 | A |
5542090 | Henderson et al. | Jul 1996 | A |
5557747 | Rogers et al. | Sep 1996 | A |
5577249 | Califano | Nov 1996 | A |
5623652 | Vora et al. | Apr 1997 | A |
5768578 | Kirk et al. | Jun 1998 | A |
5781629 | Haber et al. | Jul 1998 | A |
5787232 | Greiner et al. | Jul 1998 | A |
5794052 | Harding | Aug 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5873081 | Harel | Feb 1999 | A |
5924096 | Draper et al. | Jul 1999 | A |
5937422 | Nelson et al. | Aug 1999 | A |
5943670 | Prager | Aug 1999 | A |
5987610 | Franczek et al. | Nov 1999 | A |
5995111 | Morioka et al. | Nov 1999 | A |
6026411 | Delp | Feb 2000 | A |
6073142 | Geiger et al. | Jun 2000 | A |
6078953 | Vaid et al. | Jun 2000 | A |
6094531 | Allison et al. | Jul 2000 | A |
6108697 | Raymond et al. | Aug 2000 | A |
6122379 | Barbir | Sep 2000 | A |
6161102 | Yanagihara et al. | Dec 2000 | A |
6175867 | Taghadoss | Jan 2001 | B1 |
6192472 | Garay et al. | Feb 2001 | B1 |
6243091 | Berstis | Jun 2001 | B1 |
6243720 | Munter et al. | Jun 2001 | B1 |
6278992 | Curtis et al. | Aug 2001 | B1 |
6292810 | Richards | Sep 2001 | B1 |
6336186 | Dyksterhouse et al. | Jan 2002 | B1 |
6343376 | Saxe et al. | Jan 2002 | B1 |
6356885 | Ross et al. | Mar 2002 | B2 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6389405 | Oatman et al. | May 2002 | B1 |
6389419 | Wong et al. | May 2002 | B1 |
6408294 | Getchius et al. | Jun 2002 | B1 |
6408301 | Patton et al. | Jun 2002 | B1 |
6411952 | Bharat et al. | Jun 2002 | B1 |
6457017 | Watkins et al. | Sep 2002 | B2 |
6460050 | Pace et al. | Oct 2002 | B1 |
6499105 | Yoshiura et al. | Dec 2002 | B1 |
6502091 | Chundi et al. | Dec 2002 | B1 |
6515681 | Knight | Feb 2003 | B1 |
6516320 | Odom et al. | Feb 2003 | B1 |
6523026 | Gillis | Feb 2003 | B1 |
6539024 | Janoska et al. | Mar 2003 | B1 |
6556964 | Haug et al. | Apr 2003 | B2 |
6556983 | Altschuler et al. | Apr 2003 | B1 |
6571275 | Dong et al. | May 2003 | B1 |
6584458 | Millett et al. | Jun 2003 | B1 |
6598033 | Ross et al. | Jul 2003 | B2 |
6629097 | Keith | Sep 2003 | B1 |
6662176 | Brunet et al. | Dec 2003 | B2 |
6665662 | Kirkwood et al. | Dec 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6691209 | O'Connell | Feb 2004 | B1 |
6754647 | Tackett et al. | Jun 2004 | B1 |
6757646 | Marchisio | Jun 2004 | B2 |
6771595 | Gilbert et al. | Aug 2004 | B1 |
6772214 | McClain et al. | Aug 2004 | B1 |
6785815 | Serret-Avila et al. | Aug 2004 | B1 |
6804627 | Marokhovsky et al. | Oct 2004 | B1 |
6820082 | Cook et al. | Nov 2004 | B1 |
6857011 | Reinke | Feb 2005 | B2 |
6937257 | Dunlavey | Aug 2005 | B1 |
6950864 | Tsuchiya | Sep 2005 | B1 |
6976053 | Tripp et al. | Dec 2005 | B1 |
6978297 | Piersol | Dec 2005 | B1 |
6978367 | Hind et al. | Dec 2005 | B1 |
7007020 | Chen et al. | Feb 2006 | B1 |
7020654 | Najmi | Mar 2006 | B1 |
7020661 | Cruanes et al. | Mar 2006 | B1 |
7062572 | Hampton | Jun 2006 | B1 |
7062705 | Kirkwood et al. | Jun 2006 | B1 |
7072967 | Saulpaugh et al. | Jul 2006 | B1 |
7082443 | Ashby | Jul 2006 | B1 |
7093288 | Hydrie et al. | Aug 2006 | B1 |
7103607 | Kirkwood et al. | Sep 2006 | B1 |
7130587 | Hikokubo et al. | Oct 2006 | B2 |
7133400 | Henderson et al. | Nov 2006 | B1 |
7139973 | Kirkwood et al. | Nov 2006 | B1 |
7143109 | Nagral et al. | Nov 2006 | B2 |
7158983 | Willse et al. | Jan 2007 | B2 |
7165175 | Kollmyer et al. | Jan 2007 | B1 |
7171662 | Misra et al. | Jan 2007 | B1 |
7181769 | Keanini et al. | Feb 2007 | B1 |
7185073 | Gai et al. | Feb 2007 | B1 |
7185192 | Kahn | Feb 2007 | B1 |
7188173 | Anderson et al. | Mar 2007 | B2 |
7194483 | Mohan et al. | Mar 2007 | B1 |
7219131 | Banister et al. | May 2007 | B2 |
7219134 | Takeshima et al. | May 2007 | B2 |
7243120 | Massey | Jul 2007 | B2 |
7246236 | Stirbu | Jul 2007 | B2 |
7254562 | Hsu et al. | Aug 2007 | B2 |
7254632 | Zeira et al. | Aug 2007 | B2 |
7266845 | Hypponen | Sep 2007 | B2 |
7272724 | Tarbotton et al. | Sep 2007 | B2 |
7277957 | Rowley et al. | Oct 2007 | B2 |
7290048 | Barnett et al. | Oct 2007 | B1 |
7293067 | Maki et al. | Nov 2007 | B1 |
7293238 | Brook et al. | Nov 2007 | B1 |
7296011 | Chaudhuri et al. | Nov 2007 | B2 |
7296070 | Sweeney et al. | Nov 2007 | B2 |
7296088 | Padmanabhan et al. | Nov 2007 | B1 |
7296232 | Burdick et al. | Nov 2007 | B1 |
7299277 | Moran et al. | Nov 2007 | B1 |
7299489 | Branigan et al. | Nov 2007 | B1 |
7373500 | Ramelson et al. | May 2008 | B2 |
7424744 | Wu et al. | Sep 2008 | B1 |
7426181 | Feroz et al. | Sep 2008 | B1 |
7434058 | Ahuja et al. | Oct 2008 | B2 |
7467202 | Savchuk | Dec 2008 | B2 |
7477780 | Boncyk et al. | Jan 2009 | B2 |
7483916 | Lowe et al. | Jan 2009 | B2 |
7493659 | Wu et al. | Feb 2009 | B1 |
7505463 | Schuba et al. | Mar 2009 | B2 |
7506055 | McClain et al. | Mar 2009 | B2 |
7506155 | Stewart et al. | Mar 2009 | B1 |
7509677 | Saurabh et al. | Mar 2009 | B2 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7539683 | Satoh et al. | May 2009 | B1 |
7551629 | Chen et al. | Jun 2009 | B2 |
7577154 | Yung et al. | Aug 2009 | B1 |
7581059 | Gupta et al. | Aug 2009 | B2 |
7596571 | Sifry | Sep 2009 | B2 |
7599844 | King et al. | Oct 2009 | B2 |
7657104 | Deninger et al. | Feb 2010 | B2 |
7664083 | Cermak et al. | Feb 2010 | B1 |
7685254 | Pandya | Mar 2010 | B2 |
7689614 | de la Iglesia et al. | Mar 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739080 | Beck et al. | Jun 2010 | B1 |
7760730 | Goldschmidt et al. | Jul 2010 | B2 |
7760769 | Lovett et al. | Jul 2010 | B1 |
7774604 | Lowe et al. | Aug 2010 | B2 |
7801852 | Wong et al. | Sep 2010 | B2 |
7814327 | Ahuja et al. | Oct 2010 | B2 |
7818326 | Deninger et al. | Oct 2010 | B2 |
7844582 | Arbilla et al. | Nov 2010 | B1 |
7849065 | Kamani et al. | Dec 2010 | B2 |
7886359 | Jones et al. | Feb 2011 | B2 |
7899828 | de la Iglesia et al. | Mar 2011 | B2 |
7907608 | Liu et al. | Mar 2011 | B2 |
7921072 | Bohannon et al. | Apr 2011 | B2 |
7926099 | Chakravarty et al. | Apr 2011 | B1 |
7930540 | Ahuja et al. | Apr 2011 | B2 |
7949849 | Lowe et al. | May 2011 | B2 |
7958227 | Ahuja et al. | Jun 2011 | B2 |
7962591 | Deninger et al. | Jun 2011 | B2 |
7979524 | Dieberger et al. | Jul 2011 | B2 |
7984175 | de la Iglesia et al. | Jul 2011 | B2 |
7996373 | Zoppas et al. | Aug 2011 | B1 |
8005863 | de la Iglesia et al. | Aug 2011 | B2 |
8010689 | Deninger et al. | Aug 2011 | B2 |
8055601 | Pandya | Nov 2011 | B2 |
8056130 | Njemanze et al. | Nov 2011 | B1 |
8065739 | Bruening et al. | Nov 2011 | B1 |
8166307 | Ahuja et al. | Apr 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8200026 | Deninger et al. | Jun 2012 | B2 |
8205242 | Liu | Jun 2012 | B2 |
8205244 | Nightingale et al. | Jun 2012 | B2 |
8261347 | Hrabik et al. | Sep 2012 | B2 |
8271794 | Lowe et al. | Sep 2012 | B2 |
8286253 | Lu et al. | Oct 2012 | B1 |
8301635 | de la Iglesia et al. | Oct 2012 | B2 |
8307007 | de la Iglesia et al. | Nov 2012 | B2 |
8307206 | Ahuja et al. | Nov 2012 | B2 |
8341734 | Hernacki et al. | Dec 2012 | B1 |
8463800 | Deninger et al. | Jun 2013 | B2 |
8473442 | Deninger et al. | Jun 2013 | B1 |
8504537 | de la Iglesia et al. | Aug 2013 | B2 |
8521757 | Nanda et al. | Aug 2013 | B1 |
8560534 | Lowe et al. | Oct 2013 | B2 |
8601537 | Lu | Dec 2013 | B2 |
8612570 | Nair et al. | Dec 2013 | B1 |
8635706 | Liu | Jan 2014 | B2 |
8645397 | Koudas et al. | Feb 2014 | B1 |
8656039 | de la Iglesia et al. | Feb 2014 | B2 |
8667121 | Ahuja et al. | Mar 2014 | B2 |
8683035 | Ahuja et al. | Mar 2014 | B2 |
8700561 | Ahuja et al. | Apr 2014 | B2 |
8706709 | Ahuja et al. | Apr 2014 | B2 |
8707008 | Lowe et al. | Apr 2014 | B2 |
8730955 | Liu et al. | May 2014 | B2 |
8762386 | de la Iglesia et al. | Jun 2014 | B2 |
8806615 | Ahuja et al. | Aug 2014 | B2 |
8850591 | Ahuja et al. | Sep 2014 | B2 |
8918359 | Ahuja et al. | Dec 2014 | B2 |
9092471 | de la Iglesia et al. | Jul 2015 | B2 |
9094338 | Ahuja et al. | Jul 2015 | B2 |
9195937 | Deninger et al. | Nov 2015 | B2 |
20010010717 | Goto et al. | Aug 2001 | A1 |
20010013024 | Takahashi et al. | Aug 2001 | A1 |
20010032310 | Corella | Oct 2001 | A1 |
20010037324 | Agrawal et al. | Nov 2001 | A1 |
20010046230 | Rojas | Nov 2001 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020032772 | Olstad et al. | Mar 2002 | A1 |
20020046221 | Wallace et al. | Apr 2002 | A1 |
20020052896 | Streit et al. | May 2002 | A1 |
20020065956 | Yagawa et al. | May 2002 | A1 |
20020078355 | Samar | Jun 2002 | A1 |
20020091579 | Yehia et al. | Jul 2002 | A1 |
20020103799 | Bradford et al. | Aug 2002 | A1 |
20020103876 | Chatani et al. | Aug 2002 | A1 |
20020107843 | Biebesheimer et al. | Aug 2002 | A1 |
20020116124 | Garin et al. | Aug 2002 | A1 |
20020116721 | Dobes et al. | Aug 2002 | A1 |
20020126673 | Dagli et al. | Sep 2002 | A1 |
20020128903 | Kernahan | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020159447 | Carey et al. | Oct 2002 | A1 |
20030009718 | Wolfgang et al. | Jan 2003 | A1 |
20030028493 | Tajima | Feb 2003 | A1 |
20030028774 | Meka | Feb 2003 | A1 |
20030046369 | Sim et al. | Mar 2003 | A1 |
20030053420 | Duckett et al. | Mar 2003 | A1 |
20030055962 | Freund et al. | Mar 2003 | A1 |
20030065571 | Dutta | Apr 2003 | A1 |
20030084300 | Koike | May 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030084326 | Tarquini | May 2003 | A1 |
20030093678 | Bowe et al. | May 2003 | A1 |
20030099243 | Oh et al. | May 2003 | A1 |
20030105716 | Sutton et al. | Jun 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030105854 | Thorsteinsson et al. | Jun 2003 | A1 |
20030131116 | Jain et al. | Jul 2003 | A1 |
20030135612 | Huntington et al. | Jul 2003 | A1 |
20030167392 | Fransdonk | Sep 2003 | A1 |
20030185220 | Valenci | Oct 2003 | A1 |
20030196081 | Savarda et al. | Oct 2003 | A1 |
20030204741 | Schoen et al. | Oct 2003 | A1 |
20030210694 | Jayaraman et al. | Nov 2003 | A1 |
20030221101 | Micali | Nov 2003 | A1 |
20030225796 | Matsubara | Dec 2003 | A1 |
20030225841 | Song et al. | Dec 2003 | A1 |
20030231632 | Haeberlen | Dec 2003 | A1 |
20030233411 | Parry et al. | Dec 2003 | A1 |
20040001498 | Chen et al. | Jan 2004 | A1 |
20040003005 | Chaudhuri et al. | Jan 2004 | A1 |
20040010484 | Foulger et al. | Jan 2004 | A1 |
20040015579 | Cooper et al. | Jan 2004 | A1 |
20040036716 | Jordahl | Feb 2004 | A1 |
20040054779 | Takeshima et al. | Mar 2004 | A1 |
20040059736 | Willse et al. | Mar 2004 | A1 |
20040059920 | Godwin | Mar 2004 | A1 |
20040064537 | Anderson et al. | Apr 2004 | A1 |
20040071164 | Baum | Apr 2004 | A1 |
20040093323 | Bluhm et al. | May 2004 | A1 |
20040111406 | Udeshi et al. | Jun 2004 | A1 |
20040111678 | Hara | Jun 2004 | A1 |
20040114518 | MacFaden et al. | Jun 2004 | A1 |
20040117414 | Braun et al. | Jun 2004 | A1 |
20040120325 | Ayres | Jun 2004 | A1 |
20040122863 | Sidman | Jun 2004 | A1 |
20040122936 | Mizelle et al. | Jun 2004 | A1 |
20040139061 | Colossi et al. | Jul 2004 | A1 |
20040139120 | Clark et al. | Jul 2004 | A1 |
20040143598 | Drucker et al. | Jul 2004 | A1 |
20040181513 | Henderson et al. | Sep 2004 | A1 |
20040181690 | Rothermel et al. | Sep 2004 | A1 |
20040193594 | Moore et al. | Sep 2004 | A1 |
20040194141 | Sanders | Sep 2004 | A1 |
20040196970 | Cole | Oct 2004 | A1 |
20040205457 | Bent et al. | Oct 2004 | A1 |
20040215612 | Brody | Oct 2004 | A1 |
20040215626 | Colossi et al. | Oct 2004 | A1 |
20040220944 | Behrens et al. | Nov 2004 | A1 |
20040225645 | Rowney et al. | Nov 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040230891 | Pravetz et al. | Nov 2004 | A1 |
20040249781 | Anderson | Dec 2004 | A1 |
20040267753 | Hoche | Dec 2004 | A1 |
20050004911 | Goldberg et al. | Jan 2005 | A1 |
20050021715 | Dugatkin et al. | Jan 2005 | A1 |
20050021743 | Fleig et al. | Jan 2005 | A1 |
20050022114 | Shanahan et al. | Jan 2005 | A1 |
20050027881 | Figueira et al. | Feb 2005 | A1 |
20050033726 | Wu et al. | Feb 2005 | A1 |
20050033747 | Wittkotter | Feb 2005 | A1 |
20050033803 | Vleet et al. | Feb 2005 | A1 |
20050038788 | Dettinger et al. | Feb 2005 | A1 |
20050038809 | Abajian et al. | Feb 2005 | A1 |
20050044289 | Hendel et al. | Feb 2005 | A1 |
20050050028 | Rose et al. | Mar 2005 | A1 |
20050050205 | Gordy et al. | Mar 2005 | A1 |
20050055327 | Agrawal et al. | Mar 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050075103 | Hikokubo et al. | Apr 2005 | A1 |
20050086252 | Jones et al. | Apr 2005 | A1 |
20050091443 | Hershkovich et al. | Apr 2005 | A1 |
20050091532 | Moghe | Apr 2005 | A1 |
20050097441 | Herbach et al. | May 2005 | A1 |
20050108244 | Riise et al. | May 2005 | A1 |
20050114452 | Prakash | May 2005 | A1 |
20050120006 | Nye | Jun 2005 | A1 |
20050127171 | Ahuja et al. | Jun 2005 | A1 |
20050128242 | Suzuki | Jun 2005 | A1 |
20050131876 | Ahuja et al. | Jun 2005 | A1 |
20050132034 | de la Iglesia et al. | Jun 2005 | A1 |
20050132046 | de la Iglesia et al. | Jun 2005 | A1 |
20050132079 | de la Iglesia et al. | Jun 2005 | A1 |
20050132197 | Medlar | Jun 2005 | A1 |
20050132198 | Ahuja et al. | Jun 2005 | A1 |
20050132297 | Milic-Frayling et al. | Jun 2005 | A1 |
20050138110 | Redlich et al. | Jun 2005 | A1 |
20050138242 | Pope et al. | Jun 2005 | A1 |
20050138279 | Somasundaram | Jun 2005 | A1 |
20050149494 | Lindh et al. | Jul 2005 | A1 |
20050149504 | Ratnaparkhi | Jul 2005 | A1 |
20050166066 | Ahuja et al. | Jul 2005 | A1 |
20050177725 | Lowe et al. | Aug 2005 | A1 |
20050180341 | Nelson et al. | Aug 2005 | A1 |
20050182765 | Liddy | Aug 2005 | A1 |
20050188218 | Walmsley et al. | Aug 2005 | A1 |
20050203940 | Farrar et al. | Sep 2005 | A1 |
20050204129 | Sudia et al. | Sep 2005 | A1 |
20050228864 | Robertson | Oct 2005 | A1 |
20050235153 | Ikeda | Oct 2005 | A1 |
20050262044 | Chaudhuri et al. | Nov 2005 | A1 |
20050273614 | Ahuja et al. | Dec 2005 | A1 |
20050289181 | Deninger et al. | Dec 2005 | A1 |
20060005247 | Zhang et al. | Jan 2006 | A1 |
20060021045 | Cook | Jan 2006 | A1 |
20060021050 | Cook et al. | Jan 2006 | A1 |
20060037072 | Rao et al. | Feb 2006 | A1 |
20060041560 | Forman et al. | Feb 2006 | A1 |
20060041570 | Lowe et al. | Feb 2006 | A1 |
20060041760 | Huang | Feb 2006 | A1 |
20060047675 | Lowe et al. | Mar 2006 | A1 |
20060075228 | Black et al. | Apr 2006 | A1 |
20060080130 | Choksi | Apr 2006 | A1 |
20060083180 | Baba et al. | Apr 2006 | A1 |
20060106793 | Liang | May 2006 | A1 |
20060106866 | Green et al. | May 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060167896 | Kapur et al. | Jul 2006 | A1 |
20060184532 | Hamada et al. | Aug 2006 | A1 |
20060235811 | Fairweather | Oct 2006 | A1 |
20060242126 | Fitzhugh | Oct 2006 | A1 |
20060242313 | Le et al. | Oct 2006 | A1 |
20060242694 | Gold | Oct 2006 | A1 |
20060251109 | Muller et al. | Nov 2006 | A1 |
20060253445 | Huang et al. | Nov 2006 | A1 |
20060271506 | Bohannon et al. | Nov 2006 | A1 |
20060272024 | Huang et al. | Nov 2006 | A1 |
20060288216 | Buhler et al. | Dec 2006 | A1 |
20070006293 | Balakrishnan et al. | Jan 2007 | A1 |
20070011309 | Brady et al. | Jan 2007 | A1 |
20070028039 | Gupta et al. | Feb 2007 | A1 |
20070036156 | Liu et al. | Feb 2007 | A1 |
20070039049 | Kupferman et al. | Feb 2007 | A1 |
20070050334 | Deninger et al. | Mar 2007 | A1 |
20070050381 | Hu et al. | Mar 2007 | A1 |
20070050467 | Borrett et al. | Mar 2007 | A1 |
20070050846 | Xie et al. | Mar 2007 | A1 |
20070081471 | Talley et al. | Apr 2007 | A1 |
20070094394 | Singh et al. | Apr 2007 | A1 |
20070106660 | Stern et al. | May 2007 | A1 |
20070106685 | Houh et al. | May 2007 | A1 |
20070106693 | Houh et al. | May 2007 | A1 |
20070110089 | Essafi et al. | May 2007 | A1 |
20070112837 | Houh et al. | May 2007 | A1 |
20070112838 | Bjarnestam et al. | May 2007 | A1 |
20070116366 | Deninger et al. | May 2007 | A1 |
20070124384 | Howell et al. | May 2007 | A1 |
20070136599 | Suga | Jun 2007 | A1 |
20070139723 | Beadle et al. | Jun 2007 | A1 |
20070140128 | Klinker et al. | Jun 2007 | A1 |
20070143235 | Kummamuru et al. | Jun 2007 | A1 |
20070143559 | Yagawa | Jun 2007 | A1 |
20070162609 | Pope et al. | Jul 2007 | A1 |
20070162954 | Pela | Jul 2007 | A1 |
20070185868 | Roth et al. | Aug 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070226504 | de la Iglesia et al. | Sep 2007 | A1 |
20070226510 | de la Iglesia et al. | Sep 2007 | A1 |
20070248029 | Merkey et al. | Oct 2007 | A1 |
20070260643 | Borden et al. | Nov 2007 | A1 |
20070266044 | Grondin et al. | Nov 2007 | A1 |
20070271254 | de la Iglesia et al. | Nov 2007 | A1 |
20070271371 | Singh Ahuja et al. | Nov 2007 | A1 |
20070271372 | Deninger et al. | Nov 2007 | A1 |
20070280123 | Atkins et al. | Dec 2007 | A1 |
20080027971 | Statchuk | Jan 2008 | A1 |
20080028467 | Kommareddy et al. | Jan 2008 | A1 |
20080030383 | Cameron | Feb 2008 | A1 |
20080071813 | Nair et al. | Mar 2008 | A1 |
20080082497 | Leblang et al. | Apr 2008 | A1 |
20080091408 | Roulland et al. | Apr 2008 | A1 |
20080112411 | Stafford et al. | May 2008 | A1 |
20080115125 | Stafford et al. | May 2008 | A1 |
20080127346 | Oh et al. | May 2008 | A1 |
20080140657 | Azvine et al. | Jun 2008 | A1 |
20080141117 | King et al. | Jun 2008 | A1 |
20080159627 | Sengamedu | Jul 2008 | A1 |
20080235163 | Balasubramanian et al. | Sep 2008 | A1 |
20080263019 | Harrison et al. | Oct 2008 | A1 |
20080270462 | Thomsen | Oct 2008 | A1 |
20080276295 | Nair | Nov 2008 | A1 |
20090070327 | Loeser et al. | Mar 2009 | A1 |
20090070328 | Loeser et al. | Mar 2009 | A1 |
20090070459 | Cho et al. | Mar 2009 | A1 |
20090100055 | Wang | Apr 2009 | A1 |
20090157659 | Satoh et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090178110 | Higuchi | Jul 2009 | A1 |
20090187568 | Morin | Jul 2009 | A1 |
20090193033 | Ramzan et al. | Jul 2009 | A1 |
20090216752 | Terui et al. | Aug 2009 | A1 |
20090222442 | Houh et al. | Sep 2009 | A1 |
20090232391 | Deninger et al. | Sep 2009 | A1 |
20090235150 | Berry | Sep 2009 | A1 |
20090254532 | Yang et al. | Oct 2009 | A1 |
20090288026 | Barabas et al. | Nov 2009 | A1 |
20090288164 | Adelstein et al. | Nov 2009 | A1 |
20090300709 | Chen et al. | Dec 2009 | A1 |
20090326925 | Crider et al. | Dec 2009 | A1 |
20100011016 | Greene | Jan 2010 | A1 |
20100011410 | Liu | Jan 2010 | A1 |
20100023726 | Aviles | Jan 2010 | A1 |
20100037324 | Grant et al. | Feb 2010 | A1 |
20100042625 | Zoellner et al. | Feb 2010 | A1 |
20100088317 | Bone et al. | Apr 2010 | A1 |
20100100551 | Knauft et al. | Apr 2010 | A1 |
20100121853 | de la Iglesia et al. | May 2010 | A1 |
20100174528 | Oya et al. | Jul 2010 | A1 |
20100185622 | Deninger et al. | Jul 2010 | A1 |
20100191732 | Lowe et al. | Jul 2010 | A1 |
20100195909 | Wasson et al. | Aug 2010 | A1 |
20100268959 | Lowe et al. | Oct 2010 | A1 |
20100332502 | Carmel et al. | Dec 2010 | A1 |
20110004599 | Deninger et al. | Jan 2011 | A1 |
20110040552 | Van Guilder et al. | Feb 2011 | A1 |
20110106846 | Matsumoto et al. | May 2011 | A1 |
20110131199 | Simon et al. | Jun 2011 | A1 |
20110149959 | Liu et al. | Jun 2011 | A1 |
20110167212 | Lowe et al. | Jul 2011 | A1 |
20110167265 | Ahuja et al. | Jul 2011 | A1 |
20110196911 | de la Iglesia et al. | Aug 2011 | A1 |
20110197284 | Ahuja et al. | Aug 2011 | A1 |
20110208861 | Deninger et al. | Aug 2011 | A1 |
20110219237 | Ahuja et al. | Sep 2011 | A1 |
20110258197 | de la Iglesia et al. | Oct 2011 | A1 |
20110276575 | de la Iglesia et al. | Nov 2011 | A1 |
20110276709 | Deninger et al. | Nov 2011 | A1 |
20120114119 | Ahuja et al. | May 2012 | A1 |
20120179687 | Liu | Jul 2012 | A1 |
20120180137 | Liu | Jul 2012 | A1 |
20120191722 | Deninger et al. | Jul 2012 | A1 |
20130247208 | Bishop | Sep 2013 | A1 |
20140164314 | Ahuja et al. | Jun 2014 | A1 |
20140164442 | de la Iglesia | Jun 2014 | A1 |
20140289416 | Ahuja et al. | Sep 2014 | A1 |
20150067810 | Ahuja et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
101192237 | Jun 2012 | CN |
2499806 | Sep 2012 | EP |
1994-098770 | Apr 1994 | JP |
2005-209193 | Aug 2005 | JP |
5727027 | Apr 2015 | JP |
1020080087021.0 | Sep 2008 | KR |
1020140041391 | Apr 2014 | KR |
10-1538305 | Jul 2015 | KR |
01-47205 | Jun 2001 | WO |
0199373 | Dec 2001 | WO |
2004008310 | Jan 2004 | WO |
2011-080745 | Jul 2011 | WO |
2012060892 | May 2012 | WO |
Entry |
---|
Microsoft Outlook, Out look, copyright 1995-2000, 2 pages. |
Preneel, Bart, “Cryptographic Hash Functions”, Proceedings of the 3rd Symposium on State and Progress of Research in Cryptography, 1993, pp. 161-171. |
U.S. Appl. No. 11/254,436, filed Oct. 19, 2005, entitled “Attributes of Captured Objects in a Capture System,” Inventor(s) William Deninger et al. (49 pages). |
U.S. Appl. No. 11/900,964, filed Sep. 14, 2007, entitled “System and Method for Indexing a Capture System,” Inventor(s) Ashok Doddapaneni et al. (54 pages). |
U.S. Appl. No. 12/190,536, filed Aug. 12, 2008, entitled “Configuration Management for a Capture/Registration System,” Inventor(s) Jitendra B. Gaitonde et al. (87 pages). |
U.S. Appl. No. 12/352,720, filed Jan. 13, 2009, entitled “System and Method for Concept Building,” Inventor(s) Ratinder Paul Singh Ahuja et al. (71 pages). |
U.S. Appl. No. 12/354,688, filed Jan. 15, 2009, entitled “System and Method for Intelligent Term Grouping,” Inventor(s) Ratinder Paul Ahuja et al. (82 pages). |
U.S. Appl. No. 12/358,399, filed Jan. 23, 2009, entitled “System and Method for Intelligent State Management,” Inventor(s) William Deninger et al. (74 pages). |
U.S. Appl. No. 12/360,537, filed Jan. 27, 2009, entitled “Database for a Capture System,” Inventor(s) Rick Lowe et al. (38 pages). |
U.S. Appl. No. 12/410,875, filed Mar. 25, 2009, entitled “System and Method for Data Mining and Security Policy Management,” Inventor(s) Ratinder Paul Singh Ahuja et al. (69 pages). |
U.S. Appl. No. 12/410,905, filed Mar. 25, 2009, entitled “System and Method for Managing Data and Policies,” Inventor(s) Ratinder Paul Singh Ahuja et al. (76 pages). |
U.S. Appl. No. 12/690,153, filed Jan. 20, 2010, entitled “Query Generation for a Capture System,” Inventor(s) Erik de la Iglesia, et al. |
U.S. Appl. No. 12/751,876, filed Mar. 31, 2010, entitled “Attributes of Captured Objects in a Capture System,” Inventor(s) William Deninger, et al. |
U.S. Appl. No. 12/829,220, filed Jul. 1, 2010, entitled “Verifying Captured Objects Before Presentation,” Inventor(s) Rick Lowe, et al. |
U.S. Appl. No. 12/873,061, filed Aug. 31, 2010, entitled “Document Registration,” Inventor(s) Ratinder Paul Singh Ahuja, et al. |
U.S. Appl. No. 12/873,860, filed Sep. 1, 2010, entitled “A System and Method for Word Indexing in a Capture System and Querying Thereof,” Inventor(s) William Deninger, et al. |
U.S. Appl. No. 12/939,340, filed Nov. 3, 2010, entitled “System and Method for Protecting Specified Data Combinations,” Inventor(s) Ratinder Paul Singh Ahuja, et al. |
U.S. Appl. No. 12/967,013, filed Dec. 13, 2010, entitled “Tag Data Structure for Maintaining Relational Data Over Captured Objects,” Inventor(s) Erik de la Iglesia, et al. (42 pages). |
Han, OLAP Mining: An Integration of OLAP with Data Mining, Oct. 1997, pp. 1-18. |
Niemi, Constructing OLAP Cubes Based on Queries, Nov. 2001, pp. 1-7. |
Schultz, Data Mining for Detection of New Malicious Executables, May 2001, pp. 1-13. |
U.S. Appl. No. 13/024,923, filed Feb. 10, 2011, entitled “High Speed Packet Capture,” Inventor(s) Weimin Liu, et al. (50 pages). |
U.S. Appl. No. 13/047,068, filed Mar. 14, 2011, entitled “Cryptographic Policy Enforcement,” Inventor(s) Ratinder Paul Singh Ahuja, et al. (45 pages). |
U.S. Appl. No. 13/049,533, filed Mar. 16, 2011, entitled “File System for a Capture System,” Inventor(s) Rick Lowe, et al. (49 pages). |
U.S. Appl. No. 13/089,158, filed Apr. 18, 2011, entitled “Attributes of Captured Objects in a Capture System,” Inventor(s) Ratinder Paul Singh Ahuja, et al. (81 pages). |
U.S. Appl. No. 13/099,516, filed May 3, 2011, entitled “Object Classification in a Capture System,” Inventor(s) William Deninger, et al. (48 pages). |
Mao et al. “MOT: Memory Online Tracing of Web Information System,” Proceedings of the Second International Conference on Web Information Systems Engineering (WISE '01); pp. 271-277, (IEEE0-0/7695-1393-X/02) Aug. 7, 2002 (7 pages). |
International Search Report and Written Opinion and Declaration of Non-Establishment of International Search Report for International Application No. PCT/US2011/024902 mailed Aug. 1, 2011 (8 pages). |
U.S. Appl. No. 13/168,739, filed Jun. 24, 2011, entitled “Method and Apparatus for Data Capture and Analysis System,” Inventor(s) Erik de la Iglesia, et al. (24 pages). |
U.S. Appl. No. 13/187,421, filed Jul. 20, 2011, entitled “Query Generation for a Capture System,” Inventor(s) Erik de la Iglesia, et al. (75 pages). |
U.S. Appl. No. 13/188,441, filed Jul. 21, 2011, entitled “Locational Tagging in a Capture System,” Inventor(s) William Deninger et al. 48 pages. |
Webopedia, definition of “filter”, 2002, p. 1. |
Werth, T. et al., “Chapter 1—DAG Mining in Procedural Abstraction,” Programming Systems Group; Computer Science Department, University of Erlangen-Nuremberg, Germany, 15 pages. |
Office Action from U.S. Appl. No. 10/815,239, mailed Feb. 8, 2008 (8 pages). |
Office Action from U.S. Appl. No. 10/815,239, mailed Jun. 13, 2007 (8 pages). |
Office Action from U.S. Appl. No. 11/388,734, mailed Feb. 5, 2008, 12 pages. |
Office Action from U.S. Appl. No. 10/854,005, mailed Feb. 16, 2011 (13 pages). |
Chapter 1. Introduction, “Computer Program product for analyzing network traffic,” Ethereal. Computer program product for analyzing network traffic, pp. 17-26, http://web.archive.org/web/20030315045117/www.ethereal.com/distribution/docs/user-guide, approximated copyright 2004-2005, printed Mar. 12, 2009. |
U.S. Appl. No. 13/422,791, filed Mar. 16, 2012, entitled “System and Method for Data Mining and Security Policy Management”, Inventor, Weimin Liu (102 pages). |
U.S. Appl. No. 13/424,249, filed Mar. 19, 2012, entitled “System and Method for Data Mining and Security Policy Management”, Inventor, Weimin Liu (102 pages). |
U.S. Appl. No. 13/431,678, filed Mar. 27, 2012, entitled “Attributes of Captured Objects in a Capture System”, Inventors William Deninger, et al. (61 pages). |
U.S. Appl. No. 13/436,275, filed Mar. 30, 2012, entitled “System and Method for Intelligent State Management”, Inventors William Deninger, et al. (88 pages). |
U.S. Appl. No. 13/337,737, filed Dec. 27, 2011, entitled “System and Method for Providing Data Protection Workflows in a Network Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al. (141 pages). |
U.S. Appl. No. 13/338,060, filed Dec. 27, 2011, entitled “System and Method for Providing Data Protection Workflows in a Network Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al. (144 pages). |
U.S. Appl. No. 13/338,159, filed Dec. 27, 2011, entitled “System and Method for Providing Data Protection Workflows in a Network Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al. (144 pages). |
U.S. Appl. No. 13/338,195, filed Dec. 27, 2011, entitled “System and Method for Providing Data Protection Workflows in a Network Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al. (144 pages). |
U.S. Appl. No. 14/157,130, filed Jan. 16, 2014, entitled “System and Method for Providing Data Protection Workflows in a Network Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al. (154 pages). |
U.S. Appl. No. 14/042,202, filed Sep. 30, 2013, entitled “Document De-Registration”, Inventors(s) Ratinder Paul Singh Ahuja, et al., 60 pages. |
Walter Allasia et al., Indexing and Retrieval of Multimedia Metadata on a Secure DHT, University of Torino, Italy, Department of Computer Science, Aug. 31, 2008, 16 pages. |
International Preliminary Report on Patentability Written Opinion of the International Searching Authority for International Application No. PCT/US2011/024902 dated May 7, 2013 (5 pages). |
U.S. Appl. No. 13/896210, filed May 16, 2013, entitled “System and Method for Data Mining and Security Policy Management” Inventor(s) Ratinder Paul Singh Ahuja et al., (82 pages). |
U.S. Appl. No. 14/181,521, filed Feb. 14, 2014 (22 pages). |
U.S. Appl. No. 14/222,477, filed Mar. 21, 2014 (86 pages). |
English Translation of The Notice of Preliminary Rejection, KIPO Office Action Mailing Date Apr. 22, 2014 Office Action Summary, 2 pages. |
Peter Gordon, “Data Leakage—Threats and Mitigation”, In: SANS Inst. (2007). http://www.sans.org/reading-room/whitepapers/awareness/data-leakage-mitigation-1931?show=data-leakage-threats-mitigation-1931&cat=awareness (69 pages). |
English Translation of The Notice of Preliminary Rejection, KIPO Office Action Mailing Date Oct. 8, 2014 Office Action Summary, 3 pages. |
U.S. Appl. No. 14/457,038, filed Aug. 11, 2014 73 pages. |
English Translation of the Notice of Allowance, KIPO mailing date Apr. 15, 2015, Notice of Allowance Summary, 1 page. |
Compression of Boolean inverted files by document ordering Gelbukh, A.; Sangyong Han; Sidorov, G. Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003 International Conference on Year: 2003 pp. 244-249, DOI: 10.1109/NLPKE.2003.1275907. |
A Model-Driven Approach for Documenting Business and Requirements Interdependencies for Architectural Decision Making Berrocal, J.; Garcia Alonso, J.; Vicente Chicote, C.; Murillo, J.M. Latin America Transactions, IEEE (Revista IEEE America Latina) Year: 2014, vol. 12, Issue: 2 pp. 227-235, DOI: 10.1109/TLA.2014.6749542. |
Further Result on Distribution Properties of Compressing Sequences Derived From Primitive Sequences Over Oun-Xiong Zheng; Wen-Feng Qi; Tian Tian Information Theory, IEEE Transactions on Year: 2013, vol. 59, Issue: 8 pp. 5016-5022, DOI: 10.1109/TIT.2013.2258712. |
Compressing Inverted Files in Scalable Information Systems by Binary Decision Diagram Encoding Chung-Hung Lai; Tien-Fu Chen Supercomputing, ACM/IEEE 2001 Conference Year: 2001 pp. 36-36, DOI: 10.1109/SC.2001.10019. |
Number | Date | Country | |
---|---|---|---|
20150106875 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13896210 | May 2013 | US |
Child | 14576781 | US | |
Parent | 12410875 | Mar 2009 | US |
Child | 13896210 | US |