The subject disclosure relates to a system and method for delivering a fire suppression agent to a cooking appliance in the event of a fire, and more particularly, to a system and method for delivering a fire suppression agent to an obstructed gas-fueled cooking appliance through a dedicated fuel delivery path.
The use of automatically activated fire extinguishing devices for unobstructed cooking appliances such as stoves, grills and the like is well known. Such devices provide a source of fire extinguishing compound or a fire suppression agent for release onto an unobstructed cooking surface in the event of a fire. The fire extinguishing compound is generally stored in a container located remote from the cooking appliance, and a dedicated piping arrangement typically connects the container to a spraying device located above the cooking surface that dispenses the compound to put out the fire.
These prior art fire extinguishing devices have the disadvantage of requiring on-site installation involving time and expense over and above that required for installation of the cooking appliance itself. Moreover, as the distance between the container and the spraying device is increased, more propellant is required to transport the fire extinguishing compound from the container, which in turn requires a larger container for storage of the propellant along with the fire extinguishing compound. In addition, the fire extinguisher container and the piping from the container to the appliance are unsightly, and the spraying nozzles that typically protrude down from above the stove surface can interfere with normal cooking activities.
In some commercial kitchens, certain cooking appliances have a fire hazard volume that is relatively difficult to reach with a typical overhead vertical spraying device, such as, for example, an enclosed culinary grill. To protect this type of hazard, a dedicated nozzle must be piped around any obstructing geometry or structures so that fire suppressant can be sprayed directly into the hazard volume in the event of a fire.
It would be beneficial to provide a system for delivering a fire suppression agent into the cooking volume of an obstructed cooking appliance, without having to provide dedicated piping to deliver the fire suppression agent. The subject invention provides such a system, in that it advantageously utilizes the existing fuel delivery path to deliver fire suppression agent into the obstructed cooking volume.
The subject invention is directed to a new and useful system for delivering a fire suppression agent to a cooking appliance. The system includes a fuel delivery path extending from a source of cooking fuel to a burner of the cooking appliance, a source of fire suppression agent selectively in fluid communication with the fuel delivery path, and a valve assembly operatively associated with the fuel delivery path and the source of fire suppression agent. The valve assembly is configured to control the delivery of fire suppression agent to the burner of the cooking appliance and shut off the burner from the source of cooking fuel.
The valve assembly has a first position permitting fluid communication between the source of cooking fuel and the burner through the fuel delivery path, while preventing fluid communication between the source of fire suppression agent and the burner through the fuel delivery path. The valve assembly has a second position preventing fluid communication between the source of cooking fuel and the burner through the fuel delivery path, while permitting fluid communication between the source of fire suppression agent and the burner through the fuel delivery path.
The system further includes an actuation mechanism connected to the valve assembly for facilitating the movement of the valve assembly from the first position to the second position. In one embodiment of the invention, the actuation mechanism is mechanically actuated by a fusible link or the like. In another embodiment of the invention, the actuation mechanism is electrically actuated by a solenoid switch or the like. Preferably, the actuation mechanism is operatively associated with a condition sensing device, such as, for example, a smoke detector or a heat sensor. The condition sensor will activate or otherwise trigger the actuation mechanism upon detecting excess heat, smoke or another sensed condition beyond a certain allowable level or limit. In the alternative, an override switch or pull station could be operatively associated with the actuation mechanism, in addition to or instead of the condition sensor, to manually activate the fire suppression system.
It is envisioned that the system disclosed herein could be configured to provide fire suppression service to plural cooking appliances located within a kitchen that are all operatively associated with a valve assembly connected to the fuel delivery path of each appliance and a source of fire suppression agent. It is also envisioned that plural sources of fire suppression agent could be arranged in a bank that is in fluid communication with the valve assembly through a manifold.
The subject invention is also directed to a system for delivering fire suppression agent to a cooking appliance, which includes a fuel delivery path extending from a source of cooking fuel to a burner of the cooking appliance, a source of fire suppression agent selectively in fluid communication with the fuel delivery path, and a valve assembly operatively associated with the fuel delivery path and the source of fire suppression agent, wherein the valve assembly has: a first position permitting fluid communication between the source of cooking fuel and the burner through the fuel delivery path, while preventing fluid communication between the source of fire suppression agent and the burner through the fuel delivery path; and a second position preventing fluid communication between the source of cooking fuel and the burner through the fuel delivery path, while permitting fluid communication between the source of fire suppression agent and the burner through the fuel delivery path in the event of a fire.
The subject invention is also directed to a method of delivering fire suppression agent to an obstructed cooking appliance, which includes the steps of connecting a source of fire suppression agent to a fuel delivery path extending from a source of cooking fuel to a burner of the cooking appliance, and facilitating the delivery of fire suppression agent to the burner of the cooking appliance as cooking fuel to the burner is shut off from a source of cooking fuel in the event of a fire.
Preferably, the step of facilitating the delivery of fire suppression agent involves facilitating the actuation of a valve assembly operatively associated with the fuel delivery path and the source of fire suppression agent. In one embodiment of the invention, the step of facilitating the actuation of a valve assembly involves facilitating the mechanical actuation of the valve assembly. In another embodiment of the invention, the valve assembly involves facilitating the electrical actuation of the valve assembly. Alternatively, in the event of a fire, the valve assembly could be manually activated from a pull station or the like.
These and other features of the subject invention and the manner in which it is manufactured, assembled and employed will become more readily apparent to those having ordinary skill in the art from the following enabling description of the preferred embodiments of the subject invention taken in conjunction with the several drawings described below.
So that those skilled in the art will readily understand how to make and use the fire suppression system of the subject invention without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to the figures wherein:
Referring now to the drawings wherein like reference numerals identify similar structural elements or features of the subject invention, there is illustrated in
As used herein, the term obstructed cooking appliance refers to a cooking appliance with a self-contained or otherwise enclosed cooking volume, such as, for example, a culinary grill characterized by very high temperature overhead gas heating elements. These cooking appliances are generally found in professional or commercial kitchens and are typically used for overhead grilling, and some types are commonly referred to as salamander grills.
As discussed in more detail below, the delivery system 10 of the subject invention uses the burners 14 that are located within the enclosed cooking appliance 12 as spray nozzles for delivering a fire suppression agent into the obstructed cooking volume 16. In the event of a fire, as fuel to the burner 14 is shut off from the supply of fuel 22, the suppression agent is allowed to flow into the dedicated fuel delivery piping, which carries the agent directly into the cooking volume 16 of the appliance 12 without requiring any additional piping to be installed.
Those skilled in the art will readily appreciate that this design simplifies the installation of the fire suppression system by eliminating the need for dedicated suppressant piping in and around any obstructions that may be associated with the cooking appliance, as is typical in prior art fire suppression systems found in most commercial kitchens. Therefore, system installation costs are reduced, kitchen staff has less piping in their workspace, and dedicated piping need not be rearranged if or when the cooking appliance is moved. Additionally, because the system is integrated within and can otherwise move with the cooking appliance itself, it would not be possible to leave the appliance unprotected if it is moved away from any suppression agent delivery piping and spray nozzles.
With continuing reference to
A source of fire suppression agent in the form of a self-contained pressure vessel 24 is in fluid communication with the dedicated fuel delivery path 20 of the appliance 12. Those skilled in the art will readily appreciate that the fire suppression agent can be selected from materials such as nitrogen or a similar fire suppressing gas, water or a wet chemical agent, or the like. It is envisioned that the amount of fire suppression agent contained within the source 24 will be proportional to the size of the cooking volume 16 of the gas-fired cooking appliance 12. The pressure vessel 24 would also include a propellant for facilitating the transport of the fire suppression agent through the duel delivery path 20 in the event of a fire. Those skilled in the art will readily appreciate that a relatively small amount of propellant would be required in this system, due to the proximity of the fire suppressant source 24 to the obstructed cooking volume 16 being protected.
In accordance with a preferred embodiment of the subject invention, a valve assembly 26 is operatively associated with the dedicated fuel delivery path 20 and the source of fire suppression agent 24. The valve assembly 26 includes a two-way rotatable valve element 28 that is adapted and configured to control the delivery of fire suppression agent to the burner 14 of the cooking appliance 12, as cooking fuel to the burner 14 is shut off from the source of cooking fuel 22 in the event of a fire. Those skilled in the art will readily appreciate that valve assembly 26 will have appropriate internal sealing features associated with the rotating valve element 28 to prevent cross-talk between the internal flow paths and otherwise maintain the fluid integrity of the valve assembly 26.
The rotatable valve element 28 of valve assembly 26 has a first operating position that permits fluid communication between the source of cooking fuel 22 and the burner 14 of the cooking appliance 12 through the fuel delivery path 20, while preventing fluid communication between the source of fire suppression agent 24 and the burner 14 through the fuel delivery path 20, which is depicted in
The fire suppression system 10 further includes an actuation mechanism 30 operatively connected to valve assembly 26 to facilitate the movement of valve element 28 from the first position of
The condition sensor 36 will activate or otherwise trigger the actuation mechanism 30 upon detecting excess heat, smoke or another sensed condition beyond a certain allowable level or limit. In the alternative, a manual override switch will be operatively associated with the actuation mechanism 30, in addition to or instead of the condition sensor 36. The manual override feature would be in the form of a pull station or the like, where the cook or kitchen staff could pull a pin or press a button in the event of a fire to activate the fire suppression system 10 as the kitchen is evacuated.
Referring now to
It is envisioned that system 100 could also include plural sources of fire suppression agent that are all in fluid communication with the valve assembly 126, such as a bank 124 of storage vessels (124a-124d) that are connected to a manifold 125, which communicates with the valve assembly 126. In the event of a fire in one or both of the cooking appliances, the valve element 128 of valve assembly 126 would move from the first position of
Referring once again to
The step of facilitating the delivery of fire suppression agent involves facilitating the actuation of a valve assembly 26 operatively associated with the fuel delivery path 20 and the source of fire suppression agent 24. In one embodiment of the invention, the step of facilitating the actuation of the valve assembly 26 involves facilitating the mechanical actuation of the valve assembly 26. In another embodiment of the invention, the step of facilitating the actuation of the valve assembly 26 involves facilitating the electrical actuation of the valve assembly 26. Alternatively, the valve assembly 26 could be manually activated from a pull station or the like.
While the subject disclosure has been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/055411 | 10/11/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62572164 | Oct 2017 | US |