Field of the Invention
The present invention relates generally to medical devices, systems and methods, and more specifically to improved devices, systems and methods for creating an ablation zone in tissue. The device may be used to treat atrial fibrillation.
The condition of atrial fibrillation (AF) is characterized by the abnormal (usually very rapid) beating of the left atrium of the heart which is out of synch with the normal synchronous movement (“normal sinus rhythm”) of the heart muscle. In normal sinus rhythm, the electrical impulses originate in the sino-atrial node (“SA node”) which resides in the right atrium. The abnormal beating of the atrial heart muscle is known as fibrillation and is caused by electrical impulses originating instead in the pulmonary veins (“PV”) [Haissaguerre, M. et al., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins, New England J Med., Vol. 339:659-666].
There are pharmacological treatments for this condition with varying degrees of success. In addition, there are surgical interventions aimed at removing the aberrant electrical pathways from the PV to the left atrium (“LA”) such as the Cox-Maze III Procedure [J. L. Cox et al., The development of the Maze procedure for the treatment of atrial fibrillation, Seminars in Thoracic & Cardiovascular Surgery, 2000; 12: 2-14; J. L. Cox et al., Electrophysiologic basis, surgical development, and clinical results of the maze procedure for atrial flutter and atrial fibrillation, Advances in Cardiac Surgery, 1995; 6: 1-67; and J. L. Cox et al., Modification of the maze procedure for atrial flutter and atrial fibrillation. II, Surgical technique of the maze III procedure, Journal of Thoracic & Cardiovascular Surgery, 1995; 2110:485-95]. This procedure is shown to be 99% effective [J. L. Cox, N. Ad, T. Palazzo, et al. Current status of the Maze procedure for the treatment of atrial fibrillation, Seminars in Thoracic & Cardiovascular Surgery, 2000; 12: 15-19] but requires special surgical skills and is time consuming.
There has been considerable effort to copy the Cox-Maze procedure for a less invasive percutaneous catheter-based approach. Less invasive treatments have been developed which involve use of some form of energy to ablate (or kill) the tissue surrounding the aberrant focal point where the abnormal signals originate in the PV. The most common methodology is the use of radio-frequency (“RF”) electrical energy to heat the muscle tissue and thereby ablate it. The aberrant electrical impulses are then prevented from traveling from the PV to the atrium (achieving conduction block within the heart tissue) and thus avoiding the fibrillation of the atrial muscle. Other energy sources, such as microwave, laser, and ultrasound have been utilized to achieve the conduction block. In addition, techniques such as cryoablation, administration of ethanol, and the like have also been used.
There has been considerable effort in developing catheter based systems for the treatment of AF using radiofrequency (RF) energy. One such method is described in U.S. Pat. No. 6,064,902 to Haissaguerre et al. In this approach, a catheter is made of distal and proximal electrodes at the tip. The catheter can be bent in a J shape and positioned inside a pulmonary vein. The tissue of the inner wall of the pulmonary vein (PV) is ablated in an attempt to kill the source of the aberrant heart activity. Other RF based catheters are described in U.S. Pat. No. 6,814,733 to Schwartz et al., U.S. Pat. No. 6,996,908 to Maguire et al., U.S. Pat. No. 6,955,173 to Lesh, and U.S. Pat. No. 6,949,097 to Stewart et al.
Another source used in ablation is microwave energy. One such device is described by Dr. Mark Levinson [(Endocardial Microwave Ablation: A New Surgical Approach for Atrial Fibrillation; The Heart Surgery Forum, 2006] and Maessen et al. [Beating heart surgical treatment of atrial fibrillation with microwave ablation. Ann Thorac Surg 74: 1160-8, 2002]. This intraoperative device consists of a probe with a malleable antenna which has the ability to ablate the atrial tissue. Other microwave based catheters are described in U.S. Pat. No. 4,641,649 to Walinsky; U.S. Pat. No. 5,246,438 to Langberg; U.S. Pat. No. 5,405,346 to Grundy et al.; and U.S. Pat. No. 5,314,466 to Stem et al.
Another catheter based method utilizes the cryogenic technique where the tissue of the atrium is frozen below a temperature of −60 degrees C. This results in killing of the tissue in the vicinity of the PV thereby eliminating the pathway for the aberrant signals causing the AF [A. M. Gillinov, E. H. Blackstone and P. M. McCarthy, Atrial fibrillation: current surgical options and their assessment, Annals of Thoracic Surgery 2002; 74:2210-7]. Cryo-based techniques have been a part of the partial Maze procedures [Sueda T., Nagata H., Orihashi K. et al., Efficacy of a simple left atrial procedure for chronic atrial fibrillation in mitral valve operations, Ann Thorac Surg 1997; 63:1070-1075; and Sueda T., Nagata H., Shikata H. et al.; Simple left atrial procedure for chronic atrial fibrillation associated with mitral valve disease, Ann Thorac Surg 1996; 62: 1796-1800]. More recently, Dr. Cox and his group [Nathan H., Eliakim M., The junction between the left atrium and the pulmonary veins, An anatomic study of human hearts, Circulation 1966; 34:412-422, and Cox J. L., Schuessler R. B., Boineau J. P., The development of the Maze procedure for the treatment of atrial fibrillation, Semin Thorac Cardiovasc Surg 2000; 12:2-14] have used cryoprobes (cryo-Maze) to duplicate the essentials of the Cox-Maze III procedure. Other cryo-based devices are described in U.S. Pat. Nos. 6,929,639 and 6,666,858 to Lafintaine and U.S. Pat. No. 6,161,543 to Cox et al.
More recent approaches for the AF treatment involve the use of ultrasound energy. The target tissue of the region surrounding the pulmonary vein is heated with ultrasound energy emitted by one or more ultrasound transducers. One such approach is described by Lesh et al. in U.S. Pat. No. 6,502,576. Here the catheter distal tip portion is equipped with a balloon which contains an ultrasound element. The balloon serves as an anchoring means to secure the tip of the catheter in the pulmonary vein. The balloon portion of the catheter is positioned in the selected pulmonary vein and the balloon is inflated with a fluid which is transparent to ultrasound energy. The transducer emits the ultrasound energy which travels to the target tissue in or near the pulmonary vein and ablates it. The intended therapy is to destroy the electrical conduction path around a pulmonary vein and thereby restore the normal sinus rhythm. The therapy involves the creation of a multiplicity of lesions around individual pulmonary veins as required. The inventors describe various configurations for the energy emitter and the anchoring mechanisms.
Yet another catheter device using ultrasound energy is described by Gentry et al. [Integrated Catheter for 3-D Intracardiac Echocardiography and Ultrasound Ablation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 51, No. 7, pp 799-807]. Here the catheter tip is made of an array of ultrasound elements in a grid pattern for the purpose of creating a three dimensional image of the target tissue. An ablating ultrasound transducer is provided which is in the shape of a ring which encircles the imaging grid. The ablating transducer emits a ring of ultrasound energy at 10 MHz frequency. In a separate publication [Medical Device Link, Medical Device and Diagnostic Industry, February 2006], in the description of the device, the authors assert that the pulmonary veins can be imaged.
While these devices and methods are promising, improved devices and methods for creating a heated zone of tissue, such as an ablation zone are needed. Furthermore, it would also be desirable if such devices could create single or multiple ablation zones to block abnormal electrical activity in the heart in order to lessen or prevent atrial fibrillation. It would also be desirable if such devices could be used in the presence of blood or other body tissues without coagulating or clogging up the ultrasound transducer. Such devices and methods should be easy to use, minimally invasive, cost effective and simple to manufacture.
Description of Background Art
Other devices based on ultrasound energy to create circumferential lesions are described in U.S. Pat. Nos. 6,997,925; 6,966,908; 6,964,660; 6,954,977; 6,953,460; 6,652,515; 6,547,788; and 6,514,249 to Maguire et al.; U.S. Pat. Nos. 6,955,173; 6,052,576; 6,305,378; 6,164,283; and 6,012,457 to Lesh; U.S. Pat. Nos. 6,872,205; 6,416,511; 6,254,599; 6,245,064; and 6,024,740; to Lesh et al.; U.S. Pat. Nos. 6,383,151; 6,117,101; and WO 99/02096 to Diederich et al.; U.S. Pat. No. 6,635,054 to Fjield et al.; U.S. Pat. No. 6,780,183 to Jimenez et al.; U.S. Pat. No. 6,605,084 to Acker et al.; U.S. Pat. No. 5,295,484 to Marcus et al.; and WO 2005/117734 to Wong et al.
The present invention relates generally to medical devices and methods, and more specifically to medical devices and methods used to deliver energy to tissue as a treatment for atrial fibrillation and other medical conditions.
In a first aspect of the present invention, an ablation system for treating atrial fibrillation in a patient comprises an elongate shaft having a proximal end, a distal end, and lumens therebetween. A housing is adjacent the distal end of the elongate shaft and an energy source is coupled to the housing. The energy source is adapted to deliver energy to a target tissue so as to create a zone of ablation in the target tissue that blocks abnormal electrical activity thereby reducing or eliminating the atrial fibrillation in the patient. The system also has a reflecting element operably coupled with the energy source and adapted to redirect energy emitted from the energy source in a desired direction or pattern.
The housing may be rotatable about its longitudinal axis and the energy may be redirected by the reflecting element in a generally circular pattern. The energy source may be recessed from a distal end of the housing such that the energy source does not contact the target tissue in operation.
The energy source may comprise an ultrasound transducer that is adapted to emit a beam of ultrasound energy. The beam may have a frequency in the range of 5 to 20 MHz and a generator may be electrically coupled with the ultrasound transducer. The generator may provide an excitation voltage of 5 to 300 volts peak-to-peak to the ultrasound transducer. The excitation voltage may have a duty cycle ranging from 0% to 100%, and may have a repetition frequency of about 40 KHz. The energy source may be adapted to deliver one of radiofrequency energy, microwaves, photonic energy, thermal energy, and cryogenic energy. The energy source may comprise a flat face, a concave face or a convex face. The face may be adapted to act as a lens for focusing the energy delivered by the energy source.
The system may comprise a sensor adjacent the energy source and that is adapted to detect relative position of the energy source to the target tissue or characteristics of the target tissue. The sensor may be adapted to detect a gap between a surface of the target tissue and the energy source. The sensor may be adapted to determine characteristics of the target tissue such as tissue thickness or ablation zone depth. The sensor may comprise an ultrasound transducer. The energy source may comprise the same ultrasound transducer as the sensor. Other sensors may comprise an infrared sensor or strain gage.
The reflecting element may be non-expandable. It may redirect the energy in a collimated beam through a portion of the housing or it may redirect the energy in a focused beam that converges toward a focal point or a focal ring, or it may alter the focus of the beam to provide a more uniformly collimated beam. The reflecting element may comprise an angled outer surface that is adapted to redirect the energy. The angle of the outer surface may range from 30 to 60 degrees relative to a longitudinal axis of the housing. The angled face may comprise a flat surface. The reflecting element may comprise a curved outer surface that redirects the energy. The reflecting element may redirect the energy through a sidewall of the housing. The reflecting element may be movable relative to the energy source so that the energy exits the housing at varying angles or so that the energy is reflected outward away from the housing in a circular pattern. The reflecting element may be adapted to redirect the energy from the energy source to form a ring shaped beam of energy. The reflecting element may comprise a liquid-gas interface or a bowl-shaped reflector that is centered around a longitudinal axis of the housing. The liquid-gas interface may comprise a plurality of expandable reflectors positioned adjacent one another. The reflecting element may comprise two reflecting portions each having a different shape or angle relative to the energy source so that the energy is redirected in two or more directions or patterns. The energy may be redirected in a first pattern comprising a collimated beam and the energy may be redirected in a second pattern comprising a focused beam.
The system may further comprise a processor that is adapted to control the energy provided by the energy source based on information received from the sensor. The system may have a lens adjacent the energy source and that is adapted to adjust beam pattern of the energy emitted from the energy source.
The target tissue may comprise left atrial tissue, a pulmonary vein or tissue adjacent thereto. The zone of ablation may comprise a linear ablation path or an arcuate ablation path. The zone of ablation may comprise a transmural ablation zone.
In another aspect of the present invention, a method for treating atrial fibrillation by ablating tissue in a patient comprises providing an ablation system comprising an elongate shaft having a distal tip assembly. The distal tip assembly comprises an energy source and a reflecting element. The distal tip assembly is advanced adjacent the tissue and energy is delivered from the energy source to the tissue. Energy from the energy source is reflected off of the reflecting element so as to redirect the energy emitted from the energy source in a desired direction or pattern. A partial or complete zone of ablation is created in the tissue, thereby blocking abnormal electrical activity and reducing or eliminating the atrial fibrillation.
The step of advancing the distal tip assembly may comprise passing the distal tip through an atrial septal wall. The energy source may comprise an ultrasound transducer and the step of delivering the energy may comprise delivering a beam of ultrasound. The beam may comprise a frequency in the range of 5 to 20 MHz. Delivering the energy may comprise providing an excitation voltage ranging from 5 to 300 volts peak-to-peak to the ultrasound transducer. Delivering energy may comprise delivering one of radiofrequency energy, microwaves, photonic energy, thermal energy and cryogenic energy.
The step of reflecting the energy may comprise redirecting the energy in a collimated beam of energy or focusing the energy so that it converges toward a focal point or a focal ring. Reflecting the energy may comprise redirecting the energy so that it exits a sidewall of the housing. The reflecting element may be non-expandable or it may comprise an expandable member such as a balloon or collapsible nested reflectors (e.g. similar to a collapsible parabolic dish used in satellite communications), and the step of reflecting the energy may comprise expanding the expandable member. Reflecting the energy may comprise moving the reflecting element relative to the housing such as by rotating it. The reflecting element may comprise a first reflecting portion and a second reflecting portion. The energy reflected off the first portion may be redirected in a first direction, and the energy reflected off the second portion may be redirected in a second direction different than the first direction.
The zone of ablation may comprise a linear or arcuate zone of ablation. The step of creating the zone of ablation may comprise encircling the zone of ablation around a pulmonary vein or left atrial tissue. The zone of ablation may comprise a transmural lesion.
The method may further comprise cooling the energy source with a cooling fluid. The system may further comprise a sensor that is adapted to sense relative position of the energy source to the target tissue or characteristics of the target tissue. The ablation system may further comprise a processor, and the method may further comprise controlling energy delivery based on information from the sensor.
The method may comprise sensing a gap distance between the energy source and a surface of the tissue with the sensor. The method may also include sensing characteristics of the tissue such as tissue thickness or depth of the ablation zone, with the sensor. The sensor may comprise an ultrasound sensor and the energy source may also comprise the same ultrasound transducer. The method may include switching modes between delivering energy with the ultrasound transducer and sensing tissue characteristics with the ultrasound transducer sensor.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
The following description of preferred embodiments of the invention is not intended to limit the invention to these embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The Energy Source.
As shown in
The energy source 12 is preferably an ultrasound transducer that is preferably made of a piezoelectric material such as PZT (lead zirconate titanate) or PVDF (polyvinylidine difluoride), or any other suitable ultrasound beam emitting material. The transducer may further include coating layers such as a thin layer of a metal. Some suitable transducer coating metals may include gold, stainless steel, nickel-cadmium, silver, plastic, metal-filled graphite, a metal alloy, and any other suitable material that functions to increase the efficiency of coupling of the energy beam 20 into the surrounding fluid 28 or performs any other suitable functions. The transducer is preferably a cylindrical transducer, as shown in
As shown in
When energized with an electrical pulse or pulse train by the electrical attachment 14 and/or 14′, the energy source 12 emits an energy beam 20 (such as a sound wave). The properties of the energy beam 20 are determined by the characteristics of the energy source 12, the matching layer, the backing (described below), and the electrical pulse from electrical attachment 14. These elements determine the frequency, bandwidth, and amplitude of the energy beam 20 (such as a sound wave) propagated into the tissue. As shown in
The shape of the lesion or ablation zone 278 formed by the energy beam 20 depends on the characteristics of suitable combination factors such as the energy beam 20, the energy source 12 (including the material, the geometry, the portions of the energy source 12 that are energized and/or not energized, etc.), the matching layer, the backing, the electrical pulse from electrical attachment 14 (including the frequency, the voltage, the duty cycle, the length of the pulse, etc.), and the characteristics of target tissue that the beam 20 contacts and the length of contact or dwell time. These characteristics can be changed based on the information detected by the sensor (as described below), thereby changing the physical characteristics of the lesion.
The housing 16 also functions to provide a barrier between the face of the energy source 12 and blood or tissue. When fluid flow is incorporated, the fluid may flow past the energy source thereby preventing blood from coagulating thereon. In preferred embodiments, the coolant flows past the energy source at approximately 1 ml/minute, but may be increased or decreased as desired. Additionally, since the energy source is disposed in the housing, the energy source will not directly contact tissue, thereby also preventing coagulation on the energy source.
Additional details on the energy source, energy source configurations, the housing and adjacent components are disclosed in U.S. patent application Ser. No. 12/480,256 and Ser. No. 12/482,640, the entire contents of which are incorporated herein by reference.
The Reflecting Surface.
As shown in
In the first variation of the reflecting surface 100, the energy beam 20 exiting from the housing 16 is preferably directed along an ablation path such that it propagates into tissue. As the energy beam 20 propagates into the tissue along the ablation path, it preferably provides a partial or complete zone of ablation along the ablation path. The zone of ablation along the ablation path preferably has any suitable geometry to provide therapy, such as providing a conduction block for treatment of atrial fibrillation in a patient. The zone of ablation along the ablation path may alternatively provide any other suitable therapy for a patient. A linear ablation path is preferably created by moving the system 10, and the energy source 12 within it, in an X, Y, and/or Z direction. A generally circular or elliptical ablation path is preferably created by rotating the energy source 12 about an axis. In a first version, the reflecting surface 100 is preferably rotated within the housing 16 and about the longitudinal axis of the housing 16, such that as the energy source 12 is energized and emitting the energy beam 20, the beam will be reflected out of the housing in 360 degrees. The energy beam 20 that is redirected by the reflecting surface 100 preferably exits a side portion of the housing though a window located around the circumference of the distal tip assembly 16. The window is preferably made of a material that is transparent to ultrasound waves such as a poly 4-methyl, 1-pentene (PMP) material or may alternatively be an open window. In a second version, the entire system 10 will rotate, rotating the energy beam 20 that exits from at least one single portion of the housing 16. The system 10 is preferably rotated about the longitudinal axis of the housing 16, but may alternatively be rotated about an axis off set from the longitudinal axis of the housing 16. In this version, the energy beam 20 preferably sweeps a generally circular path.
In a second variation, as shown in
In the second variation of the reflecting surface 100, the energy beam 20 exiting from the housing 16 is preferably directed along an ablation path such that it propagates into tissue. As the energy beam 20 propagates into the tissue along the ablation path, it preferably provides a partial or complete zone of ablation along the ablation path. A linear ablation path is preferably created by moving the system 10, and the energy source 12 within it, in an X, Y, and/or Z direction. Alternatively, a generally circular or elliptical ablation path is preferably created by rotating the housing 16 about an axis. In a first version, the housing 16 is preferably rotated about its longitudinal axis. Because the energy beam 20 is redirected by the reflecting surface 100, as shown in
In a third variation, as shown in
In the third variation of the reflector 100, the energy beam 20 exiting from the housing 16 is preferably ring-shaped, as shown in
The Sensor.
As shown in
The sensor is preferably the same transducer as the transducer of the energy source 12 operating in a different mode (such as A-mode, defined below), but may alternatively be a separate ultrasound transducer or an additional sensor 40′ as shown in
In the variations of the system 10 wherein the sensor is the same transducer as the transducer of the energy source 12 operating in a different mode (such as A-mode), the sensor preferably utilizes a pulse of ultrasound of short duration, which is generally not sufficient for heating of the tissue. This is a simple ultrasound imaging technique, referred to in the art as A Mode, or Amplitude Mode imaging. As shown in
The Processor.
The energy delivery system 10 of the preferred embodiments also includes a processor, coupled to the sensor 40 and to the electrical attachment 14, that controls the electrical pulse delivered to the electrical attachment 14 and may modify the electrical pulse delivered based on the information from the sensor 40. The processor is preferably a conventional processor or logic machine that can execute computer programs including a microprocessor or integrated circuit, but may alternatively be any suitable device to perform the desired functions.
The processor preferably receives information from the sensor such as information related to the gap distance, the thickness of the tissue targeted for ablation, the characteristics of the ablated tissue, and any other suitable parameter or characteristic. Based on this information, the processor converts this information into a gap distance, a thickness of the tissue targeted for ablation, a characteristic of the ablated tissue, and any other suitable parameter or characteristic and/or controls the energy beam 20 emitted from the energy source 12 by modifying the electrical pulse sent to the energy source 12 via the electrical attachment 14 such as the frequency, the voltage, the duty cycle, the length of the pulse, and/or any other suitable parameter. The processor preferably also controls the energy beam 20 by controlling which portions of the energy source 12 are energized and/or at which frequency, voltage, duty cycle, etc. different portions of the energy source 12 are energized. Additionally, the processor may further be coupled to a fluid flow controller. The processor preferably controls the fluid flow controller to increase or decrease fluid flow based on the sensor detecting characteristics of the ablated tissue, of the unablated or target tissue, and/or any other suitable condition.
By controlling the energy beam 20 (and/or the cooling of the targeted tissue), the shape of the ablation zone 278 is controlled. For example, the depth 288 of the ablation zone is preferably controlled such that a transmural (through the thickness of the tissue) lesion is achieved. Additionally, the processor preferably functions to minimize the possibility of creating a lesion beyond the targeted tissue, for example, beyond the outer atrial wall. If the sensor detects the lesion extending beyond the outer wall of the atrium or that the depth of the lesion has reached or exceeded a preset depth, the processor preferably turns off the generator and/or ceases to send electrical pulses to the electrical attachment(s) 14. Additionally, if the sensor detects, for example, that the system 10 is not centered with respect to the pulmonary vein PV by detecting the distance of the target tissue with respect to the energy source and/or intended ablation path, the processor may either turn off the generator and/or cease to send electrical pulses to the electrical attachment(s) 14, may alter the pulses sent to the electrical attachment, and/or may alter the operator or motor drive unit to reposition the system with respect to the target tissue.
Additional Elements.
As shown in
The energy delivery system 10 of the preferred embodiments may also include a lens or mirror, operably coupled to the energy source 12, that functions to provide additional flexibility in adjusting the beam pattern of the energy beam 20. The lens is preferably a standard acoustic lens, but may alternatively be any suitable lens to adjust the energy beam 20 in any suitable fashion. The lens may be used to focus or defocus the energy beam. For example, an acoustic lens could create a beam that is more uniformly collimated, such that the minimum beam width D1 approaches the diameter D of the energy source 12. This will provide a more uniform energy density in the ablation window, and therefore more uniform lesions as the tissue depth varies within the window. A lens could also be used to move the position of the minimum beam width D1, for those applications that may need either shallower or deeper lesion. This lens could be fabricated from plastic or other material with the appropriate acoustic properties, and bonded to the face of energy source 12. Alternatively, the energy source 12 itself may have a geometry such that it functions as a lens, or the matching layer or coating of the energy source 12 may function as a lens.
Although omitted for conciseness, the preferred embodiments include every combination and permutation of the various energy sources 12, electrical attachments 14, energy beams 20, sensors 40, and processors.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claim, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 61/082,064, filed Jul. 18, 2008, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4641649 | Walinsky et al. | Feb 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4757820 | Itoh | Jul 1988 | A |
4858613 | Francis et al. | Aug 1989 | A |
5010886 | Passafaro et al. | Apr 1991 | A |
5024234 | Leary et al. | Jun 1991 | A |
5029588 | Yock et al. | Jul 1991 | A |
5246438 | Langberg | Sep 1993 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5405346 | Grundy et al. | Apr 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5647367 | Lum et al. | Jul 1997 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5735811 | Brisken | Apr 1998 | A |
6012457 | Lesh | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6052576 | Lambourg | Apr 2000 | A |
6064902 | Haissaguerre et al. | May 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6237605 | Vaska et al. | May 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6245095 | Dobak, III et al. | Jun 2001 | B1 |
6251129 | Dobak, III et al. | Jun 2001 | B1 |
6251130 | Dobak, III et al. | Jun 2001 | B1 |
6254599 | Lesh et al. | Jul 2001 | B1 |
6261312 | Dobak, III et al. | Jul 2001 | B1 |
6277116 | Utely et al. | Aug 2001 | B1 |
6305378 | Lesh | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6379378 | Werneth et al. | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6387089 | Kreindel et al. | May 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6468296 | Dobak, III et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475231 | Dobak, III et al. | Nov 2002 | B2 |
6478811 | Dobak, III et al. | Nov 2002 | B1 |
6478812 | Dobak, III et al. | Nov 2002 | B2 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6491039 | Dobak, III | Dec 2002 | B1 |
6491716 | Dobak, III et al. | Dec 2002 | B2 |
6500121 | Slayton et al. | Dec 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6502576 | Lesh | Jan 2003 | B1 |
6514244 | Pope et al. | Feb 2003 | B2 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6529756 | Phan et al. | Mar 2003 | B1 |
6533804 | Dobak, III et al. | Mar 2003 | B2 |
6540771 | Dobak, III et al. | Apr 2003 | B2 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6546935 | Hooven | Apr 2003 | B2 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6551349 | Lasheras et al. | Apr 2003 | B2 |
6576001 | Werneth et al. | Jun 2003 | B2 |
6585752 | Dobak, III et al. | Jul 2003 | B2 |
6592576 | Andrews et al. | Jul 2003 | B2 |
6595989 | Schaer | Jul 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602276 | Dobak, III et al. | Aug 2003 | B2 |
6605084 | Acker et al. | Aug 2003 | B2 |
6607502 | Maguire et al. | Aug 2003 | B1 |
6607527 | Ruiz et al. | Aug 2003 | B1 |
6613046 | Jenkins et al. | Sep 2003 | B1 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6645144 | Wen et al. | Nov 2003 | B1 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6645202 | Pless et al. | Nov 2003 | B1 |
6648908 | Dobak, III et al. | Nov 2003 | B2 |
6652515 | Maguire et al. | Nov 2003 | B1 |
6652517 | Hall et al. | Nov 2003 | B1 |
6666614 | Fechter et al. | Dec 2003 | B2 |
6666858 | Lafontaine | Dec 2003 | B2 |
6669655 | Acker et al. | Dec 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6676688 | Dobak, III et al. | Jan 2004 | B2 |
6676689 | Dobak, III et al. | Jan 2004 | B2 |
6676690 | Werneth | Jan 2004 | B2 |
6685732 | Kramer | Feb 2004 | B2 |
6689128 | Sliwa, Jr. et al. | Feb 2004 | B2 |
6692488 | Dobak, III et al. | Feb 2004 | B2 |
6695873 | Dobak, III et al. | Feb 2004 | B2 |
6701931 | Sliwa, Jr. et al. | Mar 2004 | B2 |
6702842 | Dobak, III et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6719755 | Sliwa, Jr. et al. | Apr 2004 | B2 |
6745080 | Koblish | Jun 2004 | B2 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6758847 | Maguire | Jul 2004 | B2 |
6763722 | Fjield et al. | Jul 2004 | B2 |
6780183 | Jimenez, Jr. et al. | Aug 2004 | B2 |
6786218 | Dobak, III | Sep 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6805129 | Pless et al. | Oct 2004 | B1 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6840936 | Sliwa, Jr. et al. | Jan 2005 | B2 |
6858026 | Sliwa, Jr. et al. | Feb 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6872205 | Lesh et al. | Mar 2005 | B2 |
6889694 | Hooven | May 2005 | B2 |
6893438 | Hall et al. | May 2005 | B2 |
6896673 | Hooven | May 2005 | B2 |
6899710 | Hooven | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6904303 | Phan et al. | Jun 2005 | B2 |
6905494 | Yon et al. | Jun 2005 | B2 |
6905498 | Hooven | Jun 2005 | B2 |
6905509 | Dobak, III et al. | Jun 2005 | B2 |
6908464 | Jenkins et al. | Jun 2005 | B2 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6929639 | Lafontaine | Aug 2005 | B2 |
6932811 | Hooven et al. | Aug 2005 | B2 |
6949095 | Vaska et al. | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6953460 | Maguire et al. | Oct 2005 | B2 |
6954977 | Maguire et al. | Oct 2005 | B2 |
6955173 | Lesh | Oct 2005 | B2 |
6964660 | Maguire et al. | Nov 2005 | B2 |
6966908 | Maguire et al. | Nov 2005 | B2 |
6971394 | Sliwa, Jr. et al. | Dec 2005 | B2 |
6974454 | Hooven | Dec 2005 | B2 |
6984233 | Hooven | Jan 2006 | B2 |
6997925 | Maguire et al. | Feb 2006 | B2 |
7001378 | Yon et al. | Feb 2006 | B2 |
7001415 | Hooven | Feb 2006 | B2 |
7044135 | Lesh | May 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7142905 | Slayton et al. | Nov 2006 | B2 |
7275450 | Hirai et al. | Oct 2007 | B2 |
7285116 | de la Rama et al. | Oct 2007 | B2 |
7306593 | Keidar et al. | Dec 2007 | B2 |
7393325 | Barthe et al. | Jul 2008 | B2 |
9033885 | Thapliyal et al. | May 2015 | B2 |
9220924 | Thapliyal et al. | Dec 2015 | B2 |
20010025185 | Laufer et al. | Sep 2001 | A1 |
20020045895 | Sliwa et al. | Apr 2002 | A1 |
20020065512 | Fjield et al. | May 2002 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020128636 | Chin et al. | Sep 2002 | A1 |
20030036729 | Jang | Feb 2003 | A1 |
20030050630 | Mody et al. | Mar 2003 | A1 |
20030050631 | Mody et al. | Mar 2003 | A1 |
20030060815 | Lalonde et al. | Mar 2003 | A1 |
20030125726 | Maguire et al. | Jul 2003 | A1 |
20030153907 | Suorsa | Aug 2003 | A1 |
20030163128 | Patil et al. | Aug 2003 | A1 |
20030176816 | Maguire et al. | Sep 2003 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040176757 | Sinelnikov | Sep 2004 | A1 |
20050043726 | McHale et al. | Feb 2005 | A1 |
20050049582 | DeBenedictis et al. | Mar 2005 | A1 |
20050070961 | Shin et al. | Mar 2005 | A1 |
20050131468 | Echt et al. | Jun 2005 | A1 |
20050165388 | Bhola | Jul 2005 | A1 |
20050256518 | Rama et al. | Nov 2005 | A1 |
20060122508 | Slayton et al. | Jun 2006 | A1 |
20060155269 | Warnking | Jul 2006 | A1 |
20060287650 | Cao et al. | Dec 2006 | A1 |
20070015998 | Yock et al. | Jan 2007 | A1 |
20070016072 | Grunwald et al. | Jan 2007 | A1 |
20070027445 | Gifford et al. | Feb 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070265609 | Thapliyal et al. | Nov 2007 | A1 |
20070265610 | Thapliyal et al. | Nov 2007 | A1 |
20070299496 | Podmore et al. | Dec 2007 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080077200 | Bendett et al. | Mar 2008 | A1 |
20080161785 | Crowe et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
10037660 | Feb 2002 | DE |
2540348 | Jan 2013 | EP |
2307098 | Mar 2015 | EP |
2005137916 | Jun 2005 | JP |
2007152094 | Jun 2007 | JP |
WO 9902096 | Jan 1999 | WO |
WO-03053259 | Jul 2003 | WO |
WO 2004110258 | Dec 2004 | WO |
WO 2004110258 | Aug 2005 | WO |
WO 2005102199 | Nov 2005 | WO |
WO 2005117734 | Dec 2005 | WO |
WO 2006044662 | Apr 2006 | WO |
WO 2006044662 | Jul 2006 | WO |
WO-2010009472 | Jan 2010 | WO |
WO 2010120883 | Oct 2010 | WO |
WO 2010120883 | Mar 2011 | WO |
Entry |
---|
Svilainis, L., and G. Motiejūnas. “Power amplifier for ultrasonic transducer excitation.” Ultragarsas “Ultrasound” 58.1 (2016): 30-36. |
Duty cycle. (n.d.) Mosby's Medical Dictionary, 8th edition. (2009). Retrieved Mar. 16, 2017 from http://medical-dictionary.thefreedictionary.com/duty+cycle. |
“A new treatment for atrial fibrillation?” Medical Device & Diagnostic Industry, Feb. 2006, p. 30; retrieved from the Internet: <<http://www.devicelink.com/mddi/archive/06/02/013.html>>, 2 pages total. |
Bushberg et al., The Essential Physics of Medical Imaging, 2nd edition, Lippincott Williams & Wilkins 2002, p. 491. |
Cox et al. “Current status of the Maze procedure for the treatment of atrial fibrillation,” Semin Thorac Cardiovasc Surg. Jan. 2000;12(1):15-9. |
Cox et al., “Electrophysiologic basis, surgical development, and clinical results of the maze procedure for atrial flutter and atrial fibrillation,” Adv Card Surg. 1995;6:1-67. |
Cox et al., “Modification of the maze procedure for atrial flutter and atrial fibrillation. II, Surgical technique of the maze III procedure,” J Thorac Cardiovasc Surg. Aug. 1995;110(2):485-95. |
Cox et al., “The development of the Maze procedure for the treatment of atrial fibrillation,” Semin Thorac Cardiovasc Surg. Jan. 2000;12(1):2-14. |
Gentry et al., “Integrated Catheter for 3-D Intracardiac Echocardiography and Ultrasound Ablation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, No. 7, pp. 799-807. |
Gill, “How to perform pulmonary vein isolation,” Europace, 2004; 6 (2): 83-91; retrieved from the Internet: <<http://europace.oxfordjournals.org/cgi/reprint/6/2/83>>. |
Gillinov et al., Atrial fibrillation: current surgical options and their assessment,: Annals of Thoracic Surgery 2002; 74:2210-7; retrieved from the Internet: <<http://ats.ctsnetjournals.org/cgi/reprint/74/6/2210>>. |
Haissaguerre et al., “Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins,” New England J Med., Sep. 3, 1998; 339(10):659-666; retrieved from the Internet: <<http://content.nejm.org/cgi/reprint/339/10/659.pdf>>. |
Levinson, “Endocardial Microwave Ablation: A New Surgical Approach for Atrial Fibrillation”; The Heart Surgery Forum, 2006. |
Maessen et al., “Beating heart surgical treatment of atrial fibrillation with microwave ablation,” Ann Thorac Surg 2002;74:S1307-S1311; retrieved from the Internet: <<http://ats.ctsnetjournals.org/cgi/reprint/74/4/S1307>>. |
Nathan et al., “The junction between the left atrium and the pulmonary veins, An anatomic study of human hearts,” Circulation 1966; 34:412-422; retrieved from the Internet: <<http://circ.ahajournals.org/cgi/reprint/34/3/412>>. |
Sueda et al., “Efficacy of a simple left atrial procedure for chronic atrial fibrillation in mitral valve operations,” Ann Thorac Surg 1997; 63:1070-1075. |
Sueda et al., “Simple left atrial procedure for chronic atrial fibrillation associated with mitral valve disease,” Ann Thorac Surg 1996; 62: 1796-1800. |
Ter Haar, “Acoustic Surgery”, Physics Today, 2001; 54(12):29-34. |
U.S. Appl. No. 12/480,256, filed Jun. 8, 2009; first named inventor: Hira V. Thapliyal. |
U.S. Appl. No. 12/483,174, filed Jun. 11, 2009; first named inventor: Hira V. Thapliyal. |
U.S. Appl. No. 12/482,640, filed Jun. 11, 2009; first named inventor: Hira V. Thapliyal. |
International Search Report and Written Opinion of PCT Application No. PCT/US2009/051164, dated Nov. 17, 2009, 8 pages total. |
U.S. Appl. No. 13/630,674, filed Sep. 28, 2012, Thapliyal et al. |
European search report and opinion dated Sep. 17, 2012 for EP Application No. 09798856.2. |
European search report dated Oct. 30, 2012 for EP Application No. 12186735.2. |
Office action dated Sep. 4, 2013 for U.S. Appl. No. 13/630,674. |
Office action dated Feb. 28, 2014 for U.S. Appl. No. 13/630,674. |
Office action dated Jul. 24, 2014 for U.S. Appl. No. 13/630,674. |
Office action dated Dec. 17, 2014 for U.S. Appl. No. 13/630,674. |
Office action dated Jul. 23, 2015 for U.S. Appl. No. 13/630,674. |
Office action dated Jun. 6, 2016 for U.S. Appl. No. 13/630,674. |
Office Action dated Jun. 26, 2017 for U.S. Appl. No. 13/630,674. |
Ehrenstein, D. New technique maps the body electric. Science 276. No. 5313 (1997): 681-681. |
“Office action dated Jan. 25, 2018 for U.S. Appl. No. 13/630,674.” |
U.S. Appl. No. 13/630,674 Office Action dated Sep. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20100016762 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61082064 | Jul 2008 | US |