The invention comprises a system and method for adding gas to and moving molten metal out of a vessel, such as a reverbatory furnace.
As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc, and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which may be released into molten metal.
A reverbatory furnace is used to melt metal and retain the molten metal while the metal is in a molten state. The molten metal in the furnace is sometimes called the molten metal bath. Reverbatory furnaces usually include a chamber for retaining a molten metal pump and that chamber is sometimes referred to as the pump well.
Known pumps for pumping molten metal (also called “molten-metal pumps”) include a pump base (also called a “base”, “housing” or “casing”) and a pump chamber (or “chamber” or “molten metal pump chamber”), which is an open area formed within the pump base. Such pumps also include one or more inlets in the pump base, an inlet being an opening to allow molten metal to enter the pump chamber.
A discharge is formed in the pump base and is a channel or conduit that communicates with the molten metal pump chamber, and leads from the pump chamber to the molten metal bath. A tangential discharge is a discharge formed at a tangent to the pump chamber. The discharge may also be axial, in which case the pump is called an axial pump. In an axial pump the pump chamber and discharge may be the essentially the same structure (or different areas of the same structure) since the molten metal entering the chamber is expelled directly through (usually directly above or below) the chamber.
A rotor, also called an impeller, is mounted in the pump chamber and is connected to a drive shaft. The drive shaft is typically a motor shaft coupled to a rotor shaft, wherein the motor shaft has two ends, one end being connected to a motor and the other end being coupled to the rotor shaft. The rotor shaft also has two ends, wherein one end is coupled to the motor shaft and the other end is connected to the rotor. Often, the rotor shaft is comprised of graphite, the motor shaft is comprised of steel, and the two are coupled by a coupling, which is usually comprised of steel.
As the motor turns the drive shaft, the drive shaft turns the rotor and the rotor pushes molten metal out of the pump chamber, through the discharge, which may be an axial or tangential discharge, and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the rotor pushes molten metal out of the pump chamber.
Molten metal pump casings and rotors usually, but not necessarily, employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber such as rings at the inlet (which is usually the opening in the housing at the top of the pump chamber and/or bottom of the pump chamber) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump chamber wall, during pump operation. A known bearing system is described in U.S. Pat. No. 5,203,681 to Cooper, the disclosure of which is incorporated herein by reference. U.S. Pat. Nos. 5,951,243 and 6,093,000, each to Cooper, the disclosures of which are incorporated herein by reference, disclose, respectively, bearings that may be used with molten metal pumps and rigid coupling designs and a monolithic rotor. U.S. Pat. No. 2,948,524 to Sweeney et al., U.S. Pat. No. 4,169,584 to Mangalick, and U.S. Pat. No. 6,123,523 to Cooper (the disclosure of the afore-mentioned patent to Cooper is incorporated herein by reference) also disclose molten metal pump designs. U.S. Pat. No. 6,303,074 to Cooper, which is incorporated herein by reference, discloses a dual-flow rotor, wherein the rotor has at least one surface that pushes molten metal into the pump chamber.
The materials forming the molten metal pump components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.
Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Most often, circulation pumps are used in a reverbatory furnace having an external well. The well is usually an extension of a charging well where scrap metal is charged (i.e., added).
Transfer pumps are generally used to transfer molten metal from the external well of a reverbatory furnace to a different location such as a launder, ladle, or another furnace. Examples of transfer pumps are disclosed in U.S. Pat. No. 6,345,964 B1 to Cooper, the disclosure of which is incorporated herein by reference, and U.S. Pat. No. 5,203,681.
Gas-release pumps, such as gas-injection pumps, circulate molten metal while releasing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium, from the molten metal. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of these purposes or for any other application for which it is desirable to introduce gas into molten metal. Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second submerged in the molten metal bath. Gas is introduced into the first end of the gas-transfer conduit and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where it enters the pump chamber. A system for releasing gas into a pump chamber is disclosed in U.S. Pat. No. 6,123,523 to Cooper. Furthermore, gas may be released into a stream of molten metal passing through a discharge or metal-transfer conduit wherein the position of a gas-release opening in the metal-transfer conduit enables pressure from the molten metal stream to assist in drawing gas into the molten metal stream. Such a structure and method is disclosed in U.S. application Ser. No. 10/773,101 entitled “System for Releasing Gas into Molten Metal”, invented by Paul V. Cooper, and filed on Feb. 4, 2004, the disclosure of which is incorporated herein by reference.
Furthermore, U.S. Pat. No. 7,402,276 to Cooper entitled “Pump With Rotating Inlet” (also incorporated by reference) discloses, among other things, a pump having an inlet and rotor structure (or other displacement structure) that rotate together as the pump operates in order to alleviate jamming.
Molten metal transfer pumps have been used, among other things, to transfer molten aluminum from a well to a ladle or launder, wherein the launder normally directs the molten aluminum into a ladle or into molds where it is cast into solid, usable pieces, such as ingots. The launder is essentially a trough, channel, or conduit outside of the reverbatory furnace. A ladle is a large vessel into which molten metal is poured from the furnace. After molten metal is placed into the ladle, the ladle is transported from the furnace area to another part of the facility where the molten metal inside the ladle is poured into molds. A ladle is typically filled in two ways. First, the ladle may be filled by utilizing a transfer pump positioned in the furnace to pump molten metal out of the furnace, over the furnace wall, and into the ladle. Second, the ladle may be filled by transferring molten metal from a hole (called a tap-out hole) located at or near the bottom of the furnace and into the ladle. The tap-out hole is typically a tapered hole or opening, usually about 1″-1½″ in diameter, that receives a tapered plug called a “tap-out plug.” The plug is removed from the tap-out hole to allow molten metal to drain from the furnace and inserted into the tap-out hole to stop the flow of molten metal out of the furnace.
There are problems with each of these known methods. Referring to filling a ladle utilizing a transfer pump, there is splashing (or turbulence) of the molten metal exiting the transfer pump and entering the ladle. This turbulence causes the molten metal to interact more with the air than would a smooth flow of molten metal pouring into the ladle. The interaction with the air leads to the formation of dross within the ladle and splashing also creates a safety hazard because persons working near the ladle could be hit with molten metal. Further, there are problems inherent with the use of most transfer pumps. For example, the transfer pump can develop a blockage in the riser, which is an extension of the pump discharge that extends out of the molten metal bath in order to pump molten metal from one structure into another. The blockage blocks the flow of molten metal through the pump and essentially causes a failure of the system. When such a blockage occurs the transfer pump must be removed from the furnace and the riser tube must be removed from the transfer pump and replaced. This causes hours of expensive downtime. A transfer pump also has associated piping attached to the riser to direct molten metal from the vessel containing the transfer pump into another vessel or structure. The piping is typically made of steel with an internal liner. The piping can be between 1 and 10 feet in length or even longer. The molten metal in the piping can also solidify causing failure of the system and downtime associated with replacing the piping.
If a tap-out hole is used to drain molten metal from a furnace a depression is formed in the floor or other surface on which the furnace rests so the ladle can preferably be positioned in the depression so it is lower than the tap-out hole, or the furnace may be elevated above the floor so the tap-out hole is above the ladle. Either method can be used to enable molten metal to flow from the tap-out hole into the ladle.
Use of a tap-out hole at the bottom of a furnace can lead to problems. First, when the tap-out plug is removed molten metal can splash or splatter causing a safety problem. This is particularly true if the level of molten metal in the furnace is relatively high which leads to a relatively high pressure pushing molten metal out of the tap-out hole. There is also a safety problem when the tap-out plug is reinserted into the tap-out hole because molten metal can splatter or splash onto personnel during this process. Further, after the tap-out hole is plugged, it can still leak. The leak may ultimately cause a fire, lead to physical harm of a person and/or the loss of a large amount of molten metal from the furnace that must then be cleaned up, or the leak and subsequent solidifying of the molten metal may lead to loss of the entire furnace.
Another problem with tap-out holes is that the molten metal at the bottom of the furnace can harden if not properly circulated thereby blocking the tap-out hole or the tap-out hole can be blocked by a piece of dross in the molten metal.
A launder may be used to pass molten metal from the furnace and into a ladle and/or into molds, such as molds for making ingots of cast aluminum. Several die cast machines, robots, and/or human workers may draw molten metal from the launder through openings (sometimes called plug taps). The launder may be of any dimension or shape. For example, it may be one to four feet in length, or as long as 100 feet in length. The launder is usually sloped gently, for example, it may be sloped downward or gently upward at a slope of approximately ⅛ inch per each ten feet in length, in order to use gravity to direct the flow of molten metal out of the launder, either towards or away from the furnace, to drain all or part of the molten metal from the launder once the pump supplying molten metal to the launder is shut off. In use, a typical launder includes molten aluminum at a depth of approximately 1-10.″
Whether feeding a ladle, launder or other structure or device utilizing a transfer pump, the pump is turned off and on according to when more molten metal is needed. This can be done manually or automatically. If done automatically, the pump may turn on when the molten metal in the ladle or launder is below a certain amount, which can be measured in any manner, such as by the level of molten metal in the launder or level or weight of molten metal in a ladle. A switch activates the transfer pump, which then pumps molten metal from the pump well, up through the transfer pump riser, and into the ladle or launder. The pump is turned off when the molten metal reaches a given amount in a given structure, such as a ladle or launder. This system suffers from the problems previously described when using transfer pumps. Further, when a transfer pump is utilized it must operate at essentially full speed in order to generate enough pressure to push molten metal upward through the riser and into the ladle or launder. Therefore, there can be lags wherein there is no or too little molten metal exiting the transfer pump riser and/or the ladle or launder could be over filled because of a lag between detection of the desired amount having been reached, the transfer pump being shut off, and the cessation of molten metal exiting the transfer pump.
Conventional systems also require a circulation pump in addition to a transfer pump to keep the molten metal in the well at a constant temperature, as well as a transfer pump to transfer molten metal into a ladle, launder and/or other structure. Further, it would be beneficial to remove unwanted gasses just prior to molten metal entering a launder or ladle because it is less likely that there will be gas pockets in the igots.
The present invention includes a system for adding gas to and transferring molten metal into another structure, such as a ladle or launder. A system according to an embodiment of the present invention comprises a vessel for containing molten metal and a raised chamber in fluid communication with the vessel. In this embodiment, the bottom interior surface of the raised chamber is positioned at least partially above the bottom interior surface of the vessel. The raised chamber includes a discharge for expelling molten metal, preferably into a launder, ladle or other vessel. One or more degassers are positioned in the raised chamber for releasing gas into the molten metal in the raised chamber. The vessel can be separated into two portions by a dividing wall (or overflow wall) within the vessel, the dividing wall having a height H1 and dividing the vessel into at least a first chamber and a second chamber, which is preferably the raised chamber.
The system may also include other devices and structures such as one or more of a ladle, an ingot mold, and/or launder positioned downstream of the raised chamber.
Turning now to the Figures, where the purpose is to describe preferred embodiments of the invention and not to limit same,
Using heating elements (not shown in the figures), furnace 1 is raised to a temperature sufficient to maintain the metal therein (usually aluminum or zinc) in a molten state. The level of molten metal M in holding furnace 1A and in at least part of vessel 12 changes as metal is added or removed to furnace 1A.
For explanation, although not important to the invention, furnace 1 includes a furnace wall 2 having an archway 3. Archway 3 allows molten metal M to flow into vessel 12 from holding furnace 1A. In this embodiment, furnace 1A and vessel 12 are in fluid communication, so when the level of molten metal in furnace 1A rises, the level also rises in at least part of vessel 12. The molten metal most preferably rises and falls in first chamber 16, described below, as the level of molten metal rises or falls in furnace 1A.
Dividing wall 14 separates vessel 12 into at least two chambers. In the exemplary embodiment depicted in
At least part of dividing wall 14 has a height H1 (best seen in
In one embodiment of the present invention, at least part of the interior bottom surface of second raised chamber 18 is positioned above the interior bottom surface of first raised chamber 16. The differential between the bottom surface of the second raised chamber 18 and the bottom surface of the first raised chamber 16 can be determined as needed to facilitate the flow and/or draining of molten metal between second raised chamber 18 and first chamber 16. The second raised chamber 18 has a portion 18A, which has a height H2, wherein H2 is less than H1 (as can be best seen in
The second raised chamber 18 includes at least one (preferably two or more) degassers (80, 81) that are coupled to the second raised chamber 18 for releasing gas into the molten metal M. The present invention may operate in conjunction with any type of degasser. In the present exemplary embodiment, the degassers 80, 81 are rotary degassers, such as of the type described in U.S. Pat. No. 5,678,807 to Cooper, the disclosure of which is incorporated by reference herein in its entirety. The rotary degassers 80, 81 are coupled to the top surface 70 of the raised chamber 18. Each rotary degasser includes a shaft 82, 83 that extends into the raised chamber 18, and an impeller block 84, 85 coupled to the respective shafts. The rotary degassers 80, 81 maybe positioned in any suitable manner. In the present embodiment, for example, the bottom surfaces of the impeller blocks 84, 85 are substantially parallel to each other, and each block extends below the bottom surface of the dividing wall 60. The second raised chamber 18 may also include one or more gas release and/or circulation pumps.
As shown in
The dividing wall 60 allows molten metal to flow within the raised chamber 18. The dividing wall 60 may be of any size, shape, and configuration in order to allow molten metal to flow through the raised chamber 18 and out through the discharge 90. In the present exemplary embodiment, an opening 65 between the dividing wall 60 and bottom surface 67 of the second chamber 18 allows molten metal to flow through the raised chamber 18. The opening 65 between the dividing wall 60 and the raised chamber 18 may be any size, shape, configuration, and location. As shown in
The second raised chamber 18 includes a top surface 70 above the overflow spillway 14B to which the pumps 80, 81 are mounted. In one embodiment of the present invention, the top surface 70 is removable to allow access to the interior of the raised chamber 18 to, for example, facilitate the removal of dross and unwanted materials, and to allow cleaning the interior surface of the raised chamber 18. Similarly, any other surface or portion of the system 10 may be removably attached to the system 10 to aid in access, cleaning, or repair of the system 10.
The second raised chamber 18 may be any size, shape, and configuration. In one exemplary embodiment of the present invention, as seen in
In another embodiment of the present invention, the raised chamber 18 can be configured to receive a flow of molten metal from any known system for transferring molten metal. In this embodiment, molten metal may be provided through the opening 14A from a launder, vessel, and/or pump discharge.
The opening 14A is located at a depth such that opening 14A is submerged within the molten metal during normal usage, and opening 14A is preferably near or at the bottom of dividing wall 14. Opening 14A preferably has an area of between 6 in.2 and 24 in.2, but could be any suitable size. Further, dividing wall 14 need not have an opening if a transfer pump were used to transfer molten metal from first chamber 16, over the top of wall 14, and into second raised chamber 18 as described below.
Dividing wall 14 may also include more than one opening between first chamber 16 and second raised chamber 18 and opening 14A (or the more than one opening) could be positioned at any suitable location(s) in dividing wall 14 and be of any size(s) or shape(s) to enable molten metal to pass from first chamber 16 into second raised chamber 18.
As shown in
Launder 20 has a first end 20A coupled to the discharge 90 of the second raised chamber 18, and a second end 20B that is opposite first end 20A. An optional stop may be included in a launder according to the invention. The stop, if used, is preferably coupled to the second end 20B. Such an arrangement is shown in
Molten metal pump 22 may be any device or structure capable of pumping or otherwise conveying molten metal. Pump 22 is preferably a circulation pump (most preferred) or gas-release pump that generates a flow of molten metal from first chamber 16 to second raised chamber 18 through opening 14A. Pump 22 generally includes a motor 24 surrounded by a cooling shroud 26, a superstructure 28, support posts 30 and a base 32. Some pumps that may be used with the invention are shown in U.S. Pat. Nos. 5,203,681, 6,123,523 and 6,354,964 to Cooper, and pending U.S. application Ser. No. 12/120,190 to Cooper. Molten metal pump 22 can be a constant speed pump, but is most preferably a variable speed pump. Its speed can be varied depending on the amount of molten metal in a structure such as a ladle or launder, as discussed below.
As pump 22 pumps molten metal from first chamber 16 into second raised chamber 18, the level of molten metal in chamber 18 rises. When a pump with a discharge (such as circulation pump or gas-release pump) is submerged in the molten metal bath of first chamber 16, there is essentially no turbulence or splashing. This reduces the formation of dross and reduces safety hazards. Further, the afore-mentioned problems with transfer pumps are eliminated. The flow of molten metal is smooth and generally at a slower flow rate than molten metal flowing through a metal transfer pump or associated piping, or than molten metal exiting a tap-out hole.
When the level of molten metal M in second raised chamber 18 exceeds H2, the molten metal moves out of second raised chamber 18 through discharge 90 and into one or more other structures, such as one or more ladles, one or more launders and/or one or more ingot molds.
A system according to the invention could also include one or more pumps in addition to pump 22, in which case the additional pump(s) may circulate molten metal within first chamber 16 and/or second raised chamber 18, or from chamber 16 to chamber 18, and/or may release gas into the molten metal first in first chamber 16 or second raised chamber 18. For example, first chamber 16 could include pump 22 and a second pump, such as a circulation pump or gas-release pump, to circulate and/or release gas into molten metal M.
If pump 22 is a circulation pump or gas-release pump, it may be at least partially received in opening 14A in order to at least partially block opening 14A and maintain a relatively stable level of molten metal in second raised chamber 18 during normal operation, as well as to allow the level in second raised chamber 18 to rise independently of the level in first chamber 16. Utilizing this system, the movement of molten metal from the first chamber 16 to the second chamber 18, and from the second raised chamber 18 into the launder 20, does not involve raising molten metal above the surface of the molten metal M (e.g., through splashing or turbulence). As previously mentioned, this alleviates problems with blockage forming (because of the molten metal cooling and solidifying), and with turbulence and splashing, which can cause dross formation and safety problems. As shown, part of base 32 (preferably the discharge portion of the base) is received in opening 14A. Further, pump 22 may communicate with another structure, such as a metal-transfer conduit, that leads to and is received partially or fully in opening 14A. Although it is preferred that the pump base, or communicating structure such as a metal-transfer conduit, be received in opening 14A, all that is necessary for the invention to function is that the operation of the pump increases and maintains the level of molten metal in second raised chamber 18 so that the molten metal ultimately moves out of chamber 18 and into another structure. For example, the base of pump 22 may be positioned so that its discharge is not received in opening 14A, but is close enough to opening 14A that the operation of the pump raises the level of molten metal in second raised chamber 18 independent of the level in chamber 16 and causes molten metal to move out of second raised chamber 18 and into another structure. A sealant, such as cement (which is known to those skilled in the art), may be used to seal base 32 into opening 14A, although it is preferred that a sealant not be used.
A system according to the invention could also be operated with a transfer pump, although a pump with a submerged discharge, such as a circulation pump or gas-release pump, is preferred since either would be less likely to create turbulence and dross in second raised chamber 18, and neither raises the molten metal above the surface of the molten metal bath nor has the other drawbacks associated with transfer pumps that have previously been described. If a transfer pump were used to move molten metal from first chamber 16, over dividing wall 14, and into second raised chamber 18, there would be no need for opening 14A in dividing wall 14, although an opening could still be provided and used in conjunction with an additional circulation or gas-release pump. As previously described, regardless of what type of pump is used to move molten metal from first chamber 16 to second raised chamber 18, molten metal would ultimately move out of chamber 18 and into a structure, such as ladle 52 or launder 20, when the level of molten metal in second raised chamber 18 exceeds H2.
Pump 22 is preferably a variable speed pump and its speed is increased or decreased according to the amount of molten metal in a structure, such as second raised chamber 18, ladle 52 or launder 20 and/or 200. Similarly, degassers 80, 81 may be variable speed degassers, and their speeds can be varied based on the amount of molten metal in a structure in the same manner as pump 22. The pump 22 can operate at the same or different speeds as the degassers 80, and 81.
For example, if molten metal is being added to a ladle 52 (
Once pump 22 is turned off, the levels of molten metal level in second raised chamber 18 lowers, filling first chamber 16. This level reduction can be used to clear second raised chamber 18 of molten metal, reducing cleaning time between multiple molten metal transfers through the system. As discussed previously, the raised chamber 18 may include a slope on its interior bottom surface (or other advantageous shape) to help molten metal flow back into the first chamber 16 when the pump is turned off. Alternatively, the speed of pump 22 could be reduced to a relatively low speed to keep the level of molten metal in second raised chamber 18 relatively constant but not exceed height H2. To fill another ladle, pump 22 is simply turned on again and operated as described above. In this manner ladles, or other structures, can be filled efficiently with less turbulence, less potential for dross formation and lags wherein there is too little molten metal in the system, and fewer or none of the other problems associated with known systems that utilize a transfer pump or pipe.
Another advantage of a system according to the invention is that a single pump could simultaneously feed molten metal to multiple (i.e., a plurality) of structures, or alternatively be configured to feed one of a plurality of structures depending upon the placement of one or more dams to block the flow of molten metal into one or more structures. For example, system 10 or any system described herein could fill multiple ladles, launders, and/or ingot molds, or a dam(s) could be positioned so that system 10 fills just one or less than all of these structures. The system shown in
One or more devices 58 may be used to measure one or more parameters of molten metal M, such as the depth, weight, level, and/or volume, in any structure or in multiple structures. Device 58 may be located at any position and more than one device 58 may be used. Device 58 may be a laser, float, scale to measure weight, a sound or ultrasound sensor, or a pressure sensor. Device 58 is shown as a laser to measure the level of molten metal in
The control system may provide proportional control, such that the speed of molten metal pump 22 and/or degassers 80, 81 is proportional to the amount of molten metal within a structure. The control system could be customized to provide a smooth, even flow of molten metal to one or more structures such as one or more ladles or ingot molds with minimal turbulence and little chance of overflow. The control system can also help ensure a suitable amount of gas is released in the molten metal as it flows through the raised chamber 18.
A speed control 820 can override the automatic control system (if being utilized) and allows an operator to increase or decrease the speed of the molten metal pump. A cooling air button 825 allows an operator to direct cooling air to the pump motor.
Having thus described different embodiments of the invention, other variations and embodiments that do not depart from the spirit thereof will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired product or result.
This application is a continuation-in-part of, claims priority to and incorporates by reference, U.S. patent application Ser. No. 11/766,617 (Now U.S. Publication No. 2008-0314548), filed Jun. 21, 2007 by Paul V. Cooper. This application also claims priority to and incorporates by reference U.S. Provisional Patent Application No. 61/232,386, filed on Aug. 7, 2009.
Number | Name | Date | Kind |
---|---|---|---|
35604 | Guild | Jun 1862 | A |
116797 | Barnhart | Jul 1871 | A |
209219 | Bookwalter | Oct 1878 | A |
251104 | Finch | Dec 1881 | A |
364804 | Cole | Jun 1887 | A |
390319 | Thomson | Oct 1888 | A |
495760 | Seitz | Apr 1893 | A |
506572 | Wagener | Oct 1893 | A |
585188 | Davis | Jun 1897 | A |
757932 | Jones | Apr 1904 | A |
882477 | Neumann | Mar 1908 | A |
882478 | Neumann | Mar 1908 | A |
890319 | Wells | Jun 1908 | A |
898499 | O'Donnell | Sep 1908 | A |
909774 | Flora | Jan 1909 | A |
919194 | Livingston | Apr 1909 | A |
1037659 | Rembert | Sep 1912 | A |
1100475 | Franckaerts | Jun 1914 | A |
1196758 | Blair | Sep 1916 | A |
1331997 | Neal | Feb 1920 | A |
1377101 | Sparling | May 1921 | A |
1380798 | Hansen et al. | Jun 1921 | A |
1439365 | Hazell | Dec 1922 | A |
1454967 | Gill | May 1923 | A |
1470607 | Hazell | Oct 1923 | A |
1513875 | Wilke | Nov 1924 | A |
1518501 | Gill | Dec 1924 | A |
1522765 | Wilke | Jan 1925 | A |
1526851 | Hall | Feb 1925 | A |
1669668 | Marshall | May 1928 | A |
1673594 | Schmidt | Jun 1928 | A |
1697202 | Nagle | Jan 1929 | A |
1717969 | Goodner | Jun 1929 | A |
1718396 | Wheeler | Jun 1929 | A |
1896201 | Sterner-Rainer | Feb 1933 | A |
1988875 | Saborio | Jan 1935 | A |
2013455 | Baxter | Sep 1935 | A |
2038221 | Kagi | Apr 1936 | A |
2090162 | Tighe | Aug 1937 | A |
2091677 | Fredericks | Aug 1937 | A |
2138814 | Bressler | Dec 1938 | A |
2173377 | Schultz, Jr. et al. | Sep 1939 | A |
2264740 | Brown | Dec 1941 | A |
2280979 | Rocke | Apr 1942 | A |
2290961 | Heuer | Jul 1942 | A |
2300688 | Nagle | Nov 1942 | A |
2304849 | Ruthman | Dec 1942 | A |
2368962 | Blom | Feb 1945 | A |
2383424 | Stepanoff | Aug 1945 | A |
2423655 | Mars et al. | Jul 1947 | A |
2488447 | Tangen et al. | Nov 1949 | A |
2493467 | Sunnen | Jan 1950 | A |
2515097 | Schryber | Jul 1950 | A |
2515478 | Tooley et al. | Jul 1950 | A |
2528208 | Bonsack et al. | Oct 1950 | A |
2528210 | Stewart | Oct 1950 | A |
2543633 | Lamphere | Feb 1951 | A |
2566892 | Jacobs | Sep 1951 | A |
2625720 | Ross | Jan 1953 | A |
2626086 | Forrest | Jan 1953 | A |
2676279 | Wilson | Apr 1954 | A |
2677609 | Moore et al. | May 1954 | A |
2698583 | House et al. | Jan 1955 | A |
2714354 | Farrand | Aug 1955 | A |
2762095 | Pemetzrieder | Sep 1956 | A |
2768587 | Corneil | Oct 1956 | A |
2775348 | Williams | Dec 1956 | A |
2779574 | Schneider | Jan 1957 | A |
2787873 | Hadley | Apr 1957 | A |
2808782 | Thompson et al. | Oct 1957 | A |
2809107 | Russell | Oct 1957 | A |
2821472 | Peterson et al. | Jan 1958 | A |
2824520 | Bartels | Feb 1958 | A |
2832292 | Edwards | Apr 1958 | A |
2853019 | Thorton | Sep 1958 | A |
2865618 | Abell | Dec 1958 | A |
2901677 | Chessman et al. | Aug 1959 | A |
2906632 | Nickerson | Sep 1959 | A |
2918876 | Howe | Dec 1959 | A |
2948524 | Sweeney et al. | Aug 1960 | A |
2958293 | Pray, Jr. | Nov 1960 | A |
2978885 | Davison | Apr 1961 | A |
2984524 | Franzen | May 1961 | A |
2987885 | Hodge | Jun 1961 | A |
3010402 | King | Nov 1961 | A |
3015190 | Arbeit | Jan 1962 | A |
3039864 | Hess | Jun 1962 | A |
3044408 | Mellott | Jul 1962 | A |
3048384 | Sweeney et al. | Aug 1962 | A |
3070393 | Silverberg et al. | Dec 1962 | A |
3092030 | Wunder | Jun 1963 | A |
3099870 | Seeler | Aug 1963 | A |
3130678 | Chenault | Apr 1964 | A |
3130679 | Sence | Apr 1964 | A |
3171357 | Egger | Mar 1965 | A |
3203182 | Pohl | Aug 1965 | A |
3227547 | Szekely | Jan 1966 | A |
3244109 | Barske | Apr 1966 | A |
3251676 | Johnson | May 1966 | A |
3255702 | Gehrm | Jun 1966 | A |
3258283 | Winberg et al. | Jun 1966 | A |
3272619 | Sweeney et al. | Sep 1966 | A |
3289743 | Louda | Dec 1966 | A |
3291473 | Sweeney et al. | Dec 1966 | A |
3374943 | Cervenka | Mar 1968 | A |
3400923 | Howie et al. | Sep 1968 | A |
3417929 | Secrest et al. | Dec 1968 | A |
3432336 | Langrod | Mar 1969 | A |
3459133 | Scheffler | Aug 1969 | A |
3459346 | Tinnes | Aug 1969 | A |
3477383 | Rawson et al. | Nov 1969 | A |
3487805 | Satterthwaite | Jan 1970 | A |
3512762 | Umbricht | May 1970 | A |
3512788 | Kilbane | May 1970 | A |
3561885 | Lake | Feb 1971 | A |
3575525 | Fox et al. | Apr 1971 | A |
3618917 | Fredrikson | Nov 1971 | A |
3620716 | Hess | Nov 1971 | A |
3650730 | Derham et al. | Mar 1972 | A |
3689048 | Foulard et al. | Sep 1972 | A |
3715112 | Carbonnel | Feb 1973 | A |
3732032 | Daneel | May 1973 | A |
3737304 | Blayden | Jun 1973 | A |
3737305 | Blayden et al. | Jun 1973 | A |
3743263 | Szekely | Jul 1973 | A |
3743500 | Foulard et al. | Jul 1973 | A |
3753690 | Emley et al. | Aug 1973 | A |
3759628 | Kempf | Sep 1973 | A |
3759635 | Carter et al. | Sep 1973 | A |
3767382 | Bruno et al. | Oct 1973 | A |
3776660 | Anderson et al. | Dec 1973 | A |
3785632 | Kraemer et al. | Jan 1974 | A |
3787143 | Carbonnel et al. | Jan 1974 | A |
3799522 | Brant et al. | Mar 1974 | A |
3799523 | Seki | Mar 1974 | A |
3807708 | Jones | Apr 1974 | A |
3814400 | Seki | Jun 1974 | A |
3824028 | Zenkner et al. | Jul 1974 | A |
3824042 | Barnes et al. | Jul 1974 | A |
3836280 | Koch | Sep 1974 | A |
3839019 | Bruno et al. | Oct 1974 | A |
3844972 | Tully, Jr. et al. | Oct 1974 | A |
3871872 | Downing et al. | Mar 1975 | A |
3873073 | Baum et al. | Mar 1975 | A |
3873305 | Claxton et al. | Mar 1975 | A |
3881039 | Baldieri et al. | Apr 1975 | A |
3886992 | Maas et al. | Jun 1975 | A |
3915594 | Nesseth | Oct 1975 | A |
3915694 | Ando | Oct 1975 | A |
3941588 | Dremann | Mar 1976 | A |
3941589 | Norman et al. | Mar 1976 | A |
3954134 | Maas et al. | May 1976 | A |
3958979 | Valdo | May 1976 | A |
3958981 | Forberg et al. | May 1976 | A |
3961778 | Carbonnel et al. | Jun 1976 | A |
3966456 | Ellenbaum et al. | Jun 1976 | A |
3972709 | Chin et al. | Aug 1976 | A |
3976286 | Thompson et al. | Aug 1976 | A |
3984234 | Claxton et al. | Oct 1976 | A |
3985000 | Hartz | Oct 1976 | A |
3997336 | van Linden et al. | Dec 1976 | A |
4003560 | Carbonnel | Jan 1977 | A |
4008884 | Fitzpatrick et al. | Feb 1977 | A |
4018598 | Markus | Apr 1977 | A |
4052199 | Mangalick | Oct 1977 | A |
4055390 | Young | Oct 1977 | A |
4063849 | Modianos | Dec 1977 | A |
4068965 | Lichti | Jan 1978 | A |
4091970 | Komiyama et al. | May 1978 | A |
4119141 | Thut et al. | Oct 1978 | A |
4126360 | Miller et al. | Nov 1978 | A |
4128415 | van Linden et al. | Dec 1978 | A |
4169584 | Mangalick | Oct 1979 | A |
4191486 | Pelton | Mar 1980 | A |
4213742 | Henshaw | Jul 1980 | A |
4242039 | Villard et al. | Dec 1980 | A |
4244423 | Thut et al. | Jan 1981 | A |
4286985 | van Linden et al. | Sep 1981 | A |
4305214 | Hurst | Dec 1981 | A |
4322245 | Claxton | Mar 1982 | A |
4338062 | Neal | Jul 1982 | A |
4347041 | Cooper | Aug 1982 | A |
4351514 | Koch | Sep 1982 | A |
4355789 | Dolzhenkov et al. | Oct 1982 | A |
4360314 | Pennell | Nov 1982 | A |
4370096 | Church | Jan 1983 | A |
4372541 | Bocourt et al. | Feb 1983 | A |
4375937 | Cooper | Mar 1983 | A |
4389159 | Sarvanne | Jun 1983 | A |
4392888 | Eckert et al. | Jul 1983 | A |
4410299 | Shimoyama | Oct 1983 | A |
4419049 | Gerboth et al. | Dec 1983 | A |
4456424 | Araoka | Jun 1984 | A |
4470846 | Dube | Sep 1984 | A |
4474315 | Gilbert et al. | Oct 1984 | A |
4496393 | Lustenberger | Jan 1985 | A |
4504392 | Groteke | Mar 1985 | A |
4537624 | Tenhover et al. | Aug 1985 | A |
4537625 | Tenhover et al. | Aug 1985 | A |
4556419 | Otsuka et al. | Dec 1985 | A |
4557766 | Tenhover et al. | Dec 1985 | A |
4586845 | Morris | May 1986 | A |
4592700 | Toguchi et al. | Jun 1986 | A |
4594052 | Niskanen | Jun 1986 | A |
4598899 | Cooper | Jul 1986 | A |
4600222 | Appling | Jul 1986 | A |
4607825 | Briolle et al. | Aug 1986 | A |
4609442 | Tenhover et al. | Sep 1986 | A |
4611790 | Otsuka et al. | Sep 1986 | A |
4617232 | Chandler et al. | Oct 1986 | A |
4634105 | Withers et al. | Jan 1987 | A |
4640666 | Sodergard | Feb 1987 | A |
4655610 | Al-Jaroudi | Apr 1987 | A |
4684281 | Patterson | Aug 1987 | A |
4685822 | Pelton | Aug 1987 | A |
4696703 | Henderson et al. | Sep 1987 | A |
4701226 | Henderson et al. | Oct 1987 | A |
4702768 | Areauz et al. | Oct 1987 | A |
4714371 | Cuse | Dec 1987 | A |
4717540 | McRae et al. | Jan 1988 | A |
4739974 | Mordue | Apr 1988 | A |
4743428 | McRae et al. | May 1988 | A |
4747583 | Gordon et al. | May 1988 | A |
4767230 | Leas, Jr. | Aug 1988 | A |
4770701 | Henderson et al. | Sep 1988 | A |
4786230 | Thut | Nov 1988 | A |
4802656 | Hudault et al. | Feb 1989 | A |
4804168 | Otsuka et al. | Feb 1989 | A |
4810314 | Henderson et al. | Mar 1989 | A |
4834573 | Asano et al. | May 1989 | A |
4842227 | Harrington et al. | Jun 1989 | A |
4844425 | Piras et al. | Jul 1989 | A |
4851296 | Tenhover et al. | Jul 1989 | A |
4859413 | Harris et al. | Aug 1989 | A |
4867638 | Handtmann et al. | Sep 1989 | A |
4884786 | Gillespie | Dec 1989 | A |
4898367 | Cooper | Feb 1990 | A |
4908060 | Duenkelmann | Mar 1990 | A |
4923770 | Grasselli et al. | May 1990 | A |
4930986 | Cooper | Jun 1990 | A |
4931091 | Waite et al. | Jun 1990 | A |
4940214 | Gillespie | Jul 1990 | A |
4940384 | Amra et al. | Jul 1990 | A |
4954167 | Cooper | Sep 1990 | A |
4973433 | Gilbert et al. | Nov 1990 | A |
4986736 | Kajiwara | Jan 1991 | A |
4989736 | Andersson et al. | Feb 1991 | A |
5015518 | Sasaki et al. | May 1991 | A |
5025198 | Mordue et al. | Jun 1991 | A |
5028211 | Mordue et al. | Jul 1991 | A |
5029821 | Bar-on et al. | Jul 1991 | A |
5078572 | Amra et al. | Jan 1992 | A |
5080715 | Provencher et al. | Jan 1992 | A |
5088893 | Gilbert et al. | Feb 1992 | A |
5092821 | Gilbert et al. | Mar 1992 | A |
5098134 | Monckton | Mar 1992 | A |
5114312 | Stanislao | May 1992 | A |
5126047 | Martin et al. | Jun 1992 | A |
5131632 | Olson | Jul 1992 | A |
5143357 | Gilbert et al. | Sep 1992 | A |
5145322 | Senior, Jr. et al. | Sep 1992 | A |
5152631 | Bauer | Oct 1992 | A |
5154652 | Ecklesdafer | Oct 1992 | A |
5158440 | Cooper et al. | Oct 1992 | A |
5162858 | Shoji et al. | Nov 1992 | A |
5165858 | Gilbert et al. | Nov 1992 | A |
5177304 | Nagel | Jan 1993 | A |
5191154 | Nagel | Mar 1993 | A |
5192193 | Cooper et al. | Mar 1993 | A |
5202100 | Nagel et al. | Apr 1993 | A |
5203681 | Cooper | Apr 1993 | A |
5209641 | Hoglund et al. | May 1993 | A |
5215448 | Cooper | Jun 1993 | A |
5268020 | Claxton | Dec 1993 | A |
5286163 | Amra et al. | Feb 1994 | A |
5298233 | Nagel | Mar 1994 | A |
5301620 | Nagel et al. | Apr 1994 | A |
5308045 | Cooper | May 1994 | A |
5310412 | Gilbert et al. | May 1994 | A |
5318360 | Langer et al. | Jun 1994 | A |
5322547 | Nagel et al. | Jun 1994 | A |
5324341 | Nagel et al. | Jun 1994 | A |
5330328 | Cooper | Jul 1994 | A |
5354940 | Nagel | Oct 1994 | A |
5358549 | Nagel et al. | Oct 1994 | A |
5358697 | Nagel | Oct 1994 | A |
5364078 | Pelton | Nov 1994 | A |
5369063 | Gee et al. | Nov 1994 | A |
5388633 | Mercer, II et al. | Feb 1995 | A |
5395405 | Nagel et al. | Mar 1995 | A |
5399074 | Nose et al. | Mar 1995 | A |
5407294 | Giannini | Apr 1995 | A |
5411240 | Rapp et al. | May 1995 | A |
5425410 | Reynolds | Jun 1995 | A |
5431551 | Aquino et al. | Jul 1995 | A |
5435982 | Wilkinson | Jul 1995 | A |
5436210 | Wilkinson et al. | Jul 1995 | A |
5443572 | Wilkinson et al. | Aug 1995 | A |
5454423 | Tsuchida et al. | Oct 1995 | A |
5468280 | Areaux | Nov 1995 | A |
5470201 | Gilbert et al. | Nov 1995 | A |
5484265 | Horvath et al. | Jan 1996 | A |
5489734 | Nagel et al. | Feb 1996 | A |
5491279 | Robert et al. | Feb 1996 | A |
5495746 | Sigworth | Mar 1996 | A |
5505143 | Nagel | Apr 1996 | A |
5509791 | Turner | Apr 1996 | A |
5537940 | Nagel et al. | Jul 1996 | A |
5543558 | Nagel et al. | Aug 1996 | A |
5555822 | Loewen et al. | Sep 1996 | A |
5558501 | Wang et al. | Sep 1996 | A |
5558505 | Mordue et al. | Sep 1996 | A |
5571486 | Robert et al. | Nov 1996 | A |
5585532 | Nagel | Dec 1996 | A |
5586863 | Gilbert et al. | Dec 1996 | A |
5591243 | Colussi et al. | Jan 1997 | A |
5597289 | Thut | Jan 1997 | A |
5613245 | Robert | Mar 1997 | A |
5616167 | Eckert | Apr 1997 | A |
5622481 | Thut | Apr 1997 | A |
5629464 | Bach et al. | May 1997 | A |
5634770 | Gilbert et al. | Jun 1997 | A |
5640706 | Nagel et al. | Jun 1997 | A |
5640707 | Nagel et al. | Jun 1997 | A |
5640709 | Nagel et al. | Jun 1997 | A |
5655849 | McEwen et al. | Aug 1997 | A |
5662725 | Cooper | Sep 1997 | A |
5676520 | Thut | Oct 1997 | A |
5678244 | Shaw et al. | Oct 1997 | A |
5678807 | Cooper | Oct 1997 | A |
5679132 | Rauenzahn et al. | Oct 1997 | A |
5685701 | Chandler et al. | Nov 1997 | A |
5690888 | Robert | Nov 1997 | A |
5695732 | Sparks et al. | Dec 1997 | A |
5716195 | Thut | Feb 1998 | A |
5717149 | Nagel et al. | Feb 1998 | A |
5718416 | Flisakowski et al. | Feb 1998 | A |
5735668 | Klien | Apr 1998 | A |
5735935 | Areaux | Apr 1998 | A |
5741422 | Eichenmiller et al. | Apr 1998 | A |
5744117 | Wilikinson et al. | Apr 1998 | A |
5745861 | Bell et al. | Apr 1998 | A |
5772324 | Falk | Jun 1998 | A |
5776420 | Nagel | Jul 1998 | A |
5785494 | Vild et al. | Jul 1998 | A |
5842832 | Thut | Dec 1998 | A |
5858059 | Abramovich et al. | Jan 1999 | A |
5863314 | Morando | Jan 1999 | A |
5866095 | McGeever et al. | Feb 1999 | A |
5875385 | Stephenson et al. | Feb 1999 | A |
5935528 | Stephenson et al. | Aug 1999 | A |
5944496 | Cooper | Aug 1999 | A |
5947705 | Mordue et al. | Sep 1999 | A |
5951243 | Cooper | Sep 1999 | A |
5961285 | Meneice et al. | Oct 1999 | A |
5963580 | Eckert | Oct 1999 | A |
5992230 | Scarpa et al. | Nov 1999 | A |
5993726 | Huang | Nov 1999 | A |
5993728 | Vild | Nov 1999 | A |
6019576 | Thut | Feb 2000 | A |
6027685 | Cooper | Feb 2000 | A |
6036745 | Gilbert et al. | Mar 2000 | A |
6074455 | van Linden et al. | Jun 2000 | A |
6093000 | Cooper | Jul 2000 | A |
6096109 | Nagel et al. | Aug 2000 | A |
6113154 | Thut | Sep 2000 | A |
6123523 | Cooper | Sep 2000 | A |
6152691 | Thut | Nov 2000 | A |
6168753 | Morando | Jan 2001 | B1 |
6187096 | Thut | Feb 2001 | B1 |
6199836 | Rexford et al. | Mar 2001 | B1 |
6217823 | Vild et al. | Apr 2001 | B1 |
6231639 | Eichenmiller | May 2001 | B1 |
6250881 | Mordue et al. | Jun 2001 | B1 |
6254340 | Vild et al. | Jul 2001 | B1 |
6270717 | Tremblay et al. | Aug 2001 | B1 |
6280157 | Cooper | Aug 2001 | B1 |
6293759 | Thut | Sep 2001 | B1 |
6303074 | Cooper | Oct 2001 | B1 |
6345964 | Cooper | Feb 2002 | B1 |
6354796 | Morando | Mar 2002 | B1 |
6358467 | Mordue | Mar 2002 | B1 |
6371723 | Grant et al. | Apr 2002 | B1 |
6398525 | Cooper | Jun 2002 | B1 |
6439860 | Greer | Aug 2002 | B1 |
6451247 | Mordue et al. | Sep 2002 | B1 |
6457940 | Lehman | Oct 2002 | B1 |
6457950 | Cooper et al. | Oct 2002 | B1 |
6464458 | Vild et al. | Oct 2002 | B2 |
6497559 | Grant | Dec 2002 | B1 |
6500228 | Klingensmith | Dec 2002 | B1 |
6503292 | Klingensmith et al. | Jan 2003 | B2 |
6524066 | Thut | Feb 2003 | B2 |
6533535 | Thut | Mar 2003 | B2 |
6551060 | Mordue et al. | Apr 2003 | B2 |
6679936 | Quackenbush | Jan 2004 | B2 |
6689310 | Cooper | Feb 2004 | B1 |
6709234 | Gilbert et al. | Mar 2004 | B2 |
6723276 | Cooper | Apr 2004 | B1 |
6805834 | Thut | Oct 2004 | B2 |
6843640 | Mordue et al. | Jan 2005 | B2 |
6848497 | Sale et al. | Feb 2005 | B2 |
6869271 | Gilbert et al. | Mar 2005 | B2 |
6869564 | Gilbert et al. | Mar 2005 | B2 |
6881030 | Thut | Apr 2005 | B2 |
6887424 | Ohno et al. | May 2005 | B2 |
6887425 | Mordue et al. | May 2005 | B2 |
6902696 | Klingensmith et al. | Jun 2005 | B2 |
7083758 | Tremblay | Aug 2006 | B2 |
7131482 | Vincent et al. | Nov 2006 | B2 |
7157043 | Neff | Jan 2007 | B2 |
7279128 | Kennedy et al. | Oct 2007 | B2 |
7326028 | Morando | Feb 2008 | B2 |
7402276 | Cooper | Jul 2008 | B2 |
7470392 | Cooper | Dec 2008 | B2 |
7476357 | Thut | Jan 2009 | B2 |
7497988 | Thut | Mar 2009 | B2 |
7507367 | Cooper | Mar 2009 | B2 |
8110141 | Cooper | Feb 2012 | B2 |
20010000465 | Thut | Apr 2001 | A1 |
20020185794 | Vincent | Dec 2002 | A1 |
20030047850 | Areaux | Mar 2003 | A1 |
20040076533 | Cooper | Apr 2004 | A1 |
20040262825 | Cooper | Dec 2004 | A1 |
20050013715 | Cooper | Jan 2005 | A1 |
20050053499 | Cooper | Mar 2005 | A1 |
20050077730 | Thut | Apr 2005 | A1 |
20070253807 | Cooper | Nov 2007 | A1 |
20080213111 | Cooper | Sep 2008 | A1 |
20110140319 | Cooper | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
683469 | Mar 1964 | CA |
2115929 | Aug 1992 | CA |
2176475 | May 1996 | CA |
2244251 | Dec 1996 | CA |
2305865 | Feb 2000 | CA |
392268 | Sep 1965 | CH |
1800446 | Dec 1969 | DE |
0168250 | Jan 1986 | EP |
0665378 | Feb 1995 | EP |
1019635 | Jun 2006 | EP |
942648 | Nov 1963 | GB |
1185314 | Mar 1970 | GB |
2217784 | Mar 1989 | GB |
58048796 | Mar 1983 | JP |
63104773 | May 1988 | JP |
227385 | Apr 2005 | MK |
90756 | Jan 1959 | NO |
416401 | Feb 1974 | RU |
773312 | Oct 1980 | RU |
WO9808990 | Mar 1998 | WO |
WO9825031 | Jun 1998 | WO |
0212147 | Feb 2002 | WO |
Entry |
---|
USPTO; Office Action dated Nov. 28, 2011 in U.S. Appl. No. 12/120,190. |
USPTO; Notice of Allowance dated Nov. 1, 2011 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Nov. 4, 2011 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Dec. 16, 2011 in U.S. Appl. No. 13/047,719. |
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” Including Declarations of Haynes and Johnson, Apr. 16, 2001. |
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Patent No. 7,402,276,” Oct. 2, 2009. |
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Patent No. 7,402,276,” Oct. 9, 2009. |
Document No. 507689: Excerpts from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of Claims 3-4, 15, 17-20, 26 and 28-29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009. |
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010. |
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010. |
USPTO; Office Action dated Feb. 23, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Office Action dated Aug. 15, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Advisory Action dated Nov. 18, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Advisory Action dated Dec. 9, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Notice of Allowance dated Jan. 17, 1997 in U.S. Appl. No. 08/439,739. |
USPTO; Office Action dated Jul. 22, 1996 in U.S. Appl. No. 08/489,962. |
USPTO; Office Action dated Jan. 6, 1997 in U.S. Appl. No. 08/489,962. |
USPTO; Interview Summary dated Mar. 4, 1997 in U.S. Appl. No. 08/489,962. |
USPTO; Notice of Allowance dated Mar. 27, 1997 in U.S. Appl. No. 08/489,962. |
USPTO; Office Action dated Sep. 23, 1998 in U.S. Appl. No. 08/759,780. |
USPTO; Interview Summary dated Dec. 30, 1998 in U.S. Appl. No. 08/789,780. |
USPTO; Notice of Allowance dated Mar. 17, 1999 in U.S. Appl. No. 08/789,780. |
USPTO; Office Action dated Jul. 23, 1998 in U.S. Appl. No. 08/889,882. |
USPTO; Office Action dated Jan. 21, 1999 in U.S. Appl. No. 08/889,882. |
USPTO; Notice of Allowance dated Mar. 17, 1999 in U.S. Appl. No. 08/889,882. |
USPTO; Office Action dated Feb. 26, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Interview Summary dated Mar. 15, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Office Action dated May 17, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Notice of Allowance dated Aug. 27, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Office Action dated Dec. 23, 1999 in U.S. Appl. No. 09/132,934. |
USPTO; Notice of Allowance dated Mar. 9, 2000 in U.S. Appl. No. 09/132,934. |
USPTO; Office Action dated Jan. 7, 2000 in U.S. Appl. No. 09/152,168. |
USPTO; Notice of Allowance dated Aug. 7, 2000 in U.S. Appl. No. 09/152,168. |
USPTO; Office Action dated Sep. 14, 1999 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated May 22, 2000 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated Nov. 14, 2000 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated May 21, 2001 in U.S. Appl. No. 09/275,627. |
USPTO; Notice of Allowance dated Aug. 31, 2001 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated Jun. 15, 2000 in U.S. Appl. No. 09/312,361. |
USPTO; Notice of Allowance dated Jan. 29, 2001 in U.S. Appl. No. 09/312,361. |
USPTO; Office Action dated Jun. 22, 2001 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated Oct. 12, 2001 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated May 3, 2002 in U.S. Appl. No. 09/569,461. |
USPTO; Advisory Action dated May 14, 2002 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated Dec. 4, 2002 in U.S. Appl. No. 09/569,461. |
USPTO; Interview Summary dated Jan. 14, 2003 in U.S. Appl. No. 09/569,461. |
USPTO; Notice of Allowance dated Jun. 24, 2003 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated Nov. 21, 2000 in U.S. Appl. No. 09/590,108. |
USPTO; Office Action dated May 22, 2001 in U.S. Appl. No. 09/590,108. |
USPTO; Notice of Allowance dated Sep. 10, 2001 in U.S. Appl. No. 09/590,108. |
USPTO; Office Action dated Jan. 30, 2002 in U.S. Appl. No. 09/649,190. |
USPTO; Office Action dated Oct. 4, 2002 in U.S. Appl. No. 09/649,190. |
USPTO; Office Action dated Apr. 18, 2003 in U.S. Appl. No. 09/649,190. |
USPTO; Notice of Allowance dated Nov. 21, 2003 in U.S. Appl. No. 09/649,190. |
USPTO; Office Action dated Jun. 7, 2006 in U.S. Appl. No. 10/619,405. |
USPTO; Final Office Action dated Feb. 20, 2007 in U.S. Appl. No. 10/619,405. |
USPTO; Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/619,405. |
USPTO; Final Office Action dated May 29, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Interview Summary Aug. 22, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Ex Parte Quayle dated Sep. 12, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Interview Summary dated Oct. 16, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Notice of Allowance dated Nov. 14, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Office Action dated Mar. 20, 2006 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Nov. 16, 2006 in U.S. Appl. No. 10/620,318. |
USPTO; Final Office Action dated Jul. 25, 2007 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Feb. 12, 2008 in U.S. Appl. No. 10/620,318. |
USPTO; Final Office Action dated Oct. 16, 2008 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Feb. 25, 2009 in U.S. Appl. No. 10/620,318. |
USPTO; Final Office Action dated Oct. 8, 2009 in U.S. Appl. No. 10/620,318. |
USPTO; Notice of Allowance Jan. 26, 2010 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Nov. 15, 2007 in U.S. Appl. No. 10/773,101. |
USPTO; Office Action dated Jun. 27, 2006 in U.S. Appl. No. 10/773,102. |
USPTO; Office Action dated Mar. 6, 2007 in U.S. Appl. No. 10/773,102. |
USPTO; Office Action dated Oct. 11, 2007 in U.S. Appl. No. 10/773,102. |
USPTO; Interview Summary dated Mar. 18, 2008 in U.S. Appl. No. 10/773,102. |
USPTO; Notice of Allowance Apr. 18, 2008 in U.S. Appl. No. 10/773,102. |
USPTO; Office Action dated Jul. 24, 2006 in U.S. Appl. No. 10/773,105. |
USPTO; Final Office Action dated Jul. 21, 2007 in U.S. Appl. No. 10/773,105. |
USPTO; Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/773,105. |
USPTO; Interview Summary dated Jan. 25, 2008 in U.S. Appl. No. 10/773,105. |
USPTO; Office Action dated May 19, 2008 in U.S. Appl. No. 10/773,105. |
USPTO; Interview Summary dated Jul. 21, 2008 in U.S. Appl. No. 10/773,105. |
USPTO; Notice of Allowance dated Sep. 29, 2008 in U.S. Appl. No. 10/773,105. |
USPTO; Office Action dated Jan. 31, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Final Office Action dated Aug. 18, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Interview Summary dated Oct. 16, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Office Action dated Dec. 15, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Final Office Action dated May 1, 2009 in U.S. Appl. No. 10/773,118. |
USPTO; Office Action dated Jul. 27, 2009 in U.S. Appl. No. 10/773,118. |
USPTO; Final Office Action dated Feb. 2, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Interview Summary dated Jun. 4, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Ex Parte Quayle Action dated Aug. 25, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Notice of Allowance dated Nov. 5, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Office Action dated Mar. 16, 2005 in U.S. Appl. No. 10/827,941. |
USPTO; Final Office Action dated Nov. 7, 2005 in U.S. Appl. No. 10/827,941. |
USPTO; Office Action dated Jul. 12, 2006 in U.S. Appl. No. 10/827,941. |
USPTO; Final Office Action dated Mar. 8, 2007 in U.S. Appl. No. 10/827,941. |
USPTO; Office Action dated Oct. 29, 2007 in U.S. Appl. No. 10/827,941. |
USPTO; Office Action dated Sep. 26, 2008 in U.S. Appl. No. 11/413,982. |
USPTO; Final Office Action dated Oct. 14, 2008 in U.S. Appl. No. 12/111,835. |
USPTO; Office Action dated May 15, 2009 in U.S. Appl. No. 12/111,835. |
USPTO; Office Action dated Nov. 3, 2008 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated May 28, 2009 in U.S. Appl. No. 12/120,200. |
USPTO; Office Action dated Dec. 18, 2009 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated Jul. 9, 2010 in U.S. Appl. No. 12/120,200. |
USPTO; Office Action dated Jan. 21, 2011 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/120,200. |
USPTO; Office Action dated Mar. 31, 2009 in U.S. Appl. No. 12/120,190. |
USPTO; Final Office Action dated Dec. 4, 2009 in U.S. Appl. No. 12/120,190. |
USPTO; Office Action dated Jun. 28, 2010 in U.S. Appl. No. 12/120,190. |
USPTO; Final Office Action dated Jan. 6, 2011 in U.S. Appl. No. 12/120,190. |
USPTO; Office Action dated Jun. 27, 2011 in U.S. Appl. No. 12/120,190. |
USPTO; Office Action dated Apr. 13, 2009 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Oct. 8, 2009 in U.S. Appl. No. 12/264,416. |
USPTO; Office Action dated Feb. 1, 2010 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Jun. 30, 2010 in U.S. Appl. No. 12/264,416. |
USPTO; Office Action dated Mar. 17, 2011 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Jul. 7, 2011 in U.S. Appl. No. 12/264,416. |
USPTO; Office Action dated Apr. 27, 2009 in U.S. Appl. No. 12/146,788. |
USPTO; Final Office Action dated Oct. 15, 2009 in U.S. Appl. No. 12/146,788. |
USPTO; Office Action dated Feb. 16, 2010 in U.S. Appl. No. 12/146,788. |
USPTO; Final Office Action dated Jul. 13, 2010 in U.S. Appl. No. 12/146,788. |
USPTO; Office Action dated Apr. 19, 2011 in U.S. Appl. No. 12/146,788. |
USPTO; Notice of Allowance dated Aug. 19, 2011 in U.S. Appl. No. 12/146,788. |
USPTO; Office Action dated May 22, 2009 in U.S. Appl. No. 12/369,362. |
USPTO; Final Office Action dated Dec. 14, 2009 in U.S. Appl. No. 12/369,362. |
USPTO; Office Action dated Jun. 16, 2009 in U.S. Appl. No. 12/146,770. |
USPTO; Final Office Action dated Feb. 24, 2010 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Jun. 9, 2010 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Nov. 18, 2010 in U.S. Appl. No. 12/146,770. |
USPTO; Final Office Action dated Apr. 4, 2011 in U.S. Appl. No. 12/146,770. |
USPTO; Notice of Allowance dated Aug. 22, 2011 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Dec. 11, 2009 in U.S. Appl. No. 11/766,617. |
USPTO; Office Action dated Mar. 8, 2010 in U.S. Appl. No. 11/766,617. |
USPTO; Final Office Action dated Sep. 20, 2010 in U.S. Appl. No. 11/766,617. |
USPTO; Office Action dated Mar. 1, 2011 in U.S. Appl. No. 11/766,617. |
USPTO; Office Action dated Sep. 22, 2011 in U.S. Appl. No. 11/766,617. |
USPTO; Final Office Action dated Jun. 11, 2010 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Nov. 24, 2010 in U.S. Appl. No. 12/395,430. |
USPTO; Final Office Action dated Apr. 6, 2011 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Aug. 18, 2011 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Sep. 29, 2010 in U.S. Appl. No. 12/758,509. |
USPTO; Final Office Action dated May 11, 2011 in U.S. Appl. No. 12/758,509. |
USPTO; Office Action dated Sep. 22, 2011 in U.S. Appl. No. 12/880,027. |
USPTO; Office Action dated Aug. 25, 2011 in U.S. Appl. No. 13/047,747. |
USPTO; Office Action dated Aug. 25, 2011 in U.S. Appl. No. 13/047,719. |
USPTO; Office Action dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910. |
CIPO; Office Action dated Dec. 4, 2001 in Application No. 2,115,929. |
CIPO; Office Action dated Apr. 22, 2002 in Application No. 2,115,929. |
CIPO; Notice of Allowance dated Jul. 18, 2003 in Application No. 2,115,929. |
CIPO; Office Action dated Jun. 30, 2003 in Application No. 2,176,475. |
CIPO; Notice of Allowance dated Sep. 15, 2004 in Application No. 2,176,475. |
CIPO; Office Action dated May 29, 2000 in Application No. 2,242,174. |
CIPO; Office Action dated Feb. 22, 2006 in Application No. 2,244,251. |
CIPO; Office Action dated Mar. 27, 2007 in Application No. 2,244,251. |
CIPO; Notice of Allowance dated Jan. 15, 2008 in Application No. 2,244,251. |
CIPO; Office Action dated Sep. 18, 2002 in Application No. 2,305,865. |
CIPO; Notice of Allowance dated May 2, 2003 in Application No. 2,305,865. |
EPO; Examination Report dated Oct. 6, 2008 in Application No. 08158682. |
EPO; Office Action dated Jan. 26, 2010 in Application No. 08158682. |
EPO; Office Action dated Feb. 15, 2011 in Application No. 08158682. |
EPO; Search Report dated Nov. 9, 1998 in Application No. 98112356. |
EPO; Office Action dated Feb. 6, 2003 in Application No. 99941032. |
EPO; Office Action dated Aug. 20, 2004 in Application No. 99941032. |
PCT; International Search Report or Declaration dated Nov. 15, 1999 in Application No. PCT/US1999/18178. |
PCT; International Search Report or Declaration dated Oct. 9, 1998 in Application No. PCT/US1999/22440. |
USPTO, Office Action dated Jan. 27, 2012 in U.S. Appl. No. 11/766,617. |
USPTO, Office Action dated Feb. 1, 2012 in U.S. Appl. No. 12/853,201. |
USPTO, Final Office Action dated Feb. 3, 2012 in U.S. Appl. No. 12/120,200. |
USPTO, Notice of Allowance dated Feb. 6, 2012 in U.S. Appl. No. 12/120,190. |
USPTO, Final Office Action dated Feb. 7, 2012 in U.S. Appl. No. 13/047,747. |
USPTO, Office Action dated Mar. 12, 2012 in U.S. Appl. No. 12/853,255. |
USPTO, Office Action dated Apr. 18, 2012 in U.S. Appl. No. 13/252,145. |
USPTO, Notice of Allowance dated May 15, 2012 in U.S. Appl. No. 11/766,617. |
USPTO; Final Office Action dated Dec. 13, 2011 in U.S. Appl. No. 12/395,430. |
Number | Date | Country | |
---|---|---|---|
20110140319 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61232386 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11766617 | Jun 2007 | US |
Child | 12853253 | US |