This disclosure is directed toward power machines. More particularly, this disclosure is directed to power machines with lift arms that can move laterally with respect to at least a portion of the power machine and the control of a lateral position of such a lift arm. One type of power machine that has a lift arm that can move laterally with respect to at least a portion of the power machine is an excavator. Another example of such a power machine is a tractor-loader-backhoe. In some cases, a power machine such as a skid-steer loader can have an implement in the form of a backhoe mounted to the loader that can also move laterally with respect to the loader.
Power machines, for the purposes of this disclosure, include any type of machine that generates power for the purpose of accomplishing a particular task or a variety of tasks. One type of power machine is a work vehicle. Work vehicles are generally self-propelled vehicles that have a work device, such as a lift arm (although some work vehicles can have other work devices) that can be manipulated to perform a work function. Work vehicles include excavators, loaders, utility vehicles, tractors, tractor-loader-backhoes, and trenchers, to name a few examples.
Excavators are a known type of power machine that have an undercarriage and a house that selectively rotates on the undercarriage. The rotational motion of the house is known as a slewing motion. The slewing motion on some excavators allows for infinite rotation of the house in either direction. This can be useful in many applications such as trenching where an operator will dig a trench and then rotate the house to dump spoil. However, in some applications, space may be limited such that full 360-degree rotation of the house may not be possible without running into an obstruction. Further, in some applications, it may be required that digging occur only in a particular work area. With slew, swing (lateral rotational movement of the lift arm relative to the house possible with some excavators) and lift arm motion, control of the location of a lift arm or more particularly, a digging or other work tool attached to a lift arm can be varied through the operation of various actuators including, on some power machines some or all of slew, swing, and lift arm actuators.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
Disclosed are power machines having a lift arm that is configured to be capable of rotating with respect to some or all of a frame of the power machine. In one embodiment, a power machine in the form of an excavator includes an undercarriage, a house pivotable about a vertical axis with respect to the undercarriage, and a lift arm that is pivotable about a vertical axis with respect to the frame. In one embodiment, the angle of rotation of the house can be selectively controlled to be limited within a predefined angle of actuation and the lift arm can be prevented from pivoting about said vertical axis. In another embodiment, the position of a bucket or implement on the end of the lift arm can be limited to a position within a predefined range of motion.
In another embodiment, a power machine includes a frame and a lift arm mounted to the frame and pivotable with respect to the frame about a vertical or substantially vertical axis. An angle of rotation of the lift arm about the vertical or substantially vertical axis can be selectively controlled to be limited within a predefined angle of actuation and the lift arm can be prevented from pivoting about said vertical axis outside of the predefined angle of actuation.
In another embodiment, a method of controlling a lift arm is disclosed. The method includes predefining a zone of operation of a lift arm and controlling movement about a vertical axis to limit the position of the lift arm within the predefined zone of operation.
This Summary and the Abstract are provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter.
The concepts disclosed in this discussion are described and illustrated with reference to exemplary embodiments. These concepts, however, are not limited in their application to the details of construction and the arrangement of components in the illustrative embodiments and are capable of being practiced or being carried out in various other ways. The terminology in this document is used for the purpose of description and should not be regarded as limiting. Words such as “including,” “comprising,” and “having” and variations thereof as used herein are meant to encompass the items listed thereafter, equivalents thereof, as well as additional items.
Disclosed embodiments illustrate an excavator and a control system for an excavator that provide for a plurality of modes of operation. The control system includes operator inputs for controlling movement of individual segments of a lift arm, movement of an implement relative to the lift arm, swing of a lift arm relative to a frame about a vertical axis, rotation of a house portion of the frame relative to an undercarriage. A mode select input is provided to select a mode of operation. In a first mode of operation, a controller limits rotation of the house within a predefined angle of rotation. In this mode, the swing function can be disabled. In a second mode of operation, the position of an implement is limited to operate in a predefined zone, and a controller on the excavator can manipulate rotation of the house and swing position to best accommodate that position.
These concepts can be practiced on various power machines, as will be described below. A representative power machine on which the embodiments can be practiced is illustrated in diagram form in
Referring now to
Certain work vehicles have work elements that are configured to perform a dedicated task. For example, some work vehicles have a lift arm to which an implement such as a bucket is attached such as by a pinning arrangement. The work element, i.e., the lift arm can be manipulated to position the implement to perform the task. The implement, in some instances, can be positioned relative to the work element such as by rotating a bucket relative to a lift arm, to further position the implement. Under normal operation of such a work vehicle, the bucket is intended to be attached and under use. Such work vehicles may be able to accept other implements by disassembling the implement/work element combination and reassembling another implement in place of the original bucket. Other work vehicles, however, are intended to be used with a wide variety of implements and have an implement interface such as implement interface 170 shown in
On some power machines, implement interface 170 can include an implement carrier, which is a physical structure movably attached to a work element. The implement carrier has engagement features and locking features to accept and secure any of a number of implements to the work element. One characteristic of such an implement carrier is that once an implement is attached to it, it is fixed to the implement (i.e. not movable with respect to the implement) and when the implement carrier is moved with respect to the work element, the implement moves with the implement carrier. The term implement carrier is not merely a pivotal connection point, but rather a dedicated device specifically intended to accept and be secured to various different implements. The implement carrier itself is mountable to a work element 130 such as a lift arm or the frame 110. Implement interface 170 can also include one or more power sources for providing power to one or more work elements on an implement. Some power machines can have a plurality of work element with implement interfaces, each of which may, but need not, have an implement carrier for receiving implements. Some other power machines can have a work element with a plurality of implement interfaces so that a single work element can accept a plurality of implements simultaneously. Each of these implement interfaces can, but need not, have an implement carrier.
Frame 110 includes a physical structure that can support various other components that are attached thereto or positioned thereon. The frame 110 can include any number of individual components. Some power machines have frames that are rigid. That is, no part of the frame is movable with respect to another part of the frame. Other power machines have at least one portion that can move with respect to another portion of the frame. For example, excavators can have an upper frame portion that rotates about a swivel with respect to a lower frame portion. Other work vehicles have articulated frames such that one portion of the frame pivots with respect to another portion for accomplishing steering functions. In exemplary embodiments, at least a portion of the power source is located in the upper frame or machine portion that rotates relative to the lower frame portion or undercarriage. The power source provides power to components of the undercarriage portion through the swivel.
Frame 110 supports the power source 120, which is configured to selectively provide power to one or more work elements 130 including the one or more tractive elements 140, as well as, in some instances, providing power for use by an attached implement via implement interface 170. Power from the power source 120 can be provided directly to any of the work elements 130, tractive elements 140, and implement interfaces 170. Alternatively, power from the power source 120 can be provided to a control system 160, which in turn selectively provides power to the elements that can use it to perform a work function. Power sources for power machines typically include an engine such as an internal combustion engine and a power conversion system such as a mechanical transmission or a hydraulic system that is configured to convert the output from an engine into a form of power that is usable by a work element. Other types of power sources can be incorporated into power machines, including electrical sources or a combination of power sources, known generally as hybrid power sources.
Power machine 100 includes an operator station 150, which provides a position from which an operator can control operation of the power machine. In some power machines, the operator station 150 is defined by an enclosed or partially enclosed cab. Some power machines on which the disclosed embodiments may be practiced may not have a cab or an operator compartment of the type described above. For example, a walk behind loader may not have a cab or an operator compartment, but rather an operating position that serves as an operator station from which the power machine is properly operated. More broadly, power machines other than work vehicles may have operator stations that are not necessarily similar to the operating positions and operator compartments referenced above. Further, some power machines such as power machine 100 and others, whether or not they have operator compartments or operator positions, may be capable of being operated remotely (i.e. from a remotely located operator station) instead of or in addition to an operator station adjacent or on the power machine. This can include applications where at least some of the operator controlled functions of the power machine can be operated from an operating position associated with an implement that is coupled to the power machine. Alternatively, with some power machines, a remote-control device can be provided (i.e. remote from both of the power machine and any implement to which is it coupled) that is capable of controlling at least some of the operator controlled functions on the power machine.
An operator compartment 250 is defined in part by a cab 252, which is mounted on the frame 210. The cab 252 shown on excavator 200 is an enclosed structure, but other operator compartments need not be enclosed. For example, some excavators have a canopy that provides a roof but is not enclosed. A control system, shown as block 260 is provided for controlling the various work elements. Control system 260 includes operator input devices, which interact with the power system 220 to selectively provide power signals to actuators to control work functions on the excavator 200. In some embodiments, the operator input devices include at least two two-axis operator input devices to which operator functions can be mapped.
Frame 210 includes an upper frame portion or house 211 that is pivotally mounted on a lower frame portion or undercarriage 212 via a swivel joint. The swivel joint includes a bearing, a ring gear, and a slew motor with a pinion gear (not pictured) that engages the ring gear to swivel the machine. The slew motor receives a power signal from the control system 260 to rotate the house 211 with respect to the undercarriage 212. House 211 is configured to be capable of unlimited rotation about a swivel axis 214 under power with respect to the undercarriage 212 in response to manipulation of an input device by an operator. Hydraulic conduits are fed through the swivel joint via a hydraulic swivel to provide pressurized hydraulic fluid to the tractive elements and one or more work elements such as lift arm 330 that are operably coupled to the undercarriage 212.
The first lift arm structure 230 is mounted to the house 211 via a swing mount 215. (Some excavators do not have a swing mount of the type described here.) The first lift arm structure 230 is a boom-arm lift arm of the type that is generally employed on excavators although certain features of this lift arm structure may be unique to the lift arm illustrated in
The first lift arm structure 230 includes a first portion 232, known generally as a boom, and a second portion 234, known as an arm or a dipper. The boom 232 is pivotally attached on a first end 232A to mount 215 at boom pivot mount 231B. A boom actuator 233B is attached to the mount 215 and the boom 232. Actuation of the boom actuator 233B causes the boom 232 to pivot about the boom pivot mount 231B, which effectively causes a second end 232B of the boom to be raised and lowered with respect to the house 211. A first end 234A of the arm 234 is pivotally attached to the second end 232B of the boom 232 at an arm mount pivot 231C. An arm actuator 233C is attached to the boom 232 and the arm 234. Actuation of the arm actuator 233C causes the arm to pivot about the arm mount pivot 231C. Each of the swing actuator 233A, the boom actuator 233B, and the arm actuator 233C can be independently controlled in response to control signals from operator input devices.
An exemplary implement interface 270 is provided at a second end 234B of the arm 234. The implement interface 270 includes an implement carrier 272 that is configured to be capable of accepting and securing a variety of different implements to the lift arm 230. Such implements have a machine interface that is configured to be engaged with the implement carrier 272. The implement carrier 272 is pivotally mounted to the second end 234B of the arm 234. An implement carrier actuator 233D is operably coupled to the arm 234 and a linkage assembly 276. The linkage assembly includes a first link 276A and a second link 276B. The first link 276A is pivotally mounted to the arm 234 and the implement carrier actuator 233D. The second link 276B is pivotally mounted to the implement carrier 272 and the first link 276A. The linkage assembly 276 is provided to allow the implement carrier 272 to pivot about the arm 234 when the implement carrier actuator 233D is actuated.
The implement interface 270 also includes an implement power source (not shown in
The lower frame 212 supports and has attached to it a pair of tractive elements 240, identified in
A second, or lower, lift arm 330 is pivotally attached to the lower frame 212. A lower lift arm actuator 332 is pivotally coupled to the lower frame 212 at a first end 332A and to the lower lift arm 330 at a second end 332B. The lower lift arm 330 is configured to carry a lower implement 334. The lower implement 334 can be rigidly fixed to the lower lift arm 330 such that it is integral to the lift arm. Alternatively, the lower implement can be pivotally attached to the lower lift arm via an implement interface, which in some embodiments can include an implement carrier of the type described above. Lower lift arms with implement interfaces can accept and secure various different types of implements thereto. Actuation of the lower lift arm actuator 332, in response to operator input, causes the lower lift arm 330 to pivot with respect to the lower frame 212, thereby raising and lowering the lower implement 334.
Upper frame portion 211 supports cab 252, which defines, at least in part, operator compartment or station 250. A seat 254 is provided within cab 252 in which an operator can be seated while operating the excavator. While sitting in the seat 254, an operator will have access to a plurality of operator input devices 256 that the operator can manipulate to control various work functions, such as manipulating the lift arm 230, the lower lift arm 330, the traction system 240, pivoting the house 211, the tractive elements 240, and so forth.
Excavator 200 provides a variety of different operator input devices 256 to control various functions. For example, hydraulic joysticks are provided to control the lift arm 230, and swiveling of the house 211 of the excavator. Foot pedals with attached levers are provided for controlling travel and lift arm swing. Electrical switches are located on the joysticks for controlling the providing of power to an implement attached to the implement carrier 272. Other types of operator inputs that can be used in excavator 200 and other excavators and power machines include, but are not limited to, switches, buttons, knobs, levers, variable sliders and the like. The specific control examples provided above are exemplary in nature and not intended to describe the input devices for all excavators and what they control.
Display devices are provided in the cab to give indications of information relatable to the operation of the power machines in a form that can be sensed by an operator, such as, for example audible and/or visual indications. Audible indications can be made in the form of buzzers, bells, and the like or via verbal communication. Visual indications can be made in the form of graphs, lights, icons, gauges, alphanumeric characters, and the like. Displays can be dedicated to provide dedicated indications, such as warning lights or gauges, or dynamic to provide programmable information, including programmable display devices such as monitors of various sizes and capabilities. Display devices can provide diagnostic information, troubleshooting information, instructional information, and various other types of information that assists an operator with operation of the power machine or an implement coupled to the power machine. Other information that may be useful for an operator can also be provided.
The description of power machine 100 and excavator 200 above is provided for illustrative purposes, to provide illustrative environments on which the embodiments discussed below can be practiced. While the embodiments discussed can be practiced on a power machine such as is generally described by the power machine 100 shown in the block diagram of
Control system 460 includes a controller 462, which can be any suitable electronic controller configured to receive a plurality of input signals from various input devices and providing output signals for controlling actuation devices. The control system 460 also includes a mode input 464, which is manipulable by an operator to select a mode of operation for controlling functions on the machine via actuation devices. In one embodiment, the control system 460 is configured to operate in a first mode and in a second mode to limit movement of the lift arm and/or house as well as in a default mode where movement of the lift arm and house are not limited by the control system 460.
Control system 460 also includes user inputs 466 that are manipulable by an operator to provide signals indicative of an intention of an operator to position the house, swing, lift arm, and/or implement. The user inputs can any type of user input that is suitable for use in an excavator to be manipulated by an operator and that can provide an electrical signal, either wired or wireless, to the controller 462. This can include joysticks, levers, buttons, and the like. In some embodiments, the control system 460 includes one or more work group position sensors 468 that are configured to provide position information to the controller 460 relative to the house, swing, and positions of the individual (i.e. the boom and arm) portions of the lift arm as well as an implement position. It should be appreciated that in some embodiments, all these sensors are available to provide signals to the controller 462, while in other embodiments, only some (i.e. swing and house rotation) are available.
The controller 462 is configured to provide output signals to control the position of the house by controlling one or more slew actuators 472, to control swing of the lift arm by controlling the swing actuator 474, and to control the position of the individual portions of the lift arm by controlling work group actuators 476. In addition, the controller 462 is configured to set a pre-defined area of operation for the first and second modes in response to user inputs. In one embodiment, a left-most boundary (from the perspective of an operator positioned at an operator station) is set by moving the house to that position and actuating a user input. Subsequently, a right-most boundary is set by moving the house to that positon and actuating a user input. In some embodiments, power machines can have only a slew actuator and not a swing actuator. For example, some excavators have a lift arm that is rigid. The term rigid in this particular instance refers to the fact that some excavators have lift arms that do not move laterally with respect to the house. Moving the lift arm from side-to-side is accomplished solely by moving the house relative to an undercarriage. In other embodiments, a lift arm may not be capable of moving laterally solely by manipulating a swing actuator. For example, many backhoes mounted on a loader frame or lift arm cannot be moved by rotating one part of a frame with respect to another.
Referring back to
Returning to block 508, if the controller determines that mode 2 has been indicated, the method moves to block 512 and the control system 460 operates under mode 2. In mode 2, the controller limits the position of an implement to a predefined range of operation. To define the range the implement is positioned by the operator to the leftward most position and a leftward limit is indicated. Subsequently, the implement is positioned at a rightward most position and the rightward position is indicated. The position of the implement would thus be limited to operate within this space from left to right. In this mode, the reach of the lift arm is not limited. Movement of the house and swing are not specifically limited except that they can move only to accommodate a position within the predefined zone of operation. For example, a leftward most position of the implement may be accomplished by rotating the house leftward and swing the lift arm rightward. To reach that position in operation, the controller would have to rotate the house and swing to achieve that position. While the above example illustrates only two positions to define a space in which an implement can be located while functioning in mode 2, in some embodiments, it may be the case that more than two positions can be set to define a space of operation. Movement of the excavator via the traction system may also require a redefinition of the space of operation and/or re-selection of a mode. Alternatively, if the controller does not sense movement of the traction system, such movement will function to shift the space operation, because if the machine has moved and the space of operation has been defined, the entire space of operation will be shifted by the machine's movement (via the traction system). In other words, the system in such embodiments operates to define zone of operation as a function of the relative position of the house to the undercarriage.
Referring to method 514-1 illustrated in flowchart form in
After the first boundary 782 has been determined, house 711 is again rotated, for example in a second direction opposite the first direction, to a second position, as shown in block 608. If, at block 610, a second a boundary input has been received from a boundary input device 470, then at block 612 controller 462 determines second boundary 784 from the position of the house 711 or from the position of the implement 736 when the second boundary input was received. This position is illustrated in
While two exemplary methods of determining or identifying the predefined range and corresponding work area 780 have been discussed with reference to
Once the predefined range has been identified or determined, controller 462 can control the house slew actuator(s), the swing actuator(s) and/or the work group actuators (e.g., the lift arm actuators) to contain work performed by implement 736 to within the work area defined by the predefined range. For example,
In various embodiments, controller 462 is configured to restrain any or all of house rotation relative to the undercarriage, lift arm structure swing rotation relative to the house, and work group (e.g., lift arm) raising and lowing movements between the boom and the house or between the dipper and the boom, in order to contain work performed by the implement to the predefined range and corresponding work area. Such restraining of movements is irrespective of user input commands to move beyond necessary constraints to achieve this goal. However, while limiting movements to contain work performed to the defined work area, utilizing the control of all of the house rotation, the lift arm structure swing rotation and the work group movements allows the implementation of digging using complex geometry work areas in some embodiments.
Also, in various embodiments, position feedback may be necessary to allow the controller to identify precise rotational orientations of the house, lift arm swing orientations, and lift arm work group orientations. Without position sensors or other forms of position feedback, in some embodiments controller 462 is configured to lock out or prohibit certain of these movements by controlling the corresponding actuator(s). For example, without swing position feedback, controller 462 may prohibit all swing movement of the lift arm structure when operating in a mode other than the default mode. In some embodiments, an override input can be provided that will allow an operator to move the lift arm out of the predefined zone of operation. In some embodiments, controller 462 would sense when the lift arm has returned to the predefined zone of operation and then re-engage the zone of operation to prevent movement out of the zone of operation. In other embodiments, an operator would have to manipulate an input to stop the override and re-engage the pre-defined zone of operation.
Further, while boundary inputs provided by a boundary input device 470 are described, determination of the predefined range and work area can be aided using a variety of different information provided by a variety of different user inputs. For example, the user inputs can be actuated switches or buttons in the operator compartment, softkeys on a touchscreen display device, a rotational switch, etc.
The embodiments discussed above provide important advantages. By limiting the space in which a lift arm can move on an excavator or other power machine, an operator can operate in tight spaces and avoid objects such as buildings to prevent damage to such objects and/or the excavator.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the discussion.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/416,349, filed Nov. 2, 2016.
Number | Date | Country | |
---|---|---|---|
62416349 | Nov 2016 | US |