1. Technical Field
The present disclosure relates to an electrosurgical system and method for performing electrosurgical procedures. More particularly, the present disclosure relates to a system and method for detecting direct current (DC) properties (e.g., voltage and current) within an electrosurgical generator and controlling output of radio frequency treatment energy based on the measured DC properties.
2. Background of Related Art
Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact of body tissue with either of the separated electrodes prevents current flow.
Bipolar electrosurgery generally involves the use of forceps. A forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue. The forceps include electrosurgical conductive surfaces which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue.
Tissue or vessel sealing is a process of liquefying the collagen, elastin and ground substances in the tissue so that they reform into a fused mass with significantly-reduced demarcation between the opposing tissue structures. Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.
Tissue sealing procedures involve more than simply cauterizing or coagulating tissue to create an effective seal; the procedures involve precise control of a variety of factors. For example, in order to affect a proper seal in vessels or tissue, it has been determined that two predominant mechanical parameters must be accurately controlled: the pressure applied to the tissue; and the gap distance between the electrodes (i.e., distance between opposing jaw members or opposing sealing surfaces). In addition, electrosurgical energy must be applied to the tissue under controlled conditions to ensure creation of an effective vessel seal.
Electrosurgical procedures outlined above may utilize various tissue and energy parameters in a feedback-based control system. There is continual need to improve sensors as well as systems and method for processing the sense signals.
In one embodiment, the present disclosure provides for an electrosurgical system. The system includes a direct current power supply configured to supply direct current; a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to transform direct current into a radio frequency waveform; a direct current voltage sensor coupled to the direct current power supply and configured to measure direct current voltage; a direct current current sensor coupled to the direct current power supply and configured to measure direct current; and a controller coupled to the direct current voltage and current sensors, the controller configured to determine at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
In another embodiment, the present disclosure provides for a method for delivering radio frequency energy to tissue. The method includes generating direct current at a direct current power supply; transforming direct current into a radio frequency waveform at a radio frequency output stage electrically coupled to the direct current power supply; measuring voltage and current of the direct current supplied to the radio frequency output stage; and determining at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
In further embodiments, an electrosurgical system is disclosed. The system includes an electrosurgical generator having a direct current power supply configured to supply direct current; a direct current voltage sensor coupled to the direct current power supply and configured to measure direct current voltage; a direct current current sensor coupled to the direct current power supply and configured to measure direct current; and a controller coupled to the direct current voltage and current sensors. The system also includes an electrosurgical instrument coupled to the electrosurgical generator, the electrosurgical instrument including a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to transform direct current into a radio frequency waveform, wherein the controller is configured to determine at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
A generator according to the present disclosure can perform monopolar and/or bipolar electrosurgical procedures, including vessel sealing procedures. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar instrument, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured to generate radio frequency energy specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing). In embodiments, the generator may be embedded, integrated or otherwise coupled to the electrosurgical instruments providing for an all-in-one electro surgical apparatus.
The system 1 may also include a bipolar electrosurgical forceps 10 having one or more electrodes for treating tissue of a patient. The electrosurgical forceps 10 includes a housing 11 and opposing jaw members 13 and 15 disposed at a distal end of a shaft 12. The jaw members 13 and 15 have one or more active electrodes 14 and a return electrode 16 disposed therein, respectively. The active electrode 14 and the return electrode 16 are connected to the generator 200 through cable 18 that includes the supply and return lines 4, 8 coupled to the active and return terminals 230, 232, respectively (
With reference to
The generator 200 includes one or more display screens 242, 244, 246 for providing the user with variety of output information (e.g., intensity settings, treatment complete indicators, etc.). Each of the screens 242, 244, 246 is associated with corresponding connector 250-262. The generator 200 includes suitable input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 200. The display screens 242, 244, 246 are also configured as touch screens that display a corresponding menu for the electrosurgical instruments (e.g., electrosurgical forceps 10, etc.). The user then makes inputs by simply touching corresponding menu options.
Screen 242 controls monopolar output and the devices connected to the connectors 250 and 252. Connector 250 is configured to couple to monopolar electrosurgical instrument (e.g., electrosurgical pencil) and connector 252 is configured to couple to a foot switch (not shown). The foot switch provides for additional inputs (e.g., replicating inputs of the generator 200). Screen 244 controls monopolar and bipolar output and the devices connected to the connectors 256 and 258. Connector 256 is configured to couple to other monopolar instruments. Connector 258 is configured to couple to a bipolar instrument (not shown).
Screen 246 controls bipolar sealing procedures performed by the forceps 10 that may be plugged into the connectors 260 and 262. The generator 200 outputs energy through the connectors 260 and 262 suitable for sealing tissue grasped by the forceps 10. In particular, screen 246 outputs a user interface that allows the user to input a user-defined intensity setting. The user-defined setting may be any setting that allows the user to adjust one or more energy delivery parameters, such as power, current, voltage, energy, etc. or sealing parameters, such as pressure, sealing duration, etc. The user-defined setting is transmitted to the controller 224 where the setting may be saved in memory 226. In embodiments, the intensity setting may be a number scale, such as from one to ten or one to five. In embodiments, the intensity setting may be associated with an output curve of the generator 200. The intensity settings may be specific for each forceps 10 being utilized, such that various instruments provide the user with a specific intensity scale corresponding to the forceps 10.
The controller 224 includes a microprocessor 225 operably connected to a memory 226, which may include transitory type memory (e.g., RAM) and/or non-transitory type memory (e.g., flash media, disk media, etc.). The microprocessor 225 includes an output port that is operably connected to the power supply 227 and/or output stage 228 allowing the microprocessor 225 to control the output of the generator 200 according to either open and/or closed control loop schemes. Those skilled in the art will appreciate that the microprocessor 225 may be substituted by any logic processor (e.g., control circuit) adapted to perform the calculations discussed herein.
A closed loop control scheme is a feedback control loop, in which a plurality of sensors measure a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output power, current and/or voltage, etc.), and provide feedback to the controller 224. The controller 224 then signals the power supply 227 and/or output stage 228, which then adjusts the DC and/or power supply, respectively. The controller 224 also receives input signals from the input controls of the generator 200, the instrument 2 and/or forceps 10. The controller 224 utilizes the input signals to adjust power outputted by the generator 200 and/or performs other control functions thereon.
The generator 200 according to the present disclosure includes an RF voltage sensor 300 and an RF current sensor 302. The RF voltage sensor 300 is coupled to the active and return terminals 230 and 232 provides measurements of the RF voltage supplied by the output stage 228. The RF current sensor 302 is coupled to the active terminal 230 and provides measurements of the RF current supplied by the output stage 228. The RF voltage and current sensors 230 and 232 may be any suitable RF voltage/current sensor including, but not limited to, sense transformers, sense resistors, sense capacitors, and combinations thereof. The RF voltage and current sensors 300 and 302 provide the sensed RF voltage and current signals, respectively, to the controller 224, which then may adjust output of the power supply 227 and/or the output stage 228 in response to the sensed RF voltage and current signals.
The generator 200 according to the present disclosure also includes a DC voltage sensor 304 and a DC current sensor 306. For simplicity, the power supply 227 is shown schematically being coupled to the output stage 228 via a connection 301. Those skilled in the art will appreciate that the power supply 227 is connected with its positive and negative terminals (not shown) to the output stage 228. The DC voltage and current sensors 304 and 306 are coupled to the connection 301 and provide measurements of the DC voltage and current supplied to the output stage 228 by the power supply 227. The DC voltage and current sensors 304 and 306 may be any suitable DC voltage/current sensor including, but not limited to, Hall Effect sensors, sense resistors, and combinations thereof. The DC voltage and current sensors 304 and 306 provide the sensed DC voltage and current signals, respectively, to the controller 224, which then may adjust output of the power supply 227 and/or the output stage 228 in response to the sensed DC voltage and current signals.
The output stage 228 may be embodied as any suitable RF inverter power supply topology including, but not limited to, half bridge, full bridge, push pull, and combinations thereof. In embodiments, the output of the output stage 228 may be any amplitude-modulated RF waveform generated by varying DC voltage of the power supply 227. The generator 200 adjusts the RF output of the output stage 228 based on the sensed signals as measured by either the DC voltage and current sensors 304 and 306 and/or the RF voltage and current sensors 300 and 302.
The controller 224 includes a transfer function that correlates the sensed DC voltage and current signals to the sensed RF voltage and current signals. In particular, the operating parameters of the output stage 228 may be expressed as a transfer function, which may be used to calculate output RF voltage and current based on the sensed DC voltage and current signals. The transfer function may be used to compensate for the loss and/or distortion introduced between the output stage 228 and the load. These non-ideal behaviors can be impacted by many different factors including input voltage, input current, output voltage, output current and load impedance. One way to characterize these behaviors may include analysis of the generator 200 at different open loop operating points while monitoring the input and/or output characteristics, namely, DC voltage and current and RF output voltage and current. This data may then be used to generate a polynomial curve fit and/or piecewise linear curve. The curves are then transposed to a transfer function that describes the relationship between the DC voltage and current and the output RF voltage and current thus providing the transfer function. The process to obtain the transfer function may be performed during initial setup of the generator 200 on a unit-by-unit basis or for any specific lot and then preprogrammed and stored in memory 226.
Thus, the controller 224 determines the output RF voltage and current based on the sensed DC voltage and current signals. The calculated output RF voltage and current may then be compared with actual sensed RF voltage and current as a redundant measurement (e.g., to verify functionality of the sensors 300, 302, 304, and 306).
In step 401, RF voltage and current outputted by the output stage 228 are measured by the RF voltage and current sensors 300 and 302, respectively. The measured sensor signals are transmitted to the controller 224. In step 403, the controller 224 compares measured RF output values with the calculated the RF voltage and current based on the sensed DC voltage and current values. The difference between calculated RF values and measured RF values may be used to determine functionality of the generator 200, such that if the difference between the measured and calculated RF values varies by a predetermined amount an error is issued resulting in stoppage and/or adjustment of the power output. The difference between calculated and measured RF values which triggers an error condition may be from about 10% and above, in embodiments, from about 20% and above.
In step 405, the controller 224 may utilize the comparison to determine dosage error in delivery of output power. The term “dosage error” as used herein denotes a difference between preset output power (e.g., user or generator selected) and delivered output power. The difference may be due to a variety of factors (e.g., malfunctioning power generating components, sensors, etc.). The dosage error, e.g., difference between preset power and calculated RF values based on measured DC values and/or actual measured RF values may be from about 10% and above, in embodiments, from about 20% and above. The dosage error calculation determines the functionality (or malfunction) of the sensors 300, 302, 304, and 306. Thus, if the dosage error is outside a desired limit, in step 405, the controller 224 may issue an alarm and/or terminate the output of the generator 200.
In step 404, the controller 224 signals the power supply 227 and/or the output stage 228 to adjust its output in response to an algorithm or other instructions for controlling the output of the generator 200 including differences calculated in steps 403 and 405.
Calculation of output RF values based on measured DC signals also simplifies hardware and software requirements of electrosurgical generators, which usually perform intensive root mean square calculations. Further, this configuration obviates the need to include sensors at the high voltage side of the generator, allowing for use of components with a lower voltage rating.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4569345 | Manes | Feb 1986 | A |
4727874 | Bowers et al. | Mar 1988 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
5334193 | Nardella | Aug 1994 | A |
5422567 | Matsunaga | Jun 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5810804 | Gough et al. | Sep 1998 | A |
6059780 | Gough et al. | May 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6193713 | Geistert et al. | Feb 2001 | B1 |
6203541 | Keppel | Mar 2001 | B1 |
6238387 | Miller, III | May 2001 | B1 |
6251106 | Becker et al. | Jun 2001 | B1 |
6258085 | Eggleston | Jul 2001 | B1 |
6293941 | Strul et al. | Sep 2001 | B1 |
6370408 | Merchant et al. | Apr 2002 | B1 |
6402742 | Blewett et al. | Jun 2002 | B1 |
6458121 | Rosenstock et al. | Oct 2002 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6565559 | Eggleston | May 2003 | B2 |
6706038 | Francischelli et al. | Mar 2004 | B2 |
6784405 | Flugstad et al. | Aug 2004 | B2 |
6875210 | Refior et al. | Apr 2005 | B2 |
6936047 | Nasab et al. | Aug 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
7041096 | Malis et al. | May 2006 | B2 |
7060063 | Marion et al. | Jun 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7146210 | Palti | Dec 2006 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
7367972 | Francischelli et al. | May 2008 | B2 |
D574323 | Waaler | Aug 2008 | S |
7422582 | Malackowski et al. | Sep 2008 | B2 |
7927328 | Orszulak et al. | Apr 2011 | B2 |
7956620 | Gilbert | Jun 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
8034049 | Odom et al. | Oct 2011 | B2 |
8045943 | Kaczman et al. | Oct 2011 | B2 |
20030181898 | Bowers | Sep 2003 | A1 |
20070129716 | Daw et al. | Jun 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173806 | Orszulak et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20080039831 | Odom et al. | Feb 2008 | A1 |
20080082096 | Shores et al. | Apr 2008 | A1 |
20080082100 | Orton et al. | Apr 2008 | A1 |
20080281311 | Dunning et al. | Nov 2008 | A1 |
20090234350 | Behnke et al. | Sep 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090306648 | Podhajsky et al. | Dec 2009 | A1 |
20100016857 | McKenna et al. | Jan 2010 | A1 |
20100042093 | Wham et al. | Feb 2010 | A9 |
20100079215 | Brannan et al. | Apr 2010 | A1 |
20100082022 | Haley et al. | Apr 2010 | A1 |
20100082023 | Brannan et al. | Apr 2010 | A1 |
20100082024 | Brannan et al. | Apr 2010 | A1 |
20100082025 | Brannan et al. | Apr 2010 | A1 |
20100082083 | Brannan et al. | Apr 2010 | A1 |
20100082084 | Brannan et al. | Apr 2010 | A1 |
20100094271 | Ward et al. | Apr 2010 | A1 |
20100179534 | Podhajsky et al. | Jul 2010 | A1 |
20100179535 | Podhajsky et al. | Jul 2010 | A1 |
20100179538 | Podhajsky | Jul 2010 | A1 |
20110037484 | Gilbert | Feb 2011 | A1 |
20110071516 | Gregg | Mar 2011 | A1 |
20110071521 | Gilbert | Mar 2011 | A1 |
20110077631 | Keller | Mar 2011 | A1 |
20110144635 | Harper et al. | Jun 2011 | A1 |
20110178516 | Orszulak et al. | Jul 2011 | A1 |
20110204903 | Gilbert | Aug 2011 | A1 |
20130035679 | Orszulak | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
179607 | Mar 1905 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
390937 | Apr 1989 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4206433 | Sep 1993 | DE |
4339049 | May 1995 | DE |
19506363 | Aug 1996 | DE |
19717411 | Nov 1998 | DE |
19848540 | May 2000 | DE |
246350 | Nov 1987 | EP |
267403 | May 1988 | EP |
296777 | Dec 1988 | EP |
310431 | Apr 1989 | EP |
325456 | Jul 1989 | EP |
336742 | Oct 1989 | EP |
390937 | Oct 1990 | EP |
556705 | Aug 1993 | EP |
608609 | Aug 1994 | EP |
836868 | Apr 1998 | EP |
882955 | Dec 1998 | EP |
1051948 | Nov 2000 | EP |
1151725 | Nov 2001 | EP |
1366724 | Jan 2006 | EP |
880220 | Jun 2006 | EP |
1681026 | Jul 2006 | EP |
1776929 | Apr 2007 | EP |
1810630 | Jul 2007 | EP |
2042116 | Apr 2009 | EP |
1810632 | Jun 2009 | EP |
1810628 | Jul 2009 | EP |
2393208 | Dec 2011 | EP |
1275415 | Oct 1961 | FR |
1347865 | Nov 1963 | FR |
2313708 | Dec 1976 | FR |
2364461 | Jul 1978 | FR |
2502935 | Oct 1982 | FR |
2517953 | Jun 1983 | FR |
2573301 | May 1986 | FR |
2000271145 | Oct 2000 | JP |
2006506172 | Feb 2006 | JP |
166452 | Jan 1965 | SU |
727201 | Apr 1980 | SU |
WO9509577 | Apr 1995 | WO |
WO9639085 | Dec 1996 | WO |
WO9706739 | Feb 1997 | WO |
WO9706740 | Feb 1997 | WO |
WO9706855 | Feb 1997 | WO |
WO9711648 | Apr 1997 | WO |
9847436 | Oct 1998 | WO |
WO0048672 | Aug 2000 | WO |
WO0211634 | Feb 2002 | WO |
WO0245589 | Jun 2002 | WO |
WO03090635 | Nov 2003 | WO |
WO2004004340 | Jan 2004 | WO |
WO2006050888 | May 2006 | WO |
WO2006105121 | Oct 2006 | WO |
WO2007067522 | Jun 2007 | WO |
2008043999 | Apr 2008 | WO |
WO2008043999 | Apr 2008 | WO |
WO2008044013 | Apr 2008 | WO |
WO2008053532 | May 2008 | WO |
WO2008071914 | Jun 2008 | WO |
WO2008110756 | Sep 2008 | WO |
Entry |
---|
U.S. Appl. No. 10/406,690, filed Apr. 3, 2003, Robert J. Behnke, II. |
U.S. Appl. No. 10/573,713, filed Mar. 28, 2006, Robert H. Wham. |
U.S. Appl. No. 10/761,524, filed Jan. 21, 2004, Robert Wham. |
U.S. Appl. No. 11/242,458, filed Oct. 3, 2005, Daniel J. Becker. |
U.S. Appl. No. 12/793,136, filed Jun. 3, 2010, Gary M. Couture. |
U.S. Appl. No. 12/823,703, filed Jun. 25, 2010, Mark A. Johnston. |
U.S. Appl. No. 12/826,879, filed Jun. 30, 2010, Christopher A. Deborski. |
U.S. Appl. No. 12/834,364, filed Jul. 21, 2010, David S. Keppel. |
U.S. Appl. No. 12/845,203, filed Jul. 28, 2010, Gary M. Couture. |
U.S. Appl. No. 12/985,063, filed Jan. 5, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/034,822, filed Feb. 25, 2011, Mark A. Johnston. |
U.S. Appl. No. 13/048,639, filed Mar. 15, 2011, James S. Cunningham. |
U.S. Appl. No. 13/049,459, filed Mar. 16, 2011, James H. Orszulak. |
U.S. Appl. No. 13/050,770, filed Mar. 17, 2011, Robert B. Smith. |
U.S. Appl. No. 13/085,258, filed Apr. 12, 2011, Ronald J. Podhajsky. |
U.S. Appl. No. 13/085,278, filed Apr. 12, 2011, James A. Gilbert. |
U.S. Appl. No. 13/118,973, filed May 31, 2011, James H. Orszulak. |
U.S. Appl. No. 13/186,107, filed Jul. 19, 2011, George J. Collins. |
U.S. Appl. No. 13/186,121, filed Jul. 19, 2011, George J. Collins. |
U.S. Appl. No. 13/195,607, filed Aug. 1, 2011, James H. Orszulak. |
U.S. Appl. No. 13/221,424, filed Aug. 30, 2011, James E. Krapohl. |
U.S. Appl. No. 13/227,704, filed Sep. 8, 2011, Thomas Plaven. |
U.S. Appl. No. 13/228,996, filed Sep. 9, 2011, Robert B. Smith. |
U.S. Appl. No. 13/236,997, filed Sep. 20, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/237,068, filed Sep. 20, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/237,187, filed Sep. 20, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/237,342, filed Sep. 20, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/237,488, filed Sep. 20, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/246,035, filed Sep. 27, 2011, Darren Odom. |
U.S. Appl. No. 13/247,043, filed Sep. 28, 2011, Donald W. Heckel. |
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
Vallfors et al, “Automatically Controlled Bipolar Electrosoagulation-‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
Prutchi et al. “Design and Development of Medical Electronic Instrumentation”, John Wiley & Sons, Inc. 2005. |
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Company Newsletter; Sep. 1999. |
Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687. |
Hadley I C D et al., “Inexpensive Digital Thermometer for Measurements on Semiconductors” International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pp. Jan. 1989. |
Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics, 9 (3), May/Jun. 1982. |
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83; (1995) pp. 271-276. |
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499. |
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Cosman et al., “Radiofrequency Lesion Generation and Its Effect on Tissue Impedance” Applied Neurophysiology 51: (1988) pp. 230-242. |
Ni W. et al. “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 23 No. 2;(Mar. 2005); pp. 160-164. |
Chicharo et al. “A Sliding Goertzel Algorith” Aug. 1996, pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL vol. 52 No. 3. |
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151. |
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15:(1984) pp. 945-950. |
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404. |
Medtrex Brochure—Total Control at Full Speed, “The O.R. Pro 300” 1 p. Sep. 1998. |
Valleylab Brochure “Valleylab Electroshield Monitoring System” 2 pp. Nov. 1995. |
International Search Report EP 98300964.8 dated Dec. 4, 2000. |
International Search Report EP 04009964 dated Jul. 13, 2004. |
International Search Report EP 04011375 dated Sep. 10, 2004. |
International Search Report EP 04015981.6 dated Sep. 29, 2004. |
International Search Report EP04707738 dated Jul. 4, 2007. |
International Search Report EP 05002769.7 dated Jun. 9, 2006. |
International Search Report EP 05014156.3 dated Dec. 28, 2005. |
International Search Report EP 05021944.3 dated Jan. 18, 2006. |
International Search Report EP 05022350.2 dated Jan. 18, 2006. |
International Search Report EP 06000708.5 dated Apr. 21, 2006. |
International Search Report—extended EP 06000708.5 dated Aug. 22, 2006. |
International Search Report EP 06006717.0 dated Aug. 7, 2006. |
International Search Report EP 06010499.9 dated Jan. 29, 2008. |
International Search Report EP 06022028.2 dated Feb. 5, 2007. |
International Search Report EP 06025700.3 dated Apr. 12, 2007. |
International Search Report EP 07001481.6 dated Apr. 23, 2007. |
International Search Report EP 07001484.0 dated Jun. 14, 2010. |
International Search Report EP 07001485.7 dated May 15, 2007. |
International Search Report EP 07001489.9 dated Dec. 20, 2007. |
International Search Report EP 07001491 dated Jun. 6, 2007. |
International Search Report EP 07001494.9 dated Aug. 25, 2010. |
International Search Report EP 07001494.9 extended dated Mar. 7, 2011. |
International Search Report EP 07001527.6 dated May 9, 2007. |
International Search Report EP 07004355.9 dated May 21, 2007. |
International Search Report EP 07008207.8 dated Sep. 13, 2007. |
International Search Report EP 07009322.4 dated Jan. 14, 2008. |
International Search Report EP 07010673.7 dated Sep. 24, 2007. |
International Search Report EP 07015601.3 dated Jan. 4, 2008. |
International Search Report EP 07015602.1 dated Dec. 20, 2007. |
International Search Report EP 07019174.7 dated Jan. 29, 2008. |
International Search Report EP08004667.5 dated Jun. 3, 2008. |
International Search Report EP08006733.3 dated Jul. 28, 2008. |
International Search Report EP08012503 dated Sep. 19, 2008. |
International Search Report EP08013605 dated Feb. 25, 2009. |
International Search Report EP08015601.1 dated Dec. 5, 2008. |
International Search Report EP08155780 dated Jan. 19, 2009. |
International Search Report EP08016540.0 dated Feb. 25, 2009. |
International Search Report EP08166208.2 dated Dec. 1, 2008. |
International Search Report EP09003678.1 dated Aug. 7, 2009. |
International Search Report EP09004250.8 dated Aug. 2, 2010. |
International Search Report EP09005160.8 dated Aug. 27, 2009. |
International Search Report EP09009860 dated Dec. 8, 2009. |
International Search Report EP09012386 dated Apr. 1, 2010. |
International Search Report EP09012388.6 dated Apr. 13, 2010. |
International Search Report EP09012389.4 dated Jul. 6, 2010. |
International Search Report EP09012391.0 dated Apr. 19, 2010. |
International Search Report EP09012392 dated Mar. 30, 2010. |
International Search Report EP09012396 dated Apr. 7, 2010. |
International Search Report EP09012400 dated Apr. 7, 2010. |
International Search Report EP09156861.8 dated Jul. 14, 2009. |
International Search Report EP09158915 dated Jul. 14, 2009. |
International Search Report EP09164754.5 dated Aug. 21, 2009. |
International Search Report EP09169377.0 dated Dec. 15, 2009. |
International Search Report EP09169588.2 dated Mar. 2, 2010. |
International Search Report EP09169589.0 dated Mar. 2, 2010. |
International Search Report EP09172749.5 dated Dec. 4, 2009. |
International Search Report EP10001808.4 dated Jun. 21, 2010. |
International Search Report EP10150563.4 dated Jun. 10, 2010. |
International Search Report EP10150564.2 dated Mar. 29, 2010. |
International Search Report EP10150565.9 dated Mar. 12, 2010. |
International Search Report EP10150566.7 dated Jun. 10, 2010. |
International Search Report EP10150567.5 dated Jun. 10, 2010. |
International Search Report EP10164740.2 dated Aug. 3, 2010. |
International Search Report EP10171787.4 dated Nov. 18, 2010. |
International Search Report EP10172636.2 dated Dec. 6, 2010. |
International Search Report EP10174476.1 dated Nov. 12, 2010. |
International Search Report EP10178287.8 dated Dec. 14, 2010. |
International Search Report EP10179321.4 dated Mar. 18, 2011. |
International Search Report EP10179353.7 dated Dec. 21, 2010. |
International Search Report EP10179363.6 dated Jan. 12, 2011. |
International Search Report EP10180004.3 dated Jan. 5, 2011. |
International Search Report EP10180964.8 dated Dec. 22, 2010. |
International Search Report EP10180965.5 dated Jan. 26, 2011. |
International Search Report EP10181018.2 dated Jan. 26, 2011. |
International Search Report EP10181060.4 dated Jan. 26, 2011. |
International Search Report EP10182003.3 dated Dec. 28, 2010. |
International Search Report EP10182005.8 dated Jan. 5, 2011. |
International Search Report EP10188190.2 dated Nov. 22, 2010. |
International Search Report EP10191319.2 dated Feb. 22, 2011. |
International Search Report EP10195393.3 dated Apr. 11, 2011. |
International Search Report EP11155959.7 dated Jun. 30, 2011. |
International Search Report EP11155960.5 dated Jun. 10, 2011. |
International Search Report PCT/US03/33711 dated Jul. 16, 2004. |
International Search Report PCT/US03/33832 dated Jun. 17, 2004. |
International Search Report PCT/US03/37110 dated Jul. 25, 2005. |
International Search Report PCT/US03/37310 dated Aug. 13, 2004. |
International Search Report PCT/US04/02961 dated Aug. 2, 2005. |
International Search Report PCT/US04/13443 dated Dec. 10, 2004. |
International Search Report PCT/US08/052460 dated Apr. 24, 2008. |
International Search Report PCT/US09/46870 dated Jul. 21, 2009. |
International Search Report and Written Opinion from PCT Appl. No. PCT/US2012/051796 mailed Jan. 24, 2013. |
European Search Report No. 14166165.2 dated Jul. 8, 2014. |
European Search Report Application No. EP 12 82 7271, dated Mar. 4, 2015. |
Number | Date | Country | |
---|---|---|---|
20130053840 A1 | Feb 2013 | US |