This invention relates generally to the application content field, and more specifically to a new and useful system and method for delivering application content in the application content field.
With more content being application based, there are a wider variety of application tools to accomplish similar tasks. Digital passes applications are one such type of application. Pass applications have been developed for various platforms that enable users to store tickets, gift cards, coupons, loyalty cards, store payment cards, and other forms of cards and passes. These pass applications enable multiple companies and pass providers to leverage a single application in providing their content. However, adoption of such digital passes is low because of the poor experience surrounding the passes. Many providers of passes require a user to install an application such that the pass can be delivered to the user. Not only is this a poor experience for the user, but also this development of the application is costly for the pass providers. Further complicating matters is that the depending on the device, the operating system, and the installed applications, each user may have different pass requirements. Thus, there is a need in the application content field to create a new and useful system and method for delivering digital passes. This invention provides such a new and useful system and method.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. System for Delivering Digital Passes
As shown in
In one preferred embodiment, the system functions to create a unified messaging solution for digital passes. Passes preferably include any digital pass that can be collected with a plurality of other digital passes into a single application or operating service. For example, passes can include tickets, gift cards, coupons, loyalty cards, store payment cards, ID badges, invitations, and other forms of cards and passes that can be used with iOS's Passbook application, Android's Pass Wallet, or other operating systems and/or third party applications. Passes may be used by application developers for communicating a unique ID via a QR code, barcode, or other machine-readable code. Passes may receive updates and/or push notifications to be automatically or manually updated. Passes may be triggered based on location, time, and other suitable events and conditions. Passes may additionally be easily localized to different languages. The system abstracts away technical complexities of working with passes and simplifies the manner in which a pass can be delivered and installed on a device. Herein, digital passes may be used as primary examples, but any suitable type of application content may be used.
The system is preferably used by application and service providers/developers to enable easy transport and management of targeted digital content to mobile devices of end users. The system additionally functions to normalize the interactions taken by a developer such that a single interface can be used to deliver passes to a wide variety of different destinations. While the resulting application content is targeted and formatted according to the destination, a normalized and consistent mechanism enables a service to define application content. The system preferably uses MMS as a transport protocol for delivering passes, but any suitable communication protocol can be used to deliver the application content resources such as email, SMS, over the top IP communication (proprietary or open), or any suitable communication protocol. While the system is described for use with the preferred embodiment of digital passes, the system can alternatively be used for delivering other application media. For example, calendar events can additionally be sent. In another example, application specific content or settings can be delivered appropriately over telephony messaging.
The system is preferably integrated with a communication platform, which can be a multitenant platform that allows outside applications and services to programmatically interact over communication protocols. The communication protocols available to the communication platform can include SMS, MMS, IP messaging, PSTN calls, SIP calls, video calls, screen sharing sessions, and/or other forms of communication. The communication platform preferably includes an API accessible to developer accounts on the communication platform. Accounts of the communication platform use the API to programmatically interact with API resources. The API resources can be used to reference and query data and/or initiate or augment actions of the communication platform. The platform API is preferably a RESTful API but may alternatively be any suitable API such as SOAP. The API preferably works according to an HTTP request and response model. HTTP requests (or any suitable request communication) to the communication platform preferably observe the principles of a RESTful design. RESTful is understood in this document to describe a Representational State Transfer architecture as is known in the art. The communication platform can additionally include a capability to process telephony applications, and as such, the delivery of digital passes can be initiated and directed through directives of the communication platform. In a preferred implementation, the communication platform is substantially similar to the one described in U.S. Pat. No. 8,306,021, issued 6 Nov. 2012, which is hereby incorporated in its entirety by this reference.
The content API service 110 functions to enable programmatic interaction by developer accounts. The developer accounts can deliver passes, interact with passes, and receive information about the state of the passes. The content messaging API 110 is preferably a subset of the platform API of the communication platform, but may alternatively be a distinct interface for application content interactions. An account authentication engine preferably allows accounts, sub-accounts, and/or other entities to make requests. The accounts are preferably controlled, managed and associated with outside applications and services. The outside application services preferably use the system to facilitate the delivery of application content. The application messaging API can include several resources. An exemplary API call can include an HTTP POST to initiate a new action or modify a resource and an HTTP GET to read data or query information about a resource. The API 110 may alternatively use alternative forms of an interface. In one preferred implementation for digital passes, the content messaging API no can include a pass resource that can be used to transmit a pass to at least one destination. A HTTP POST to the pass resource initiates the transmission of a specified pass to a specified destination. Additionally or alternatively, multiple destinations may be specified in which case the application content is targeted individually to the specified destinations. An HTTP GET to the pass resource can return a list of the delivered passes. Each transmitted pass is preferably assigned a passID within the communication platform. A transmitted pass has a passID resource that can be used to access specific passes. Since passes are often delivered to a single user. A passID corresponds to a particular instance of a pass transmitted to one user device. The passID resource can be used to query information about a particular pass instance. Pass instance information can include delivery status (was the message received), installation status (was the pass installed by the user), the type of pass, and other suitable information. For example, a developer or application can send a HTTP GET message to a passID resource of “/pass/1234”, and a json response can be returned that specifies if the pass was delivered, if the pass was installed, and if the pass is an iOS, Android, or static pass. A developer can update the pass by submitting an HTTP POST message to “/pass/12434”, and in response, a push notification is delivered to the device to update the pass. In one variation, a message resource can be overloaded and be used for SMS, MMS, passes, and messaging of other media types. The handling of the media can be automatically determined based on the content type specified through a request.
The telephony messaging service 120 functions to transmit the application content media to the destination. The telephony messaging service preferably uses MMS as a transport communication channel. MMS can be used to send application content media in the native file format. In the case of digital passes, passbook passes on iOS can be transmitted as data objects of the mime-type pkpass. Passes delivered to Android would be transmitted as Android appropriate data objects. Most devices are capable of MMS communication, and as such, MMS provides a suitably accessible channel of communication. Even devices that are not considered smart phones can have basic MMS capabilities. If MMS isn't available, SMS communication may be available. Other forms of communication can include email, over the top IP communication, or any suitable form of communication. Static application content can be transmitted to non-smart devices either as images, web pages, or in another basic format. Additionally, many device operating systems with integrated pass support allow passes to be opened and installed from the messaging application. As shown in
The telephony endpoint information 130 resource functions to provide information pertaining to the type of device, which can direct the mode of pass delivery. Format and functionality of a pass can vary greatly between operating systems and/or applications. The telephony endpoint information resource enables the right type of pass to be delivered to a specific device. A repository or a database of the telephony endpoint information resource stores communication endpoint data. A communication endpoint preferably has a record stored in a database or distributed through several database tables. An endpoint record preferably includes information pertaining to the type of pass supported by the device. The endpoint record can include the device type, the operating system version, and/or the installed applications (e.g., what supported pass applications are installed). The endpoint record can additionally store information such as a unique identifier of the telephony endpoint, the direct inbound address (e.g., the phone number or short code), carrier, origin properties, a cleanliness/quality score, capability properties (e.g., SMS, MMS, Fax, etc.), status (e.g., mobile, landline, client application type, toll free, etc.), screen resolution and display capabilities, language, service plan (e.g., do they get free SMS/MMS messages), activity patterns (e.g., when is the communication, who does the endpoint communicate with, what does the endpoint communicate, etc.) and/or other suitable properties of a telephony endpoint. Origin properties can include NPs (e.g., area code), NXX (e.g., three digit vanity digits of a number), ISO country codes, region properties and/or any suitable origin properties. The records may include various sets of information depending on the information that is collected. Some destination endpoints may not have sufficient data in which case a default type of pass may be delivered. In some situations, the type of pass may be used to obtain information about the device, which can later be used to deliver a more appropriate form of the pass. The endpoint records are preferably populated by retrieving and/or collecting information about various endpoints. The endpoint record can use various components and processes when collecting and organizing information as in U.S. patent application Ser. No. 14/309,334, filed 19 Jun. 2014, which hereby incorporated in its entirety by this reference. The information can be populated through use of the communication platform, but some or all the information can be populated from outside sources.
The system can additionally include an application content generator 112, which functions to retrieve, format, or relay targeted application content. The media of the application content is retrieved and may be processed into a proper format. The application content generator 112 preferably operates in cooperation with the content messaging API no to translate requests into application content that is preferably executable/actionable on a targeted destination endpoint. The application content generator 112 can be a service running on a server within the communication platform. The application content generator 112 can obtain media from outside resources, which can be hosted on an internet server of the developer or any suitable party. The application content generator 112 may alternatively generate media in response to specified directions.
In one implementation, a developer specifies a pass by listing a URI at which the pass resource can be obtained. The application content generator 112 can be configured to fetch the resource from the URI and, depending on the file/content type (preferably determined by a mime-type), generate the appropriate media format. In one variation, the application content generator 112 is a headless browser that virtually simulates a client browser. The application content generator 112 can additionally be used for media messaging, where the application content generator converts a URI to an image, video, pass, calendar event, or other media format depending on the mime-type. The application content generator can include a module to transform and package content configuration files into a deliverable application content packages. For example, a set of media resources and a JSON file describing a pass can be packaged into a data object with a pass file type. In an alternative implementation, a developer (or more specifically a service or application of a developer) may provide a set of parameters that define intended content of the application content. The parameters used to specify a packaged application content file (one that can be transmitted) can be described as the application content configuration.
The application content generator preferably translates a normalized and standardized content specification into one or more targeted application content types. For example, the targeted application content types may be two similar applications that users commonly use. As another example, the targeted content types can include a first application content type recognized by a first operating system and a second application content type recognized by a second operating system. In some variations, resource identifiers are included in the application content configuration. The application content generator 112 may replace original resource identifiers with proxy system managed resource identifiers. The proxy resource identifiers preferably monitor access and redirect requests to the original resource identifier. By setting targeted application content to direct communications through the system, the system can provide reporting and notifications. For example, such proxy resource identifiers can be used to notify a user if application content was installed or when the user took a particular action.
The application content generator 112 may use one or more various signing mechanisms. Signing of application content may be used in some application types to verify the validity of the content. In one variation, the outside account systems generate and provide signed application content either beforehand (if it's a generic application content for multiple destinations) or at the time of making a request. For example, when wanting to send a digital pass, an application can send a request to the system, and the request may include a signed digital pass for a first application and a signed digital pass for a second application. The system decides if the first or second digital pass should be used. The application content generator 112 may include a storage solution for previously signed application content. As an additional or alternative mechanism, the application content generator 112 may include a credential manager where cryptographic tokens, keys, or credentials can be stored such that the system can sign application content on behalf of an account. In another variation, the system may use one or more cryptographic credentials controlled within the system. In this variation, an account holder may never need to establish credentials with outside channels because the system will sign on behalf of them. In yet another variation, the application content generator 112 may use a signing callback to delegate the signing action to a resource of the account's choosing. For example, when making a request to deliver a pass, the request will include all the normalized parameters as well as a signing callback URI. The system will translate the normalized parameters into a targeted format, and then send this object to the specified signing callback URI. The server or system located at the signing callback URI preferably performs the simple process of signing the targeted application content. This variation, functions to allow the credentials and signing to remain as a responsibility of the account holder, but translation and delivery is managed by the system.
2. Method for Delivering Digital Passes
As shown in
The method may have particular application in the delivery of digital passes across a variety of device and/or target applications as shown in
In the implementation directed at delivering digital passes, the method can include providing a pass messaging API (e.g., S110), receiving a pass delivery request through the pass messaging API (e.g., S120), retrieving device information of a destination specified in the pass delivery request (e.g., S130), selecting the pass format according to the device information (e.g., S140), and sending the pass (e.g., S150). Passes preferably include any digital pass that can be collected with a plurality of different digital passes in a single application or operating service. For example, passes can include tickets, gift cards, coupons, loyalty cards, store payment cards, ID badges, invitations, and other forms of cards and passes that can be used with iOS's Passbook application, Android's Pass Wallet, or other operating systems and/or third party applications. The method abstracts away technical complexities and simplifies the manner in which a pass can be delivered and installed on a device. The method is preferably used by application and service providers/developers to enable easy transport and management of passes of end users. The method uses MMS as a transport protocol for delivering passes, but any suitable communication protocol can be used to deliver the pass media resource, and in some cases may be dynamically selected based on the conditions of the destination device. The method additionally functions to normalize the interactions taken by a developer such that a single interface can be used to deliver passes to a wide variety of device types. Updates and changes to the underlying targeted formats may not impact the use of the normalized interfaces used by account holders. Further, the method can simplify the maintenance process of maintaining multiple applications for different applications.
Block S110, which includes providing an application content messaging API, functions to facilitate programmatic interaction with a service or platform. The application content messaging API is preferably provided by a multitenant communication platform as described above. The communication platform can provide any suitable array of services and functionality including only the content delivery and interaction variations described herein. The application content messaging API may be integrated with a messaging API that enables delivery of text or media. The content delivery features of the API can be automatically invoked through detecting that the media to be delivered is an application content media type. The application content messaging API is preferably a RESTful API but may alternatively be any suitable API such as SOAP. The API preferably works according to an HTTP request and response model. HTTP requests (or any suitable request communication) to the communication platform preferably observe the principles of a RESTful design. RESTful is understood in this document to describe a Representational State Transfer architecture as is known in the art. The application content messaging API can include several resources. An exemplary API call can include an HTTP POST to initiate a new action or modify a resource and an HTTP GET to read data or query information about a resource. The API may alternatively use alternative forms of an interface. In one preferred implementation, the application content messaging API can include a pass API resource that can be used to transmit a pass to at least one destination. An HTTP POST to the pass resource initiates the transmission of a specified pass to a specified destination. An HTTP GET to the pass resource can return a list of the delivered passes. Each transmitted pass is preferably assigned a passID within the communication platform. A transmitted pass has a passID resource that can be used to access specific passes. Since passes are often delivered to a single user. A passID corresponds to a particular instance of a pass transmitted to one user device. The passID resource can be used to query information about a particular pass instance. Pass instance information can include delivery status (was the message received), installation status (was the pass installed by the user), the type of pass, and other suitable information. For example, a developer or application can send a HTTP GET message to a passID resource of “/pass/1234”, and a json response can be returned that specifies if the pass was delivered, if the pass was installed, and if the pass is an iOS, Android, or static pass. A developer can update the pass by submitting an HTTP POST message to “/pass/12434”, and in response, a push notification is delivered to the device to update the pass. In one variation, a message resource can be overloaded and be used for SMS, MMS, passes, and messaging of other media types. The handling of the media can be automatically determined based on the content type specified through a request. The application content messaging API service can include a pass credential database that stores developer credentials of an account that can be used in signing passes. The provided application content messaging API can alternatively use any suitable interface.
Alternatively or additionally the system may include providing a set of application content directives. The application content directives may be programming/scripting primitives, functions, or other programming mechanisms that can be integrated into programmatic actions. For example, a set of telephony instructions may be provided that enable the specification and triggering of application content delivery. Alternatively, a graphical user interface may allow for manual control of the delivery of application content. For example, a user interface may enable an account holder to enter application content parameters, enter one or more destination endpoints, and then send the request.
Block S120, which includes receiving a content delivery request through the application content messaging API, functions to initialize the delivery of application content to a destination endpoint. The content delivery request can be received as a HTTP API request from an application/service of the account. The content delivery request is preferably authenticated through a suitable mechanism as being made on behalf of an account. Multiple accounts make multiple independent content delivery requests. The API request includes at least one destination and an application content configuration. The content delivery request can alternatively be initialized from an application instruction. For example, a telephony application being processed in response to a voice call, SMS message, or MMS message. For example, a telephony application instruction called “pass” could be used to specify a destination and a digital pass configuration for the application content. The method support one or types of application content. In one preferred implementation, the application content is a digital pass and will include pass configuration. Other types of application content may additionally or alternatively include event content, personal health content, home automation content, connected device modules, or other suitable forms of application content. The destination can be a communication endpoint such as a telephone number, a SIP address, application account identifier, and/or any suitable identifier of a destination. The application content configuration can be a parameter that references the content configuration resources to be delivered as shown in the exemplary pass delivery request in
In the case of a digital pass, a pass is generally configured through a data object or collection of data objects defining properties of the pass as well as media resources used in rendering the pass such as images, audio files, video files, business logic, application code, or other suitable resources. The pass configuration resources can specify a web service parameter that determines the web service used in pushing updates to the pass. The pass configuration is preferably specified by a URI of the pass package files. In a preferred implementation, the pass configuration resources are stored on a server of the requesting account holder. Alternatively, the pass configuration resources can be uploaded to the communication platform.
Application content configuration can be a normalized configuration or a destination-formatted configuration. A normalized configuration is a generic normalized format used within the communication platform for defining configuration of the application content. The standardized syntax can be generalized to apply to a variety of application formats. The normalized configuration could be an agreed upon standard, a customized standard within the platform ecosystem, or tied to a destination format of an outside ecosystem (e.g., one of iOS or Android). An exemplary benefit of a normalized configuration is that all accounts conform to one format and the configuration can be reliably translated to other destination formats. Destination formats are preferably the media formats that can be natively interpreted by a device and/or application. The destination format for pass configuration may be a Passbook package or files for iOS, a Google Wallet object or configuration files, a Samsung Wallet pass object or configuration files, or any suitable data object, package, or configuration file(s) for an operating system or specific application. As shown in
The application configuration files referenced/provided by an account are preferably kept in a raw format and are not cryptographically compressed into a package format until prior to delivery. The raw format functions to enable the platform to translate between application content formats. The raw format configuration files are preferably packaged using the certificates obtained in block S122 and as shown in
In some cases, the application content format will include a cryptographically signed application content format. A cryptographically signed application content format will preferably require the use of a key, token, or other credentials to sign the application content. The credentials may be used within the application to authenticate the authenticity of the application content (e.g., should it be installed, is it trusted) but may additionally or alternatively be used to embed private information or to enable other features (e.g., push notifications). Prior to receiving a content delivery request, the method can include receiving the content credentials of the account S122. The content credentials are any of the certificates, keys, or account identifying information of the account that is used when creating an application content object file. Application content package transformation described below can include cryptographically compressing a set of files into a package. An outside party frequently issues the certificate. The outside party is often the operator of the application such as Apple for iOS devices or Google/Samsung for Android devices. The certificate will be used in generating the application content packages. For example, a first account will submit the Apple developer certificate and the Google developer certificate to the communication platform. Those certificates are stored and are used to cryptographically compress pass configuration files into a pass package.
Block S130, which includes retrieving device information of a destination specified in the content delivery request, functions to retrieve data on the device environment of the intended application content. The device information is preferably retrieved from a telephony endpoint information resource as described above. The telephony endpoint information resource preferably maintains a database of information about a plurality of endpoints. The information is preferably obtained from outside sources and through characterizing the endpoints within the communication platform. The device information preferably includes operating system information version data and can additionally include installed application information, capability listing, language, and other information. The application information may include what applications are known to be available but may additionally include preference information related to installed applications. For example, one user may have a first and second application that use different application content formats, but the user more frequently uses the first application. Preferably, the method will result in the transmission of application content in a format recognized by the preferred application. At least the information usable in selecting the right type of destination format of a pass is retrieved.
Use of the method can additionally facilitate the population and vetting of destination endpoint information. In the situations where interactions with the application content can be confirmed, the destination device may be confirmed to support that application content format through detection of related interactions. For example, when proxying a subset of content with a redirection tracking link, the communication platform can confirm when an application content item is installed by a particular destination endpoint. Similarly, when a push notification, update, or other requests are sent to the application content, a response can indicate that the application content was successfully installed and that the destination endpoint at least supports that application content format.
Block S140, which includes selecting an application content format according to the device information, functions to determine the destination format of application content. The device information is used in selecting the type of application content to be delivered. In a first variation, there can be distinct types of destination formats that are mapped to particular device information. For example, there may be an iOS type, an Android type, a default smart-phone type, and a basic type. In the variation of pass content, the iOS type can correspond to a Passbook pass; the Android type can correspond to a Pass Wallet type; the default smart-phone type can correspond to a web application type; and the basic type can correspond to a static image version of the pass. In some cases, there may be two possible types supported by a device such as when a third party pass application and a pass application of the operating system exist on the same device. In this variation, the developer can set preference, the preference of the user can be determined based on usage of the applications, or the system can default to one of the options. Historical usage of previous delivered passes can additionally be used in selecting between multiple options. For example, if a user has never installed a Passbook delivered to a given endpoint, then a static pass can be used in subsequent pass transmissions. Additionally, the delivery mechanism may be dynamically selected. Preferably, MMS is used as a communication channel, but if MMS is not supported on the device, then an SMS message with a link to a pass installation web page, a pass web app, or a static image of a pass can be delivered. Similarly, if a pass application installed on the device includes an API for communicating the pass directly to the app then that communication channel could be used.
Selecting the application content format can additionally include obtaining application content in the application content format S142, which can function to transform the application content resources from one format to a second format. The process of obtaining the application content can include requesting and receiving, generating, translating, and/or any suitable transformation of the original content request to a data object or package that can be delivered to a destination endpoint.
If a destination application content package (one that matches the selected application content format) is not provided by a developer, one is preferably created appropriately for the destination. The transformation can be from a generic format to a destination format in the situation where a generic format is the specified configuration. The transformation can alternatively be from a first destination format to a second destination format. In the variation of transforming from a generic format to a destination format, the information from the generic format is mapped to a template of the destination format. The generic format configuration is preferably a generalized set of parameters and resources that can map to several different types of destination formats. A normalized configuration can include a format version, a content type identifier, a serial number, a user/developer/team identifier, a web service URL, authentication tokens, location markers, a barcode (along with caption, format, encoding and the like), company name, description text, logo text, foreground colors, background colors, content type, header text and labels, various text fields and values, localization of the text fields, media resources (images, video, audio, etc.), and/or any suitable parameters and assets. These parameters can be mapped to corresponding parameters of a template of an application content of the destination format. For example, a title parameter is mapped to a title parameter of a Passbook, the title parameter of a Pass Wallet, the title of the webpage in a web app, and the header text in an image of a static pass. Two different destination formats may not be aesthetically or functionally identical when rendered in the application but they preferably adhere closely to the specifications of the generic format. When transforming from a first destination to a second destination, the parameters of the first original destination format is preferably mapped to parameters of the second destination. The mapping can be stored for each type of supported transformation. Passes will often share common attributes such as titles, descriptions, logos, colors, and the like—and these shared attributes can be mapped between two formats. This type of format transformation is preferably performed when the account specified the pass in the native format of some device. For example, a Passbook pass configuration may be specified by a developer. If the destination device is an Android device, then the Passbook can be transformed into a Pass Wallet or other suitable pass format.
In one variation, the pass configuration will specify a web service URI, push notification parameters, or other network communication parameters to enable remote updates of the pass once the pass is installed. During transformation, the platform preferably replaces the web service URI of the account holder with a web service URI of the communication platform. Accordingly, the method includes proxying at least a subset of content in the application content object, wherein the content is proxied by platform controlled resources. The proxied platform controlled resources are then substituted or otherwise used in a generated application content package. In other words, obtaining the application content includes generating the application content according to the directions of the application content configuration but wherein the application content configuration is modified to include the substitution of the platform controlled resources (e.g., the media and/or references to media). This functions to modify the pass to communicate through the communication platform. As will be described below, this can enable tracking of application content installation as well as enabling a unified interface for updating application content on multiple devices. The web service URI of the account holder can be saved and used later. Preferably, URI references are replaced with tracking URIs that enable the platform to detect when the resource is accessed and what the data and parameters passed in. Functionally, the proxy URI reference redirects to the original URI reference so that normal operation can continue. For example, the communication platform can act as a web service proxy between the application content and the web service of the account holder as shown in
The method can additionally include detecting the application content configuration format and selectively applying a transformation, which functions to enable a content delivery request to specify application content in any allowable format and the application content will automatically be translated into a suitable format. Destination formats can additionally be cached so that previously transformed application content can be reused within the system. The transformation preferably uses the raw application content configuration files provided or referenced by the request. Additionally or alternatively, the pass configuration files can be transformed into the appropriate file type depending on the destination. In some cases, a certificate provided by the account is used to cryptographically compress the pass file assets into an appropriate package. Various approaches may be used to cryptographically sign the content.
In a first variation, content credentials (e.g., cryptographic tokens and keys) are stored and managed within the communication platform as described in block S122 and shown in
In a second variation, obtaining signed application content can include receiving and storing a cryptographically signed application content object of an account and transmitting the stored cryptographically signed application content object if the application content format is the cryptographically signed application content format as shown in
In yet another variation, the method can include receiving a signature callback of an account and transmitting a signature request to the signature callback when the application format is a cryptographically signed application content format as shown in
In yet another variation, the method can include generating platform credentials and using those self managed credentials in signing on behalf of an account as shown in
Block S150, which includes transmitting the application content, functions to send the media in a selected format. The application content is preferably communicated as an MMS message with a mime-type of the file format of the application content package. The communication channel can alternatively be SMS, email, IP messaging, or an application specific communication channel. At the device, the application content is received in a MMS message. The device preferably renders the application content in a media item preview within the messaging application. In the digital pass variation, the pass is shown as a thumbnail preview image of the pass, as shown in
In addition to providing a unified interface to delivering passes and/or application content, the method can additionally provide further application content interaction and information. As a first additional aspect, the method can include tracking of content status S160, which functions to provide programmatic access to the state of a delivered pass. Information about a delivered pass is preferably accessible through the API. The information can include delivery status (was the message received), installation status (was the pass installed by the user), the type of pass (what destination format was used), usage status (was the pass used and/or when), and other suitable types of information. Delivery status is preferably indicative of the MMS delivery status. The installation status can be tracked by the communication platform when the application content contacts the web service of the communication platform or accesses other resources controlled by the communication platform. Proxy resources and URIs may have been used in the application content. Such proxy resources can be monitored and used to measure and report on activity. The type of application content is a description of the format of application content package delivered to a device. Boolean indicators of feature capabilities can additionally be provided which can be based on the destination format and the manner in which the pass configuration was provided by the account holder. As an additional aspect, the content API resources can be used in directing further interaction with the application content. Each application may provide different mechanisms for interacting with application content. In many cases, the applications provide a mechanism for a developer to update application content through a web service. During the transformation of the application content configuration, the communication platform can reconfigure the application content to communicate with the communication platform in place of the web service of the account.
In a first variation, the developer uses an API interface of the communication platform to interact with application content updates. The API interface can allow a developer to specify a push notification to an application, update or modify application content, delete or invalidate an application content item, increment variables of the application content, or make any suitable change to the application content supported by the application. These actions are preferably abstracted so that a single interface can enable these actions across different applications. The communication platform translates the content interaction requests made by an account holder into appropriately formatted network communication to the application or application content. If the destination application of a particular content item does not support an update feature, an appropriate error message or backup action may be issued. In a second variation, the communication platform acts as a content update proxy and relays communications between the application content and a web service of the account holder. The communication platform can be substantially transparent to the web service, and the account holder can maintain full control of the application content as if the communication platform was not used. In another variation, a content delivery request can specify that the communication platform should not be used as an intermediary web service. The application content can be simply installed on the application and then function as a normal pass.
The use of an API interface can additionally provide group or batch interaction capabilities. Since all passes can have information stored in the scope of an account an account can make group calls to a subset of application content in parallel. For example, pass updates can be made to multiple passes by specifying a descriptor that relates to a subset of the passes.
The system and method of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the pass delivery service of the communication platform. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/856,541, filed on 19 Jul. 2013, which is incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
5274700 | Gechter et al. | Dec 1993 | A |
5526416 | Dezonno et al. | Jun 1996 | A |
5581608 | Jreij et al. | Dec 1996 | A |
5598457 | Foladare et al. | Jan 1997 | A |
5934181 | Adamczewski | Aug 1999 | A |
6026440 | Shrader et al. | Feb 2000 | A |
6034946 | Roginsky et al. | Mar 2000 | A |
6094681 | Shaffer et al. | Jul 2000 | A |
6138143 | Gigliotti et al. | Oct 2000 | A |
6185565 | Meubus et al. | Feb 2001 | B1 |
6192123 | Grunsted et al. | Feb 2001 | B1 |
6206564 | Adamczewski | Mar 2001 | B1 |
6223287 | Douglas et al. | Apr 2001 | B1 |
6232979 | Shochet | May 2001 | B1 |
6269336 | Ladd et al. | Jul 2001 | B1 |
6317137 | Rosasco | Nov 2001 | B1 |
6363065 | Thornton et al. | Mar 2002 | B1 |
6373836 | Deryugin et al. | Apr 2002 | B1 |
6425012 | Trovato et al. | Jul 2002 | B1 |
6426995 | Kim et al. | Jul 2002 | B1 |
6430175 | Echols et al. | Aug 2002 | B1 |
6434528 | Sanders | Aug 2002 | B1 |
6445694 | Swartz | Sep 2002 | B1 |
6445776 | Shank et al. | Sep 2002 | B1 |
6459913 | Cloutier | Oct 2002 | B2 |
6493558 | Bernhart et al. | Dec 2002 | B1 |
6496500 | Nance et al. | Dec 2002 | B2 |
6501739 | Cohen | Dec 2002 | B1 |
6501832 | Saylor et al. | Dec 2002 | B1 |
6507875 | Mellen-Garnett et al. | Jan 2003 | B1 |
6574216 | Farris et al. | Jun 2003 | B1 |
6577721 | Vainio et al. | Jun 2003 | B1 |
6600736 | Ball et al. | Jul 2003 | B1 |
6606596 | Zirngibl et al. | Aug 2003 | B1 |
6614783 | Sonesh et al. | Sep 2003 | B1 |
6625258 | Ram et al. | Sep 2003 | B1 |
6625576 | Kochanski et al. | Sep 2003 | B2 |
6636504 | Albers et al. | Oct 2003 | B1 |
6662231 | Drosset et al. | Dec 2003 | B1 |
6704785 | Koo et al. | Mar 2004 | B1 |
6707889 | Saylor et al. | Mar 2004 | B1 |
6711129 | Bauer et al. | Mar 2004 | B1 |
6711249 | Weissman et al. | Mar 2004 | B2 |
6738738 | Henton | May 2004 | B2 |
6757365 | Bogard | Jun 2004 | B1 |
6765997 | Zirngibl et al. | Jul 2004 | B1 |
6768788 | Langseth et al. | Jul 2004 | B1 |
6778653 | Kallas et al. | Aug 2004 | B1 |
6785266 | Swartz | Aug 2004 | B2 |
6788768 | Saylor et al. | Sep 2004 | B1 |
6792086 | Saylor et al. | Sep 2004 | B1 |
6792093 | Barak et al. | Sep 2004 | B2 |
6798867 | Zirngibl et al. | Sep 2004 | B1 |
6807529 | Johnson et al. | Oct 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6819667 | Brusilovsky et al. | Nov 2004 | B1 |
6820260 | Flockhart et al. | Nov 2004 | B1 |
6829334 | Zirngibl et al. | Dec 2004 | B1 |
6831966 | Tegan et al. | Dec 2004 | B1 |
6834265 | Balasuriya | Dec 2004 | B2 |
6836537 | Zirngibl et al. | Dec 2004 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6850603 | Eberle et al. | Feb 2005 | B1 |
6870830 | Schuster et al. | Mar 2005 | B1 |
6873952 | Bailey et al. | Mar 2005 | B1 |
6874084 | Dobner et al. | Mar 2005 | B1 |
6885737 | Gao et al. | Apr 2005 | B1 |
6888929 | Saylor et al. | May 2005 | B1 |
6895084 | Saylor et al. | May 2005 | B1 |
6898567 | Balasuriya | May 2005 | B2 |
6912581 | Johnson et al. | Jun 2005 | B2 |
6922411 | Taylor | Jul 2005 | B1 |
6931405 | El-Shimi et al. | Aug 2005 | B2 |
6937699 | Schuster et al. | Aug 2005 | B1 |
6940953 | Eberle et al. | Sep 2005 | B1 |
6941268 | Porter et al. | Sep 2005 | B2 |
6947417 | Laursen et al. | Sep 2005 | B2 |
6947988 | Saleh | Sep 2005 | B1 |
6961330 | Cattan et al. | Nov 2005 | B1 |
6964012 | Zirngibl et al. | Nov 2005 | B1 |
6970915 | Partovi et al. | Nov 2005 | B1 |
6977992 | Zirngibl et al. | Dec 2005 | B2 |
6985862 | Stroem et al. | Jan 2006 | B2 |
6999576 | Sacra | Feb 2006 | B2 |
7003464 | Ferrans et al. | Feb 2006 | B2 |
7006606 | Cohen et al. | Feb 2006 | B1 |
7010586 | Allavarpu et al. | Mar 2006 | B1 |
7020685 | Chen et al. | Mar 2006 | B1 |
7039165 | Saylor et al. | May 2006 | B1 |
7062709 | Cheung | Jun 2006 | B2 |
7076037 | Gonen et al. | Jul 2006 | B1 |
7076428 | Anastasakos et al. | Jul 2006 | B2 |
7089310 | Ellerman et al. | Aug 2006 | B1 |
7103003 | Brueckheimer et al. | Sep 2006 | B2 |
7103171 | Annadata et al. | Sep 2006 | B1 |
7106844 | Holland | Sep 2006 | B1 |
7111163 | Haney | Sep 2006 | B1 |
7136932 | Schneider | Nov 2006 | B1 |
7140004 | Kunins et al. | Nov 2006 | B1 |
7143039 | Stifelman et al. | Nov 2006 | B1 |
7197331 | Anastasakos et al. | Mar 2007 | B2 |
7197461 | Eberle et al. | Mar 2007 | B1 |
7197462 | Takagi et al. | Mar 2007 | B2 |
7197544 | Wang et al. | Mar 2007 | B2 |
7225232 | Elberse | May 2007 | B2 |
7227849 | Raesaenen | Jun 2007 | B1 |
7260208 | Cavalcanti | Aug 2007 | B2 |
7266181 | Zirngibl et al. | Sep 2007 | B1 |
7269557 | Bailey et al. | Sep 2007 | B1 |
7272212 | Eberle et al. | Sep 2007 | B2 |
7272564 | Phillips et al. | Sep 2007 | B2 |
7277851 | Henton | Oct 2007 | B1 |
7283515 | Fowler | Oct 2007 | B2 |
7286521 | Jackson et al. | Oct 2007 | B1 |
7287248 | Adeeb | Oct 2007 | B1 |
7289453 | Riedel et al. | Oct 2007 | B2 |
7296739 | Mo et al. | Nov 2007 | B1 |
7298732 | Cho | Nov 2007 | B2 |
7298834 | Homeier et al. | Nov 2007 | B1 |
7308085 | Weissman | Dec 2007 | B2 |
7308408 | Stifelman et al. | Dec 2007 | B1 |
7324633 | Gao et al. | Jan 2008 | B2 |
7324942 | Mahowald et al. | Jan 2008 | B1 |
7328263 | Sadjadi | Feb 2008 | B1 |
7330463 | Bradd et al. | Feb 2008 | B1 |
7330890 | Partovi et al. | Feb 2008 | B1 |
7340040 | Saylor et al. | Mar 2008 | B1 |
7349714 | Lee et al. | Mar 2008 | B2 |
7369865 | Gabriel et al. | May 2008 | B2 |
7373660 | Guichard et al. | May 2008 | B1 |
7376223 | Taylor et al. | May 2008 | B2 |
7376586 | Partovi et al. | May 2008 | B1 |
7376733 | Connelly et al. | May 2008 | B2 |
7376740 | Porter et al. | May 2008 | B1 |
7412525 | Cafarella et al. | Aug 2008 | B2 |
7428302 | Zirngibl et al. | Sep 2008 | B2 |
7440898 | Eberle et al. | Oct 2008 | B1 |
7447299 | Partovi et al. | Nov 2008 | B1 |
7454459 | Kapoor et al. | Nov 2008 | B1 |
7457249 | Baldwin et al. | Nov 2008 | B2 |
7457397 | Saylor et al. | Nov 2008 | B1 |
7473872 | Takimoto | Jan 2009 | B2 |
7486780 | Zirngibl et al. | Feb 2009 | B2 |
7496054 | Taylor | Feb 2009 | B2 |
7496188 | Saha et al. | Feb 2009 | B2 |
7500249 | Kampe et al. | Mar 2009 | B2 |
7505951 | Thompson et al. | Mar 2009 | B2 |
7519359 | Chiarulli et al. | Apr 2009 | B2 |
7522711 | Stein et al. | Apr 2009 | B1 |
7536454 | Balasuriya | May 2009 | B2 |
7552054 | Stifelman et al. | Jun 2009 | B1 |
7571226 | Partovi et al. | Aug 2009 | B1 |
7613287 | Stifelman et al. | Nov 2009 | B1 |
7623648 | Oppenheim et al. | Nov 2009 | B1 |
7630900 | Strom | Dec 2009 | B1 |
7631310 | Henzinger | Dec 2009 | B1 |
7644000 | Strom | Jan 2010 | B1 |
7657433 | Chang | Feb 2010 | B1 |
7657434 | Thompson et al. | Feb 2010 | B2 |
7668157 | Weintraub et al. | Feb 2010 | B2 |
7672295 | Andhare et al. | Mar 2010 | B1 |
7675857 | Chesson | Mar 2010 | B1 |
7676221 | Roundtree et al. | Mar 2010 | B2 |
7715547 | Ibbotson et al. | May 2010 | B2 |
7742499 | Erskine et al. | Jun 2010 | B1 |
7779065 | Gupta et al. | Aug 2010 | B2 |
7875836 | Imura et al. | Jan 2011 | B2 |
7882253 | Pardo-Castellote et al. | Feb 2011 | B2 |
7920866 | Bosch et al. | Apr 2011 | B2 |
7926099 | Chakravarty et al. | Apr 2011 | B1 |
7936867 | Hill et al. | May 2011 | B1 |
7962644 | Ezerzer et al. | Jun 2011 | B1 |
7979555 | Rothstein et al. | Jul 2011 | B2 |
8023425 | Raleigh | Sep 2011 | B2 |
8024785 | Andress et al. | Sep 2011 | B2 |
8046823 | Begen et al. | Oct 2011 | B1 |
8069096 | Ballaro et al. | Nov 2011 | B1 |
8081958 | Soederstroem et al. | Dec 2011 | B2 |
8103725 | Gupta et al. | Jan 2012 | B2 |
8126128 | Hicks, III et al. | Feb 2012 | B1 |
8139730 | Palma et al. | Mar 2012 | B2 |
8149716 | Ramanathan et al. | Apr 2012 | B2 |
8150918 | Edelman et al. | Apr 2012 | B1 |
8156213 | Deng et al. | Apr 2012 | B1 |
8175007 | Jain et al. | May 2012 | B2 |
8185619 | Maiocco et al. | May 2012 | B1 |
8196133 | Kakumani et al. | Jun 2012 | B2 |
8233611 | Zettner | Jul 2012 | B1 |
8238533 | Blackwell et al. | Aug 2012 | B2 |
8243889 | Taylor et al. | Aug 2012 | B2 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8295272 | Boni et al. | Oct 2012 | B2 |
8306021 | Lawson et al. | Nov 2012 | B2 |
8315198 | Corneille et al. | Nov 2012 | B2 |
8319816 | Swanson et al. | Nov 2012 | B1 |
8326805 | Arous et al. | Dec 2012 | B1 |
8346630 | McKeown | Jan 2013 | B1 |
8355394 | Taylor et al. | Jan 2013 | B2 |
8417817 | Jacobs | Apr 2013 | B1 |
8429827 | Wetzel | Apr 2013 | B1 |
8438315 | Tao et al. | May 2013 | B1 |
8462670 | Chien et al. | Jun 2013 | B2 |
8509068 | Begall et al. | Aug 2013 | B2 |
8532686 | Schmidt et al. | Sep 2013 | B2 |
8542805 | Agranovsky et al. | Sep 2013 | B2 |
8543665 | Ansari et al. | Sep 2013 | B2 |
8565117 | Hilt et al. | Oct 2013 | B2 |
8577803 | Chatterjee et al. | Nov 2013 | B2 |
8582450 | Robesky | Nov 2013 | B1 |
8594626 | Woodson et al. | Nov 2013 | B1 |
8611338 | Lawson et al. | Dec 2013 | B2 |
8613102 | Nath | Dec 2013 | B2 |
8649268 | Lawson et al. | Feb 2014 | B2 |
8667056 | Proulx et al. | Mar 2014 | B1 |
8675493 | Buddhikot et al. | Mar 2014 | B2 |
8695077 | Gerhard et al. | Apr 2014 | B1 |
8755376 | Lawson et al. | Jun 2014 | B2 |
8806024 | Francis et al. | Aug 2014 | B1 |
8837465 | Lawson et al. | Sep 2014 | B2 |
8838707 | Lawson et al. | Sep 2014 | B2 |
8861510 | Fritz | Oct 2014 | B1 |
8879547 | Maes | Nov 2014 | B2 |
8938053 | Cooke et al. | Jan 2015 | B2 |
8964726 | Lawson et al. | Feb 2015 | B2 |
9014664 | Kim et al. | Apr 2015 | B2 |
9015702 | Bhat | Apr 2015 | B2 |
9344573 | Wolthuis et al. | May 2016 | B2 |
20010038624 | Greenberg et al. | Nov 2001 | A1 |
20010043684 | Guedalia et al. | Nov 2001 | A1 |
20020006124 | Jimenez et al. | Jan 2002 | A1 |
20020006125 | Josse et al. | Jan 2002 | A1 |
20020006193 | Rodenbusch et al. | Jan 2002 | A1 |
20020064267 | Martin et al. | May 2002 | A1 |
20020067823 | Walker et al. | Jun 2002 | A1 |
20020077833 | Arons et al. | Jun 2002 | A1 |
20020126813 | Partovi et al. | Sep 2002 | A1 |
20020136391 | Armstrong | Sep 2002 | A1 |
20020165957 | Devoe et al. | Nov 2002 | A1 |
20020176378 | Hamilton et al. | Nov 2002 | A1 |
20020198941 | Gavrilescu et al. | Dec 2002 | A1 |
20030006137 | Wei et al. | Jan 2003 | A1 |
20030014665 | Anderson et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030026426 | Wright et al. | Feb 2003 | A1 |
20030046366 | Pardikar et al. | Mar 2003 | A1 |
20030051037 | Sundaram et al. | Mar 2003 | A1 |
20030058884 | Kallner et al. | Mar 2003 | A1 |
20030059020 | Meyerson et al. | Mar 2003 | A1 |
20030060188 | Gidron et al. | Mar 2003 | A1 |
20030061317 | Brown et al. | Mar 2003 | A1 |
20030061404 | Atwal et al. | Mar 2003 | A1 |
20030088421 | Maes et al. | May 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030097639 | Niyogi et al. | May 2003 | A1 |
20030103620 | Brown et al. | Jun 2003 | A1 |
20030123640 | Roelle et al. | Jul 2003 | A1 |
20030195990 | Greenblat | Oct 2003 | A1 |
20030196076 | Zabarski et al. | Oct 2003 | A1 |
20030211842 | Kempf et al. | Nov 2003 | A1 |
20030231647 | Petrovykh | Dec 2003 | A1 |
20030233276 | Pearlman et al. | Dec 2003 | A1 |
20040008635 | Nelson et al. | Jan 2004 | A1 |
20040011690 | Marfino et al. | Jan 2004 | A1 |
20040044953 | Watkins et al. | Mar 2004 | A1 |
20040052349 | Creamer et al. | Mar 2004 | A1 |
20040071275 | Bowater et al. | Apr 2004 | A1 |
20040101122 | Da Palma et al. | May 2004 | A1 |
20040102182 | Reith et al. | May 2004 | A1 |
20040165569 | Sweatman et al. | Aug 2004 | A1 |
20040172482 | Weissman et al. | Sep 2004 | A1 |
20040205101 | Radhakrishnan | Oct 2004 | A1 |
20040205689 | Ellens et al. | Oct 2004 | A1 |
20040213400 | Golitsin et al. | Oct 2004 | A1 |
20040218748 | Fisher | Nov 2004 | A1 |
20040228469 | Andrews et al. | Nov 2004 | A1 |
20040240649 | Goel | Dec 2004 | A1 |
20050005200 | Matena et al. | Jan 2005 | A1 |
20050010483 | Ling | Jan 2005 | A1 |
20050021626 | Prajapat et al. | Jan 2005 | A1 |
20050025303 | Hostetler | Feb 2005 | A1 |
20050038772 | Colrain | Feb 2005 | A1 |
20050043952 | Sharma et al. | Feb 2005 | A1 |
20050047579 | Salame | Mar 2005 | A1 |
20050060411 | Coulombe et al. | Mar 2005 | A1 |
20050083907 | Fishler | Apr 2005 | A1 |
20050091336 | DeHamer et al. | Apr 2005 | A1 |
20050091572 | Gavrilescu et al. | Apr 2005 | A1 |
20050125251 | Berger et al. | Jun 2005 | A1 |
20050128961 | Miloslavsky et al. | Jun 2005 | A1 |
20050135578 | Ress et al. | Jun 2005 | A1 |
20050141500 | Bhandari et al. | Jun 2005 | A1 |
20050147088 | Bao et al. | Jul 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050181835 | Lau et al. | Aug 2005 | A1 |
20050228680 | Malik | Oct 2005 | A1 |
20050238153 | Chevalier | Oct 2005 | A1 |
20050240659 | Taylor | Oct 2005 | A1 |
20050243977 | Creamer et al. | Nov 2005 | A1 |
20050246176 | Creamer et al. | Nov 2005 | A1 |
20050289222 | Sahim | Dec 2005 | A1 |
20060008073 | Yoshizawa et al. | Jan 2006 | A1 |
20060015467 | Morken et al. | Jan 2006 | A1 |
20060021004 | Moran et al. | Jan 2006 | A1 |
20060023676 | Whitmore et al. | Feb 2006 | A1 |
20060047666 | Bedi et al. | Mar 2006 | A1 |
20060067506 | Flockhart et al. | Mar 2006 | A1 |
20060098624 | Morgan et al. | May 2006 | A1 |
20060129638 | Deakin | Jun 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060146792 | Ramachandran et al. | Jul 2006 | A1 |
20060146802 | Baldwin et al. | Jul 2006 | A1 |
20060168334 | Potti et al. | Jul 2006 | A1 |
20060203979 | Jennings | Sep 2006 | A1 |
20060209695 | Archer et al. | Sep 2006 | A1 |
20060212865 | Vincent et al. | Sep 2006 | A1 |
20060215824 | Mitby et al. | Sep 2006 | A1 |
20060217823 | Hussey | Sep 2006 | A1 |
20060217978 | Mitby et al. | Sep 2006 | A1 |
20060222166 | Ramakrishna et al. | Oct 2006 | A1 |
20060256816 | Yarlagadda et al. | Nov 2006 | A1 |
20060262915 | Marascio et al. | Nov 2006 | A1 |
20060270386 | Yu et al. | Nov 2006 | A1 |
20060285489 | Francisco et al. | Dec 2006 | A1 |
20070002744 | Mewhinney et al. | Jan 2007 | A1 |
20070036143 | Alt et al. | Feb 2007 | A1 |
20070038499 | Margulies et al. | Feb 2007 | A1 |
20070050306 | McQueen | Mar 2007 | A1 |
20070064672 | Raghav et al. | Mar 2007 | A1 |
20070070906 | Thakur | Mar 2007 | A1 |
20070070980 | Phelps et al. | Mar 2007 | A1 |
20070071223 | Lee et al. | Mar 2007 | A1 |
20070074174 | Thornton | Mar 2007 | A1 |
20070088836 | Tai et al. | Apr 2007 | A1 |
20070091907 | Seshadri et al. | Apr 2007 | A1 |
20070121651 | Casey et al. | May 2007 | A1 |
20070127691 | Lert | Jun 2007 | A1 |
20070127703 | Siminoff | Jun 2007 | A1 |
20070130260 | Weintraub et al. | Jun 2007 | A1 |
20070133771 | Stifelman et al. | Jun 2007 | A1 |
20070147351 | Dietrich et al. | Jun 2007 | A1 |
20070149166 | Turcotte et al. | Jun 2007 | A1 |
20070153711 | Dykas et al. | Jul 2007 | A1 |
20070167170 | Fitchett et al. | Jul 2007 | A1 |
20070192629 | Saito | Aug 2007 | A1 |
20070201448 | Baird et al. | Aug 2007 | A1 |
20070208862 | Fox et al. | Sep 2007 | A1 |
20070232284 | Mason et al. | Oct 2007 | A1 |
20070242626 | Altberg et al. | Oct 2007 | A1 |
20070255828 | Paradise | Nov 2007 | A1 |
20070265073 | Novi et al. | Nov 2007 | A1 |
20070286180 | Marquette et al. | Dec 2007 | A1 |
20070291734 | Bhatia et al. | Dec 2007 | A1 |
20070291905 | Halliday et al. | Dec 2007 | A1 |
20070293200 | Roundtree et al. | Dec 2007 | A1 |
20070295803 | Levine et al. | Dec 2007 | A1 |
20080005275 | Overton et al. | Jan 2008 | A1 |
20080025320 | Bangalore et al. | Jan 2008 | A1 |
20080037715 | Prozeniuk et al. | Feb 2008 | A1 |
20080037746 | Dufrene et al. | Feb 2008 | A1 |
20080040484 | Yardley | Feb 2008 | A1 |
20080052395 | Wright et al. | Feb 2008 | A1 |
20080091843 | Kulkarni | Apr 2008 | A1 |
20080101571 | Harlow et al. | May 2008 | A1 |
20080104348 | Kabzinski et al. | May 2008 | A1 |
20080134049 | Gupta et al. | Jun 2008 | A1 |
20080139166 | Agarwal et al. | Jun 2008 | A1 |
20080146268 | Gandhi et al. | Jun 2008 | A1 |
20080152101 | Griggs | Jun 2008 | A1 |
20080154601 | Stifelman et al. | Jun 2008 | A1 |
20080155029 | Helbling et al. | Jun 2008 | A1 |
20080162482 | Ahern et al. | Jul 2008 | A1 |
20080165708 | Moore et al. | Jul 2008 | A1 |
20080172404 | Cohen | Jul 2008 | A1 |
20080177883 | Hanai et al. | Jul 2008 | A1 |
20080192736 | Jabri et al. | Aug 2008 | A1 |
20080201426 | Darcie | Aug 2008 | A1 |
20080209050 | Li | Aug 2008 | A1 |
20080222656 | Lyman | Sep 2008 | A1 |
20080229421 | Hudis et al. | Sep 2008 | A1 |
20080232574 | Baluja et al. | Sep 2008 | A1 |
20080235230 | Maes | Sep 2008 | A1 |
20080256224 | Kaji et al. | Oct 2008 | A1 |
20080275741 | Loeffen | Nov 2008 | A1 |
20080307436 | Hamilton | Dec 2008 | A1 |
20080310599 | Purnadi et al. | Dec 2008 | A1 |
20080313318 | Vermeulen et al. | Dec 2008 | A1 |
20080316931 | Qiu et al. | Dec 2008 | A1 |
20080317222 | Griggs et al. | Dec 2008 | A1 |
20080317232 | Couse et al. | Dec 2008 | A1 |
20080317233 | Rey et al. | Dec 2008 | A1 |
20090046838 | Andreasson | Feb 2009 | A1 |
20090052437 | Taylor et al. | Feb 2009 | A1 |
20090052641 | Taylor et al. | Feb 2009 | A1 |
20090059894 | Jackson et al. | Mar 2009 | A1 |
20090063502 | Coimbatore et al. | Mar 2009 | A1 |
20090074159 | Goldfarb et al. | Mar 2009 | A1 |
20090075684 | Cheng et al. | Mar 2009 | A1 |
20090083155 | Tudor et al. | Mar 2009 | A1 |
20090089165 | Sweeney | Apr 2009 | A1 |
20090089352 | Davis et al. | Apr 2009 | A1 |
20090089699 | Saha et al. | Apr 2009 | A1 |
20090093250 | Jackson et al. | Apr 2009 | A1 |
20090125608 | Werth et al. | May 2009 | A1 |
20090129573 | Gavan et al. | May 2009 | A1 |
20090136011 | Goel | May 2009 | A1 |
20090170496 | Bourque | Jul 2009 | A1 |
20090171659 | Pearce et al. | Jul 2009 | A1 |
20090171669 | Engelsma et al. | Jul 2009 | A1 |
20090171752 | Galvin et al. | Jul 2009 | A1 |
20090182896 | Patterson et al. | Jul 2009 | A1 |
20090193433 | Maes | Jul 2009 | A1 |
20090217293 | Wolber et al. | Aug 2009 | A1 |
20090220057 | Waters | Sep 2009 | A1 |
20090221310 | Chen et al. | Sep 2009 | A1 |
20090222341 | Belwadi et al. | Sep 2009 | A1 |
20090225748 | Taylor | Sep 2009 | A1 |
20090225763 | Forsberg et al. | Sep 2009 | A1 |
20090228868 | Drukman et al. | Sep 2009 | A1 |
20090232289 | Drucker et al. | Sep 2009 | A1 |
20090235349 | Lai et al. | Sep 2009 | A1 |
20090241135 | Wong et al. | Sep 2009 | A1 |
20090252159 | Lawson et al. | Oct 2009 | A1 |
20090276771 | Nickolov et al. | Nov 2009 | A1 |
20090288165 | Qiu et al. | Nov 2009 | A1 |
20090300194 | Ogasawara | Dec 2009 | A1 |
20090316687 | Kruppa | Dec 2009 | A1 |
20090318112 | Vasten | Dec 2009 | A1 |
20100037204 | Lin et al. | Feb 2010 | A1 |
20100070424 | Monk | Mar 2010 | A1 |
20100071053 | Ansari et al. | Mar 2010 | A1 |
20100082513 | Liu | Apr 2010 | A1 |
20100087215 | Gu et al. | Apr 2010 | A1 |
20100088187 | Courtney et al. | Apr 2010 | A1 |
20100088698 | Krishnamurthy | Apr 2010 | A1 |
20100094758 | Chamberlain et al. | Apr 2010 | A1 |
20100103845 | Ulupinar et al. | Apr 2010 | A1 |
20100115041 | Hawkins et al. | May 2010 | A1 |
20100138501 | Clinton et al. | Jun 2010 | A1 |
20100142516 | Lawson et al. | Jun 2010 | A1 |
20100150139 | Lawson et al. | Jun 2010 | A1 |
20100167689 | Sepehri-Nik et al. | Jul 2010 | A1 |
20100188979 | Thubert et al. | Jul 2010 | A1 |
20100191915 | Spencer | Jul 2010 | A1 |
20100208881 | Kawamura | Aug 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20100217982 | Brown et al. | Aug 2010 | A1 |
20100232594 | Lawson et al. | Sep 2010 | A1 |
20100235539 | Carter et al. | Sep 2010 | A1 |
20100250946 | Korte et al. | Sep 2010 | A1 |
20100251329 | Wei | Sep 2010 | A1 |
20100251340 | Martin et al. | Sep 2010 | A1 |
20100265825 | Blair et al. | Oct 2010 | A1 |
20100281108 | Cohen | Nov 2010 | A1 |
20100291910 | Sanding et al. | Nov 2010 | A1 |
20100312919 | Lee et al. | Dec 2010 | A1 |
20100332852 | Vembu et al. | Dec 2010 | A1 |
20110026516 | Roberts et al. | Feb 2011 | A1 |
20110029882 | Jaisinghani | Feb 2011 | A1 |
20110029981 | Jaisinghani | Feb 2011 | A1 |
20110053555 | Cai et al. | Mar 2011 | A1 |
20110078278 | Cui et al. | Mar 2011 | A1 |
20110081008 | Lawson et al. | Apr 2011 | A1 |
20110083069 | Paul et al. | Apr 2011 | A1 |
20110083179 | Lawson et al. | Apr 2011 | A1 |
20110093516 | Geng et al. | Apr 2011 | A1 |
20110096673 | Stevenson et al. | Apr 2011 | A1 |
20110110366 | Moore et al. | May 2011 | A1 |
20110131293 | Mori | Jun 2011 | A1 |
20110143714 | Keast et al. | Jun 2011 | A1 |
20110145049 | Hertel et al. | Jun 2011 | A1 |
20110151884 | Zhao | Jun 2011 | A1 |
20110167172 | Roach et al. | Jul 2011 | A1 |
20110170505 | Rajasekar et al. | Jul 2011 | A1 |
20110176537 | Lawson et al. | Jul 2011 | A1 |
20110211679 | Mezhibovsky et al. | Sep 2011 | A1 |
20110251921 | Kassaei et al. | Oct 2011 | A1 |
20110253693 | Lyons et al. | Oct 2011 | A1 |
20110255675 | Jasper et al. | Oct 2011 | A1 |
20110258432 | Rao et al. | Oct 2011 | A1 |
20110265172 | Sharma et al. | Oct 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110274111 | Narasappa et al. | Nov 2011 | A1 |
20110276892 | Jensen-Horne et al. | Nov 2011 | A1 |
20110276951 | Jain | Nov 2011 | A1 |
20110280390 | Lawson et al. | Nov 2011 | A1 |
20110283259 | Lawson et al. | Nov 2011 | A1 |
20110289126 | Aikas et al. | Nov 2011 | A1 |
20110299672 | Chiu et al. | Dec 2011 | A1 |
20110310902 | Xu | Dec 2011 | A1 |
20110313950 | Nuggehalli et al. | Dec 2011 | A1 |
20110320449 | Gudlavenkatasiva | Dec 2011 | A1 |
20110320550 | Lawson et al. | Dec 2011 | A1 |
20120000903 | Baarman et al. | Jan 2012 | A1 |
20120011274 | Moreman | Jan 2012 | A1 |
20120017222 | May | Jan 2012 | A1 |
20120023531 | Meuninck et al. | Jan 2012 | A1 |
20120023544 | Li et al. | Jan 2012 | A1 |
20120028602 | Lisi et al. | Feb 2012 | A1 |
20120036574 | Heithcock et al. | Feb 2012 | A1 |
20120039202 | Song | Feb 2012 | A1 |
20120059709 | Lieberman et al. | Mar 2012 | A1 |
20120079066 | Li et al. | Mar 2012 | A1 |
20120083266 | VanSwol et al. | Apr 2012 | A1 |
20120089572 | Raichstein et al. | Apr 2012 | A1 |
20120094637 | Jeyaseelan et al. | Apr 2012 | A1 |
20120110564 | Ran et al. | May 2012 | A1 |
20120114112 | Rauschenberger et al. | May 2012 | A1 |
20120149404 | Beattie et al. | Jun 2012 | A1 |
20120170726 | Schwartz | Jul 2012 | A1 |
20120173610 | Bleau et al. | Jul 2012 | A1 |
20120174095 | Natchadalingam et al. | Jul 2012 | A1 |
20120179907 | Byrd et al. | Jul 2012 | A1 |
20120180021 | Byrd et al. | Jul 2012 | A1 |
20120180029 | Hill et al. | Jul 2012 | A1 |
20120198004 | Watte | Aug 2012 | A1 |
20120201238 | Lawson et al. | Aug 2012 | A1 |
20120208495 | Lawson et al. | Aug 2012 | A1 |
20120221603 | Kothule et al. | Aug 2012 | A1 |
20120226579 | Ha et al. | Sep 2012 | A1 |
20120239757 | Firstenberg et al. | Sep 2012 | A1 |
20120240226 | Li | Sep 2012 | A1 |
20120254828 | Aiylam et al. | Oct 2012 | A1 |
20120281536 | Gell et al. | Nov 2012 | A1 |
20120288082 | Segall | Nov 2012 | A1 |
20120290706 | Lin et al. | Nov 2012 | A1 |
20120304245 | Lawson et al. | Nov 2012 | A1 |
20120304275 | Ji et al. | Nov 2012 | A1 |
20120316809 | Egolf et al. | Dec 2012 | A1 |
20120321070 | Smith et al. | Dec 2012 | A1 |
20130029629 | Lindholm et al. | Jan 2013 | A1 |
20130031158 | Salsburg | Jan 2013 | A1 |
20130036476 | Roever et al. | Feb 2013 | A1 |
20130047232 | Tuchman et al. | Feb 2013 | A1 |
20130054684 | Brazier et al. | Feb 2013 | A1 |
20130058262 | Parreira | Mar 2013 | A1 |
20130067232 | Cheung et al. | Mar 2013 | A1 |
20130067448 | Sannidhanam et al. | Mar 2013 | A1 |
20130097298 | Ting et al. | Apr 2013 | A1 |
20130132573 | Lindblom | May 2013 | A1 |
20130139148 | Berg et al. | May 2013 | A1 |
20130156024 | Burg | Jun 2013 | A1 |
20130179942 | Caplis et al. | Jul 2013 | A1 |
20130201909 | Bosch et al. | Aug 2013 | A1 |
20130204786 | Mattes et al. | Aug 2013 | A1 |
20130212603 | Cooke et al. | Aug 2013 | A1 |
20130244632 | Spence et al. | Sep 2013 | A1 |
20130325934 | Fausak et al. | Dec 2013 | A1 |
20130328997 | Desai | Dec 2013 | A1 |
20130336472 | Fahlgren et al. | Dec 2013 | A1 |
20140058806 | Guenette et al. | Feb 2014 | A1 |
20140064467 | Lawson et al. | Mar 2014 | A1 |
20140072115 | Makagon et al. | Mar 2014 | A1 |
20140101058 | Castel et al. | Apr 2014 | A1 |
20140105372 | Nowack et al. | Apr 2014 | A1 |
20140106704 | Cooke et al. | Apr 2014 | A1 |
20140122600 | Kim et al. | May 2014 | A1 |
20140123187 | Reisman | May 2014 | A1 |
20140126715 | Lum et al. | May 2014 | A1 |
20140129363 | Lorah et al. | May 2014 | A1 |
20140153565 | Lawson et al. | Jun 2014 | A1 |
20140185490 | Holm et al. | Jul 2014 | A1 |
20140254600 | Shibata et al. | Sep 2014 | A1 |
20140258481 | Lundell | Sep 2014 | A1 |
20140269333 | Boerjesson | Sep 2014 | A1 |
20140274086 | Boerjesson et al. | Sep 2014 | A1 |
20140282473 | Saraf et al. | Sep 2014 | A1 |
20140289391 | Balaji et al. | Sep 2014 | A1 |
20140304054 | Orun et al. | Oct 2014 | A1 |
20140355600 | Lawson et al. | Dec 2014 | A1 |
20140372508 | Fausak et al. | Dec 2014 | A1 |
20140372509 | Fausak et al. | Dec 2014 | A1 |
20140372510 | Fausak et al. | Dec 2014 | A1 |
20140373098 | Fausak et al. | Dec 2014 | A1 |
20140379670 | Kuhr | Dec 2014 | A1 |
20150004932 | Kim et al. | Jan 2015 | A1 |
20150004933 | Kim et al. | Jan 2015 | A1 |
20150023251 | Giakoumelis et al. | Jan 2015 | A1 |
20150026477 | Malatack et al. | Jan 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150081918 | Nowack et al. | Mar 2015 | A1 |
20150082378 | Collison | Mar 2015 | A1 |
20150100634 | He et al. | Apr 2015 | A1 |
20150119050 | Liao et al. | Apr 2015 | A1 |
20150181631 | Lee et al. | Jun 2015 | A1 |
20150236905 | Bellan et al. | Aug 2015 | A1 |
20150365480 | Soto et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1684587 | Mar 1971 | DE |
0282126 | Sep 1988 | EP |
1464418 | Oct 2004 | EP |
1522922 | Apr 2005 | EP |
1770586 | Apr 2007 | EP |
2053869 | Apr 2009 | EP |
2134107 | Sep 1999 | ES |
10294788 | Apr 1998 | JP |
2004166000 | Jun 2004 | JP |
2004220118 | Aug 2004 | JP |
2006319914 | Nov 2006 | JP |
9732448 | Sep 1997 | WO |
02087804 | Nov 2002 | WO |
2006037492 | Apr 2006 | WO |
2009018489 | Feb 2009 | WO |
2009124223 | Oct 2009 | WO |
2010037064 | Apr 2010 | WO |
2010040010 | Apr 2010 | WO |
2010101935 | Sep 2010 | WO |
2011091085 | Jul 2011 | WO |
Entry |
---|
Subramanya, et al. “Digital Signatures”, IEEE Potentials, Mar./Apr. 2006, pp. 5-8. |
NPL, “API Monetization Platform”, 2013. |
RFC 3986: Uniform Resource Identifier (URI): Generic Syntax; T. Berners-Lee, R. Fielding, L. Masinter; Jan. 2005; The Internet Society. |
Complaint for Patent Infringement, Telinit Technologies, LLC v. Twilio Inc., dated Oct. 12, 2012. |
S. barakovic and L. Skorin-Kapov. “Survey and Challenges of QoE Management Issues in Wireless Networks”. 2012, pp. 1-29. |
“Ethernet to Token ring Bridge”—Black Box Corporation, Oct. 1999 http://blackboxcanada.com/resource/files/productdetails/17044.pdf. |
Number | Date | Country | |
---|---|---|---|
20150026477 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61856541 | Jul 2013 | US |