System and method for delivering expanding trocar through a sheath

Information

  • Patent Grant
  • 9364259
  • Patent Number
    9,364,259
  • Date Filed
    Friday, April 9, 2010
    14 years ago
  • Date Issued
    Tuesday, June 14, 2016
    8 years ago
Abstract
A trocar has an elongate body and a tissue-penetrating tip. One or more radially extending blade(s) are provided near the tissue-penetrating tip of the trocar body so that they automatically open as the trocar is advanced through tissue. The blades will enlarge the penetration which was formed by the tip of the trocar.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical apparatus and methods. In particular, the present invention relates to a penetration device, such as a trocar, having the ability to expand the size of a tissue penetration as the tool is advanced.


A number of endoscopic and other intraluminal procedures require penetration from one body lumen into an adjacent body lumen. For example, a number of procedures may be performed by entering the gastrointestinal (GI) tract, particularly the stomach, duodenum, small intestine and large intestine, and passing tools from the GI tract into adjacent organs, ducts, cavities and structures, such as the bile duct, the pancreatic duct, the gallbladder, urinary tract, a cyst or pseudocyst, abscess, and the like. Since the endoscopes and other endoscopic access tools are generally small with narrow working channels, typically 2 to 7 millimeters in diameter, any penetrating tools which are advanced through such working channels will necessarily be small and provide for only small tissue penetrations.


Depending on the procedure being performed, it is often desirable to place a catheter, a stent, a drainage tube, a fiducial marker implant, an electrode or a like second diagnostic or therapeutic device, through the penetrations that have been formed. Often, placement of such tools and implants requires a relatively large diameter hole to allow subsequent passage of the second device. In many cases the desired diameter of the second device is larger than the maximum diameter of the penetrating member and the insertion of the second device is often difficult. Commonly, the lumen walls include muscle layers and significant force is required to advance the catheter from one lumen to the next. Such advancement can be more difficult and may fail if the size of the penetrating element is increased in order to provide a larger penetration.


For these reasons, it would be desirable to provide trocars or other tissue-penetrating devices which can be used intraluminally to penetrate from one body lumen into an adjacent lumen where the size of the penetration can easily be enlarged. In particular, it would be desirable to provide such tools and methods where a relatively low force is needed to advance the tool through the tissue while still achieving a relatively large penetration. Such tools and methods should be compatible with standard endoscopes and other sheaths which can be used to access a target location in the gastrointestinal tract or other body lumen. At least some of these objectives will be met by the inventions described hereinbelow.


2. Description of the Background Art


Trocars and other medical access devices having deployable cutting blades are described in U.S. Pat. Nos. 5,372,588; 5,620,456; 6,402,770; 7,429,264; and US 2008/0045989. Other disclosures of interest are found in U.S. Pat. Nos. 5,224,945; 5,697,944; 6,371,964; 7,303,531; and US 2006/0190021.


BRIEF SUMMARY OF THE INVENTION

The present invention provides improved trocars and other tissue-penetrating devices which can be used with endoscopes and other viewing scopes and sheaths. The trocars can be advanced from a working channel or other lumen or passage of the sheath and penetrated through an adjacent luminal wall and, typically, further into and through the wall of an adjacent body structure or organ. Thus, the trocars are particularly useful for providing intraluminal access from one body lumen or cavity into an adjacent body lumen or cavity. The trocars will most often be used for forming penetrations and passages from a gastrointestinal structure, such as the esophagus, the stomach, the duodenum, the small intestine, and the large intestine, into an adjacent structure or organ, such as the bile duct, the pancreatic duct, the gallbladder, the urinary tract, a cyst or pseudocyst, an abscess, and the like. The trocars of the present invention are useful in any medical procedure where an elongate, flexible tool is advanced through an access sheath to a remote location in order to penetrate tissue.


Trocars according to the present invention are intended for use with a catheter, endoscope, or delivery sheath having a working channel or other lumen. Such trocars usually comprise an elongate body which can be advanced through the sheath working channel or lumen, typically having a flexible body with a stiffness typical for standard endoscopic biopsy needles. At least one blade will be disposed near a distal end of the elongate body where the blade is biased to open from a radially retracted configuration to a radially extended configuration. In particular, the blade will be radially retracted when the distal end of the elongate body is disposed within the sheath lumen, and the blade will open radially when the distal end is advanced distally beyond the end of the sheath lumen. Usually, the blade(s) will be adapted to close radially in response to being drawn back into the sheath lumen. In this way, the trocar body can have a relatively small width or diameter, typically in the range from 0.4 mm to 5 mm, while the extended blades can significantly increase the size of the tissue penetration which is formed when the distal end of the trocar is advanced through tissue. Moreover, as the blade is biased to open as the distal end of the trocar is extended beyond the working channel of the sheath, there is no need for the physician to separately actuate the blade and instead the larger cutting size is automatically provided as the penetration is being performed.


Usually, at least a portion of the forward edge or surface of the blade will be sharpened or otherwise adapted so that it can penetrate tissue. Typically, conventional honing or other physical modification of the blade will be sufficient to provide the cutting surface. Alternatively, electrodes or other electrosurgical carriers, wires, metalized surfaces, or the like, may be provided on the blade in order to enhance the cutting effect when connected to a suitable electrosurgical power supply. In contrast, the trailing or proximal side of the blade will usually be blunt or atraumatic in order to avoid accidental cutting or tissue trauma when the trocar is pulled back. A blunt trailing edge is further desirable when the blade is configured to close as it is drawn proximally to engage a leading edge of the working channel of the endoscope or sheath.


In other embodiments, the blade can be configured to be actively closed by the physician after the tissue penetration is complete. For example, a tether or other structure for pulling the blade back to close the blade against the bias may be provided.


In most embodiments, the elongate body of the trocar will also have a fixed tissue-penetrating element at its distal tip to permit or facilitate advancement through tissue. The tissue-penetrating tip may comprise a sharpened tip, a chamfered tip, an electrosurgical tip, or any other common tip or modification which allows the body to be advanced forwardly to penetrate tissue. In other embodiments, however, it may be possible to provide a body having a blunt or atraumatic tip where the deployed blade provides the entire cutting surface for the trocar.


In some embodiments, the trocar will include only a single blade which is pivotally mounted so that opposite ends of the blade rotate to open from opposite sides of the elongate body. Such embodiments may be biased using a coiled spring disposed about an axis or pivot point of the blade. Such rotating single blades can be used together with a tether for tensioning the blade to rotate and collapse or otherwise close the blade back into the elongate body. Alternatively, the blade and sheath can be configured such that drawing the trocar proximally back into the sheath automatically retracts the blade.


In other embodiments, the trocar may comprise at least two biased blades attached to a single pivot point to open in a scissors-like pattern where each of the blades has a sharpened distal edge to cut tissue as the elongate body is advanced. In still other embodiments, two biased blades may be attached to pivot points on opposite sides of the elongate body where the blades are parallel to each other when retracted within the elongate body. In further embodiments, two blades may be attached at axially spaced-apart locations on the elongate body and/or in rotationally spaced apart locations. In addition to planar blades, the blades may comprise pre-shaped wires or other shape-memory components which radially expand outwardly when released from constraint. In such cases, the wires are typically not pivoted in any way. In still other embodiments, the blades may be conformed circumferentially over the surface of the elongate body and attached with an axial line hinge with springs to radially open or unfold the blades.


The present invention further provides methods for accessing internal body organs. The methods of the present invention comprise introducing a delivery sheath through the working channel of an endoscope to a location adjacent to a target location on a wall of an organ or lumen. A trocar is then advanced from a lumen in the delivery sheath so that the trocar penetrates the organ or lumen wall at the target location. As the trocar is advanced, a blade is released from constraint so that the blade opens radially as the trocar exits the lumen. The released, expanded blade may thus enlarge the penetration which was made by the distal tip of the trocar as it was advanced. In many cases, the endoscope, viewing scope, or other delivery sheath from which the trocar was advanced will be introduced through a natural body orifice, such as the mouth, anus, ureter, and/or vagina and cervix, allowing for the performance of a natural-orifice translumenal endoscopic surgery (NOTES) which avoids the need to form a percutaneous tissue penetration. In addition, translumenal interventional endoscopy procedures can be accomplished including transoral or transanal access of a cyst, pseudocyst or abscess for drainage into the GI tract, transoral or transanal access of the gallbladder, bile duct and pancreatic duct for drainage into the GI tract, transoral access of the heart from the esophagus for delivery of drugs, placement of electrodes, and ablation of tissue, transoral access of the pancreas, gallbladder, kidneys, liver, spleen and any other organs or structure adjacent to the GI lumen to deliver fiducial markers, drugs, and tissue ablation from the GI tract.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a trocar having an extendable blade constructed in accordance with the principles of the present invention.



FIGS. 2 and 2A illustrate a first particular construction of the actuable blade of the trocar of the present invention.



FIG. 3 illustrates a second particular embodiment of an actuable blade constructed in accordance with the principles of the present invention.



FIGS. 4A and 4B illustrate yet another embodiment of the actuable blade mechanism of the trocars of the present invention, where FIG. 4A is a cross-sectional view of a distal section of the trocar and FIG. 4B is an end view of the distal section.



FIGS. 5A-5C are similar to FIGS. 4A and 4B, except that the blade structure has been actuated by advancing the trocar out the distal end of a constraining sheath.



FIGS. 6A and 6B illustrate a blade assembly where three blades are axially hinged in order to open in a radial or petal pattern.



FIGS. 7A and 7B illustrate a deformable wire blade structure on a trocar according to the present invention.



FIGS. 8A and 8B illustrate axially and radially spaced-apart blades on a trocar in accordance with the principles of the present invention.



FIGS. 9A to 9C illustrate a single asymmetric blade embodiment of the trocar of the present invention.



FIGS. 10A-10D illustrate use of the trocar of FIGS. 4A/B and 5A/B for penetrating a tissue wall in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a trocar 10 constructed in accordance with the principles of the present invention comprises an elongate body 12 having a distal end 14 and a proximal end 16. An actuable blade structure 18 is disposed near the distal end 14 of elongate body 12, where the blade is shown in a radially expanded configuration in broken line.


The length and dimensions of the elongate body 12 will depend on the intended use of the trocar. Typically for gastrointestinal procedures, elongate body 12 of the trocar will be sized to be introduced through an endoscope and will have a length in the range from 50 cm to 500 cm and a width or diameter in the range from 0.4 mm to 5 mm. The elongate body may be a solid wire or have a hollow structure with an axial passage or lumen. The body may be formed from polymers, such as polytetrafluoroethylene (PTFE), nylon, poly(ether ether ketone) (PEEK) or polyethyleneterephthalate (PET), or metals, such as stainless steel, elgiloy, or nitinol. In certain instances, it may be desirable to reinforce the body with braid, helical wires, or other conventional components. In other cases, the body may be formed from different materials over its proximal length and its distal length. For example, the proximal length may be formed from metal hypotube or wire while the distal, more flexible portion is formed from a polymer tube, optionally a reinforced polymer tube. In other embodiments, the elongate body 12 may be straight and relatively rigid over its entire length.


The elongate body 12 will usually have a tissue-penetrating tip 20 at its distal end, where the tip may be conical, chamfered, electrosurgical, or be provided in any conventional form for a trocar. For example, the tip might have a multi-faceted face with sharpened edges for penetrating, as is commonly employed with tissue-penetrating trocars (as shown in FIGS. 9A and 9B).


Referring now to FIG. 2, a first embodiment of the blade assembly 18 will be described. A single blade 24 is mounted within the elongate body 12 on a pivot 26. A pair of opposed windows 28 allow the blade to rotate or pivot between an axially aligned configuration, as shown in broken line, where the blade is fully refracted within the peripheral envelope of the trocar, and a radially extended configuration shown in full line where a leading, cutting edge 30 of the blade is disposed toward the distal end 14. The blade is biased by a coil spring 32 (a leaf or other spring could also be used) which is attached at one end to the blade and the other end to the fixed pivot so that, in the absence of constraint, the blade will open to its extended configuration as shown in full line. Thus, when constrained within a sheath or working channel or other lumen of an endoscope, the blade will be held in its retracted or constrained configuration, as shown in broken line. When advanced from the sheath or working channel, however, the spring 32 will automatically open the blade so that the cutting edge 30 is exposed to the tissue as the trocar is advanced. It is also possible for the spring to only partially open the blade once the trocar is advanced from the sheath, the initial tissue interference of cutting edge 30 then causing the blade to fully open and penetrate through the tissue layers. After use, the blade can be closed by pulling proximally on a tether 34 to close the blade down to its retracted (broken line) configuration.


Alternately the blade and constraining sheath can be configured such that proximal movement of the trocar into the constraining catheter results in automatic retraction of the blade. In this instance, as shown in FIG. 2A, the lower rear edge of the blade 24′ has a protrusion 36 that contacts the constraining catheter as the trocar is moved proximally relative to the sheath, thus rotating the blade against the spring force into the refracted configuration. A relief or cut out 38 may also be formed on the upper rear edge of blade 24′ to prevent the rear edge of the blade from interfering with the catheter as it is retracted. Alternatively, the upper rear edge of the blade may be sharpened (in addition to or in place of the cut out 38). Drawing the trocar into the constraining catheter or sheath causes the protrusion 36 to contact the leading edge of the constraining catheter/sheath rotating the blade counter-clockwise (as seen in FIG. 2). The sharpened edge will cut any tissue that may be between it and the trocar, allowing it to retract fully.


Referring now to FIG. 3, a further embodiment of the blade structure 18 includes a pair of opposed blades 40 and 42. Each of the blades 40, 42 is mounted on a pivot 44 and 46, respectively, and includes a spring 48 and 50 which will open the blade from the retracted or constrained configuration shown in broken line to the extended configuration shown in full line. Each blade has a cutting edge 52 which is exposed to tissue as the trocar 10 is advanced distally. The blades each have a tether 34 to permit the blades to be retracted after use. Alternately these blades can be configured such that the tip of the retracted blade is positioned distal to the pivot, requiring a proximal rotation of the blade into the extended orientation. In this configuration the trocar can automatically retract as the trocar is pulled distally into the restraining catheter.


In the embodiments of both FIGS. 2 and 3, the blades will not automatically retract as the trocar 10 is pulled back into a sheath or endoscope. Thus the tethers are needed to retract the blades prior to pulling the trocars back into the sheath. In other embodiments, however, as described below, the blades will automatically retract as the trocar is pulled back into a sheath. The first such structure is illustrated in FIGS. 2A, 4A/B and 5A/B.


The trocar 10 of FIGS. 4A and 4B includes blades 60 and 62 mounted on a single common pivot 64. Each blade has a coil spring 66 attached to the blade and pivot in order to open the blade, as shown in FIGS. 5A and 5B, in the absence of constraint. As shown in FIGS. 4A and 4B, the blades 60 and 62 are constrained within a sheath 70 having a passage or channel 72 through which the trocar can be advanced or retracted. So long as the blades 60 and 62 of the trocar 10 are within the lumen 72 of the sheath 70, the blades remain constrained as shown in FIGS. 4A and 4B. By advancing the distal end 14 of the trocar further from the distal opening of the sheath 70, as shown in FIGS. 5A and 5B, the blades 60 and 62 will automatically open under the spring bias so that leading cutting edges 74 and 76 are exposed to tissue as the trocar is advanced therethrough. In this embodiment, the blades will automatically retract and close as the trocar 10 is pulled back within the sheath 70 since the distal end of the sheath will engage the back sides of the blades to close the blades as they reenter the sheath. Leading cutting edges 74 and 76 are shown being perpendicular to the axis of the trocar, however it may be desirable for cutting edges to be tapered or angled proximally to enhance the ease of the puncture. In this case, the lateral most tip of the open blade is positioned proximal to the inboard tip of the blade as shown in FIG. 5C (blades 60′ and 62′).


A variety of other biased blade constructions may be employed. For example, as shown in FIGS. 6A and 6B, multiple blades 80 may be mounted on axially aligned pivots 82 so the blades open or unfold in a petal-like manner as they rotate about the longitudinal axes of the pivots 82. Springs may be provided in order to unfold the blades 80 and tethers may be provided to close the blades.


In still further embodiments, the blades may comprise deformable structures rather than pivoted structures. For example, as shown in FIGS. 7A and 7B, a plurality of wire blades 90 will be provided on the elongate body 12 of the trocar 10. The blades may be formed from a resilient material, such as spring stainless steel, Nitinol, or other shape memory materials, and may be heat set to have the open, cutting configuration as shown in FIG. 7B. Thus, in the absence of constraint, the blades will “spring” to their extended cutting configuration. The blades may be retracted by drawing them into the constraining sheath 92, shown in broken line in FIG. 7A.


Referring to FIGS. 8A and 8B, a plurality of blades may be provided in a variety of configurations. As seen in FIG. 8A, blades 100 and 102 may be axially spaced-apart over the elongate body 12, while as shown in FIG. 8B, the blades may be radially spaced-apart in configurations other than 180° opposition.


A trocar 120 having a single, asymmetrically attached blade 122 is illustrated in FIGS. 9A-9C. The trocar 120 has a faceted tip 124 and a trough or recess 126 which receives the pivotally mounted blade 122. The blade 122 will be biased, typically by a resilient structure such as a coil or leaf spring (not shown), to open at an angle greater than 90° so that the blade is “swept back” as it is held by engaging the rear edge of the recess 126. The blade 122 has a honed edge 128, as best seen in FIG. 9C so that it will cut a wide incision through tissue as the trocar is advanced. The blade 122 may be closed by refraction back into the lumen or passage of the deployment sheath.


Referring now to FIGS. 10A-10D, use of the trocar 10 of FIGS. 4A/4B and 5A/5B for penetrating a tissue layer TL will be described. Initially, trocar 10 is advanced to the tissue layer with the blades retracted within sheath 70 and the penetrating tip 20 of the trocar engaged against the tissue layer. The blades 60 and 62 extend radially as the trocar 10 is advanced from the sheath 70, as shown in FIG. 10B. The penetrating tip 20 of the trocar will have entered the tissue as the blades extend and the cutting edges 74 and 76 engage the tissue. The trocar continues to be advanced through the tissue layer TL until it passes out the other side, as shown in FIG. 10C. It can be seen that the penetration P formed has a width which is much greater than would have been obtained using the trocar 10 without the blades 60 and 62. Before withdrawing the sheath 70, it can be advanced over the sheath to close the blades, as shown in FIG. 10D, and the sheath can be pulled back through the penetration P without exposing the blades unintentionally.


While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims
  • 1. A method for accessing an internal body organ, said method comprising: introducing an endoscope to a location adjacent to a wall of the organ; andadvancing a trocar from a lumen in the endoscope, wherein the trocar penetrates the wall of the organ to access a cyst, pseudocyst, abscess, gall bladder, urinary bladder, bile duct, or pancreatic duct;wherein advancing the trocar releases a blade having a sharpened distal edge from constraint within the lumen so that the blade opens radially to an angle greater than 90 degrees from an elongate body of the trocar as the trocar exits the lumen such that the sharpened distal edge of the blade enlarges the penetration made by a distal tip of the trocar.
  • 2. The method as in claim 1, wherein the endoscope is introduced through a natural body orifice, wherein the endoscope is flexible.
  • 3. The method as in claim 2, wherein the endoscope is introduced transorally or transnasally into a GI tract to access the cyst, pseudocyst, or abscess.
  • 4. The method as in claim 2, wherein the endoscope is introduced transorally or transnasally into a GI tract to access the gall bladder or the urinary bladder.
  • 5. The method as in claim 1, wherein the lumen comprises a working channel of the endoscope.
  • 6. The method as in claim 1, wherein the trocar has a tissue-penetrating tip and forms the penetration as it is advanced through the organ wall.
  • 7. The method as in claim 1, wherein the blade is biased to spring open as the constraint is removed.
  • 8. The method as in claim 1, wherein a single blade opens.
  • 9. The method as in claim 2, wherein the endoscope is introduced transorally or transnasally into a GI tract to access the bile duct or pancreatic duct.
  • 10. The method as in claim 2, wherein the endoscope is introduced transorally or transnasally into a GI tract to access an organ or structure in an abdominal, pelvic or thoracic cavity adjacent to the GI tract.
  • 11. The method as in claim 1, wherein the endoscope comprises a catheter with a length from 20 cm to 500 cm and a diameter from 1 mm to 5 mm.
  • 12. The method as in claim 1, wherein the blade is contained within the elongate body of the trocar in a closed position.
  • 13. The method as in claim 1, wherein the blade opening radially comprises rotating the blade about a pivot point relative to the elongate body of the trocar.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Patent Application No. 61/171,228, filed on Apr. 21, 2009, which is incorporated herein by reference.

US Referenced Citations (331)
Number Name Date Kind
2127903 Bowen Aug 1938 A
3039468 Price Jun 1962 A
3717151 Collett Feb 1973 A
3874388 King et al. Apr 1975 A
3970090 Loiacono Jul 1976 A
4173392 Ekinaka et al. Nov 1979 A
4235238 Ogiu et al. Nov 1980 A
4580568 Gianturco Apr 1986 A
4587972 Morantte, Jr. May 1986 A
4608965 Anspach, Jr. et al. Sep 1986 A
4610242 Santangelo et al. Sep 1986 A
4705040 Mueller et al. Nov 1987 A
4790813 Kensey Dec 1988 A
4869263 Segal et al. Sep 1989 A
4896678 Ogawa Jan 1990 A
4917097 Proudian et al. Apr 1990 A
4920967 Cottonaro et al. May 1990 A
4950285 Wilk Aug 1990 A
4973317 Bobrove Nov 1990 A
4990139 Jang Feb 1991 A
5024655 Freeman et al. Jun 1991 A
5061275 Wallsten et al. Oct 1991 A
5064435 Porter Nov 1991 A
5180392 Skeie et al. Jan 1993 A
5183464 Dubrul et al. Feb 1993 A
5197971 Bonutti Mar 1993 A
5207229 Winters May 1993 A
5209727 Radisch, Jr. et al. May 1993 A
5211651 Reger et al. May 1993 A
5221258 Shturman Jun 1993 A
5224945 Pannek, Jr. Jul 1993 A
5226421 Frisbie et al. Jul 1993 A
5234447 Kaster et al. Aug 1993 A
5246007 Frisbie et al. Sep 1993 A
5257990 Nash Nov 1993 A
5258000 Gianturco Nov 1993 A
5261920 Main et al. Nov 1993 A
5275610 Eberbach Jan 1994 A
5275611 Behl Jan 1994 A
5282824 Gianturco Feb 1994 A
5290249 Foster et al. Mar 1994 A
5304198 Samson Apr 1994 A
5330497 Freitas et al. Jul 1994 A
5353785 Wilk Oct 1994 A
5368595 Lewis Nov 1994 A
5372588 Farley et al. Dec 1994 A
5381788 Matula et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5395349 Quiachon et al. Mar 1995 A
5425739 Jessen Jun 1995 A
5443484 Kirsch et al. Aug 1995 A
5458131 Wilk Oct 1995 A
5462561 Voda Oct 1995 A
5470337 Moss Nov 1995 A
5489256 Adair Feb 1996 A
5495851 Dill et al. Mar 1996 A
5496311 Abele et al. Mar 1996 A
5520700 Beyar et al. May 1996 A
5531699 Tomba et al. Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5588432 Crowley Dec 1996 A
5601588 Tonomura et al. Feb 1997 A
5603698 Roberts et al. Feb 1997 A
5620456 Sauer et al. Apr 1997 A
5620457 Pinchasik et al. Apr 1997 A
5632717 Yoon May 1997 A
5662664 Gordon et al. Sep 1997 A
5688247 Haindl et al. Nov 1997 A
5697944 Lary Dec 1997 A
5709671 Stephens et al. Jan 1998 A
5709707 Lock et al. Jan 1998 A
5713870 Yoon Feb 1998 A
5713874 Ferber Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5797906 Rhum et al. Aug 1998 A
5817062 Flom et al. Oct 1998 A
5827276 LeVeen et al. Oct 1998 A
5830222 Makower Nov 1998 A
5843050 Jones et al. Dec 1998 A
5843116 Crocker et al. Dec 1998 A
5843127 Li Dec 1998 A
5853421 Leschinsky et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855576 LeVeen et al. Jan 1999 A
5857999 Quick et al. Jan 1999 A
5858006 Van der Aa et al. Jan 1999 A
5882340 Yoon Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5897567 Ressemann et al. Apr 1999 A
5935107 Taylor et al. Aug 1999 A
5944738 Amplatz et al. Aug 1999 A
5951576 Wakabayashi Sep 1999 A
5951588 Moenning Sep 1999 A
5957363 Heck Sep 1999 A
5993447 Blewett et al. Nov 1999 A
6007522 Agro et al. Dec 1999 A
6007544 Kim Dec 1999 A
6015431 Thornton et al. Jan 2000 A
6017352 Nash et al. Jan 2000 A
6022359 Frantzen Feb 2000 A
6036698 Fawzi et al. Mar 2000 A
6074416 Berg et al. Jun 2000 A
6080174 Dubrul et al. Jun 2000 A
6099547 Gellman et al. Aug 2000 A
6113609 Adams Sep 2000 A
6113611 Allen et al. Sep 2000 A
6190353 Makower et al. Feb 2001 B1
6228039 Binmoeller May 2001 B1
6231515 Moore et al. May 2001 B1
6231587 Makower May 2001 B1
6241757 An et al. Jun 2001 B1
6241758 Cox Jun 2001 B1
6251084 Coelho Jun 2001 B1
6264675 Brotz Jul 2001 B1
6277137 Chin Aug 2001 B1
6290485 Wang Sep 2001 B1
6309415 Pulnev et al. Oct 2001 B1
6319272 Brenneman et al. Nov 2001 B1
6322495 Snow et al. Nov 2001 B1
6325798 Edwards et al. Dec 2001 B1
6334446 Beyar Jan 2002 B1
6348064 Kanner Feb 2002 B1
6358264 Banko Mar 2002 B2
6371964 Vargas et al. Apr 2002 B1
6371965 Gifford et al. Apr 2002 B2
6391036 Berg et al. May 2002 B1
6402770 Jessen Jun 2002 B1
6432040 Meah Aug 2002 B1
6436119 Erb et al. Aug 2002 B1
6447524 Knodel et al. Sep 2002 B1
6454765 LeVeen et al. Sep 2002 B1
6475168 Pugsley, Jr. et al. Nov 2002 B1
6475185 Rauker et al. Nov 2002 B1
6475222 Berg et al. Nov 2002 B1
6485496 Suyker et al. Nov 2002 B1
6488653 Lombardo Dec 2002 B1
6503247 Swartz et al. Jan 2003 B2
6508252 Berg et al. Jan 2003 B1
6520908 Ikeda et al. Feb 2003 B1
6535764 Imran et al. Mar 2003 B2
6540670 Hirata et al. Apr 2003 B1
6547776 Gaiser et al. Apr 2003 B1
6575967 LeVeen et al. Jun 2003 B1
6610100 Phelps et al. Aug 2003 B2
6614595 Igarashi Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6620122 Stinson et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626919 Swanstrom Sep 2003 B1
6632197 Lyon Oct 2003 B2
6635068 Dubrul et al. Oct 2003 B1
6638213 Ogura et al. Oct 2003 B2
6645205 Ginn Nov 2003 B2
6656182 Hayhurst Dec 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6669708 Nissenbaum et al. Dec 2003 B1
6682536 Vardi et al. Jan 2004 B2
6712757 Becker et al. Mar 2004 B2
6736828 Adams et al. May 2004 B1
6746472 Frazier et al. Jun 2004 B2
6746489 Dua et al. Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6752965 Levy Jun 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6835189 Musbach et al. Dec 2004 B2
6902535 Eberhart et al. Jun 2005 B2
6916332 Adams Jul 2005 B2
6921361 Suzuki et al. Jul 2005 B2
6921387 Camrud Jul 2005 B2
6942678 Bonnette et al. Sep 2005 B2
6960233 Berg et al. Nov 2005 B1
6966917 Suyker et al. Nov 2005 B1
6974467 Gonzales, Jr. Dec 2005 B1
6979290 Mourlas et al. Dec 2005 B2
7018401 Hyodoh et al. Mar 2006 B1
7056325 Makower et al. Jun 2006 B1
7077850 Kortenbach Jul 2006 B2
7131948 Yock Nov 2006 B2
7134438 Makower et al. Nov 2006 B2
7150723 Meguro et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7156857 Pasricha et al. Jan 2007 B2
7169161 Bonnette et al. Jan 2007 B2
7175646 Brenneman et al. Feb 2007 B2
7182771 Houser et al. Feb 2007 B1
7204842 Geitz Apr 2007 B2
7273451 Sekine et al. Sep 2007 B2
7303531 Lee et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7361180 Saadat et al. Apr 2008 B2
7377897 Kunkel et al. May 2008 B1
7390323 Jang Jun 2008 B2
7416554 Lam et al. Aug 2008 B2
7429264 Melkent et al. Sep 2008 B2
7534247 Ortiz May 2009 B2
7591828 Ortiz Sep 2009 B2
7614999 Gellman et al. Nov 2009 B2
7628768 Faul et al. Dec 2009 B2
7637919 Ishikawa et al. Dec 2009 B2
7731693 Melsheimer Jun 2010 B2
7753872 Cragg et al. Jul 2010 B2
7758565 Melsheimer Jul 2010 B2
7785275 Melsheimer Aug 2010 B2
7828814 Brenneman et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7914552 Shelton Mar 2011 B2
7942890 D'Agostino et al. May 2011 B2
7998155 Manzo Aug 2011 B2
8016782 Brenneman et al. Sep 2011 B2
8034063 Binmoeller Oct 2011 B2
8088171 Brenneman Jan 2012 B2
8187289 Tacchino et al. May 2012 B2
8197498 Coleman et al. Jun 2012 B2
8226592 Brenneman et al. Jul 2012 B2
8236014 Brenneman et al. Aug 2012 B2
20010011170 Davison et al. Aug 2001 A1
20020004663 Gittings et al. Jan 2002 A1
20020183715 Mantell et al. Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20030014063 Houser et al. Jan 2003 A1
20030032975 Bonutti Feb 2003 A1
20030040803 Rioux et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030050665 Ginn Mar 2003 A1
20030069533 Kakutani et al. Apr 2003 A1
20030073960 Adams et al. Apr 2003 A1
20030073979 Naimark et al. Apr 2003 A1
20030078604 Walshe Apr 2003 A1
20030088256 Conston et al. May 2003 A1
20030093118 Ho et al. May 2003 A1
20030109900 Martinek Jun 2003 A1
20030114796 Schmidt Jun 2003 A1
20030120292 Park et al. Jun 2003 A1
20030163017 Tam et al. Aug 2003 A1
20030236536 Grigoryants et al. Dec 2003 A1
20040019322 Hoffmann Jan 2004 A1
20040034371 Lehman et al. Feb 2004 A1
20040049157 Plishka et al. Mar 2004 A1
20040073108 Saeed et al. Apr 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040199087 Swain et al. Oct 2004 A1
20040215220 Dolan et al. Oct 2004 A1
20040236346 Parker Nov 2004 A1
20040243122 Auth et al. Dec 2004 A1
20040249985 Mori et al. Dec 2004 A1
20040260332 Dubrul et al. Dec 2004 A1
20050033327 Gainor et al. Feb 2005 A1
20050043781 Foley Feb 2005 A1
20050059862 Phan Mar 2005 A1
20050059890 Deal et al. Mar 2005 A1
20050059990 Ayala et al. Mar 2005 A1
20050075654 Kelleher Apr 2005 A1
20050096685 Murphy et al. May 2005 A1
20050113868 Devellian et al. May 2005 A1
20050187567 Baker et al. Aug 2005 A1
20050228413 Binmoeller et al. Oct 2005 A1
20050251159 Ewers et al. Nov 2005 A1
20050251208 Elmer et al. Nov 2005 A1
20050277965 Brenneman et al. Dec 2005 A1
20050277981 Maahs et al. Dec 2005 A1
20060015006 Laurence et al. Jan 2006 A1
20060047337 Brenneman Mar 2006 A1
20060062996 Chien et al. Mar 2006 A1
20060111672 Seward May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060116697 Carter et al. Jun 2006 A1
20060142703 Carter et al. Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060190021 Hausman et al. Aug 2006 A1
20060200177 Manzo Sep 2006 A1
20060217748 Ortiz Sep 2006 A1
20060217762 Maahs et al. Sep 2006 A1
20060224183 Freudenthal Oct 2006 A1
20060258909 Saadat et al. Nov 2006 A1
20060259051 Nissl Nov 2006 A1
20060259074 Kelleher et al. Nov 2006 A1
20060282087 Binmoeller Dec 2006 A1
20070027534 Bergheim et al. Feb 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070112363 Adams May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070123840 Cox May 2007 A1
20070123917 Ortiz et al. May 2007 A1
20070123934 Whisenant et al. May 2007 A1
20070135825 Binmoeller Jun 2007 A1
20070179426 Selden Aug 2007 A1
20070197862 Deviere et al. Aug 2007 A1
20070213812 Webler et al. Sep 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20080009888 Ewers et al. Jan 2008 A1
20080045989 Welborn Feb 2008 A1
20080065012 Hebert et al. Mar 2008 A1
20080071301 Matsuura et al. Mar 2008 A1
20080077180 Kladakis et al. Mar 2008 A1
20080154153 Heuser Jun 2008 A1
20080161645 Goldwasser et al. Jul 2008 A1
20080167524 Goldwasser et al. Jul 2008 A1
20080171944 Brenneman et al. Jul 2008 A1
20080183080 Abraham Jul 2008 A1
20080243151 Binmoeller et al. Oct 2008 A1
20080249481 Crainich et al. Oct 2008 A1
20090024149 Saeed et al. Jan 2009 A1
20090030380 Binmoeller Jan 2009 A1
20090082803 Adams et al. Mar 2009 A1
20090105733 Coleman et al. Apr 2009 A1
20090143713 Van Dam et al. Jun 2009 A1
20090143759 Van Dam et al. Jun 2009 A1
20090143760 Van Dam et al. Jun 2009 A1
20090177288 Wallsten Jul 2009 A1
20090227835 Terliuc Sep 2009 A1
20090259288 Wijay et al. Oct 2009 A1
20090281379 Binmoeller et al. Nov 2009 A1
20090281557 Sander et al. Nov 2009 A1
20100048990 Bakos Feb 2010 A1
20100105983 Oneda et al. Apr 2010 A1
20100130835 Brenneman et al. May 2010 A1
20100130993 Paz et al. May 2010 A1
20100168557 Deno et al. Jul 2010 A1
20100198013 Binmoeller Aug 2010 A1
20100261962 Friedberg Oct 2010 A1
20100268029 Phan et al. Oct 2010 A1
20100268316 Brenneman et al. Oct 2010 A1
20110054381 Van Dam et al. Mar 2011 A1
20110098531 To Apr 2011 A1
20110112622 Phan et al. May 2011 A1
20110137394 Lunsford et al. Jun 2011 A1
20130226218 Binmoeller Aug 2013 A1
20130231689 Binmoeller et al. Sep 2013 A1
Foreign Referenced Citations (63)
Number Date Country
102006050385 Apr 2008 DE
637431 Feb 1995 EP
1082998 Mar 2001 EP
1314404 May 2003 EP
1520526 Apr 2005 EP
1520532 Apr 2005 EP
1857135 Nov 2007 EP
1894514 Mar 2008 EP
1908421 Apr 2008 EP
1824404 Aug 2012 EP
2020557 Nov 1979 GB
2269538 Feb 1994 GB
S58-35219 Mar 1983 JP
62-233168 Oct 1987 JP
H05-137794 Jun 1993 JP
H05-192407 Aug 1993 JP
H05-329165 Dec 1993 JP
H05-508563 Dec 1993 JP
H07-096038 Apr 1995 JP
08-071158 Mar 1996 JP
8-504940 May 1996 JP
8-509639 Oct 1996 JP
H08-299455 Nov 1996 JP
H09-500047 Jan 1997 JP
H09-504186 Apr 1997 JP
09-140804 Jun 1997 JP
10-94543 Apr 1998 JP
10-155799 Jun 1998 JP
H11-512318 Oct 1999 JP
2000-500045 Jan 2000 JP
2000-237303 Sep 2000 JP
2001-511658 Aug 2001 JP
2001-275947 Oct 2001 JP
2001-517524 Oct 2001 JP
2002-119516 Apr 2002 JP
2002-524196 Aug 2002 JP
2002-534208 Oct 2002 JP
2003-526448 Sep 2003 JP
2004-512153 Apr 2004 JP
2004-216192 Aug 2004 JP
2005-525865 Sep 2005 JP
2007514462 Jun 2007 JP
2008-534029 Aug 2008 JP
2009500051 Jan 2009 JP
WO9220312 Nov 1992 WO
WO9314688 Aug 1993 WO
WO 9727898 Aug 1997 WO
WO 9923952 May 1999 WO
WO 0024449 May 2000 WO
WO 0072909 Dec 2000 WO
WO 0121247 Mar 2001 WO
WO 0172367 Oct 2001 WO
WO0187399 Nov 2001 WO
WO 03020106 Mar 2003 WO
WO 03024305 Mar 2003 WO
WO 03071962 Sep 2003 WO
WO 2005011463 Feb 2005 WO
WO 2005096953 Oct 2005 WO
WO2006115811 Nov 2006 WO
WO 2007047151 Apr 2007 WO
WO2007115117 Oct 2007 WO
WO2008005888 Jan 2008 WO
WO 2010011445 Jan 2010 WO
Non-Patent Literature Citations (19)
Entry
International Search Report and Written Opinion of PCT Application No. PCT/US2010/031612, mailed Jun. 18, 2010, 8 pages total.
Chopita et al.; Endoscopic gastroenteric anastomosis using magnets; Endoscopy; 37(4); pp. 313-317; Apr. 2005.
Fritscher-Ravens et al.; A through-the-scope device for suturing and tissue approximation under EUS control; Gastro Endo; 56(5); pp. 737-742; Nov. 2002.
Fritscher-Ravens et al.; Transgastric gastropexy and hiatal hernia repair for GERD under EUS control: A porcine model; Gastro Endo; 59(1); pp. 89-95; Jan. 2004.
Kahaleh et al.; Interventional EUS-guided cholangiography: evaluation of a technique in evolution; Gastrointestinal Endoscopy; 64(1); pp. 52-59; Jul. 2006.
Kwan et al.; EUS-guided cholecystenterostomy: a new technique; Gastrointestinal Endoscopy; 66(3); pp. 582-586; Sep. 2007.
Swain et al.; Knot tying at flexible endoscopy; gastro endo; 40(6); pp. 722-729; Nov. 1994.
Phan et al.; U.S. Appl. No. 13/364,265 entitled “Apparatus and Method for Deploying Stent Across Adjacent Tissue Layers,” filed Feb. 1, 2012.
Lepulu et al.; U.S. Appl. No. 13/281,410 entitled “Apparatus and Method for Penetrating and Enlarging Adjacent Tissue Layers,” filed Oct. 25, 2011.
Lepulu et al.; U.S. Appl. No. 13/363,297 entitled “Apparatus and Method for Penetrating and Enlarging Adjacent Tissue Layers,” filed Jan. 31, 2012.
Maisin et al.; Patency of endoscopic cystoduodenostomy maintained by a Z stent; Gastrointestinal Endoscopy; 40(6); pp. 765-768; Nov. 1994.
Brown et al.; U.S. Appl. No. 13/871,978 entitled “Methods and devices for access across adjacent tissue layers,” filed Apr. 26, 2013.
Sander et al.; U.S. Appl. No. 13/892,958 entitled “Tissue Anchor for Securing Tissue Layers,” filed May 13, 2013.
Blum et al.; Endoluminal stent-grafts for infrarenal abdominal aortic aneurysms; NEJM; 336(1); pp. 13-20; Jan. 2, 1996.
Spillner et al.; Initial clainical experiences with endovascular stent-grafts for treatment of infrarenal abdominal aortic aneurysm (in German w/ English Summary); Zentralbi Chir.; 121(9); pp. 727-733; 1996 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date).
Binmoeller et al.; Silicone-covered expanadable metallic stents in the esophagus: an experimental study; Endoscopy; 24; pp. 416-420; Jun. 1992.
Davies et al.; Percutaneous cystogastrostomy with a new catheter for drainage of pancreatic pseudocysts and fluid collections; Cardiovascular and Interventional Radiology; 19; pp. 128-131; Mar. 1996.
Schaer et al.; Treatment of malignant esophageal obstruction with silicon-coated metallic self-expanding stents; Gastrointestinal Endoscopy; 38(1); pp. 7-11; Jan. 1992.
Binmoeller et al.; U.S. Appl. No. 14/186,994 entitled “Devices and methods for forming an anastomosis,” filed Feb. 21, 2014.
Related Publications (1)
Number Date Country
20100268175 A1 Oct 2010 US
Provisional Applications (1)
Number Date Country
61171228 Apr 2009 US