None.
None.
None.
1. Field of the Disclosure
The present disclosure relates generally to scanners, and, more particularly, to a scanner for scanning multiple media sheets simultaneously, and demarcating each scanned media sheet of the scanned media sheets.
2. Description of the Related Art
A scanner, typically, is utilized for creating a digital replica of content, such as text, graphics, images, and the like, displayed on a media sheet, such as a sheet of paper. However, creating the digital replica of the content displayed on each media sheet of multiple media sheets may be a time-consuming and a cumbersome activity, especially for business entities, such as organizations. The organizations may need to simultaneously scan the multiple media sheets for replicating the content displayed on each media sheet of the multiple media sheets.
Many techniques exist for the simultaneous scanning of the multiple media sheets. One such technique for the simultaneous scanning of the multiple media sheets includes placing the multiple media sheets together on a platen of a scanner and covering the multiple media sheets with a scanlid of the scanner. The scanlid provides a background for scanning the multiple media sheets. The technique further involves recognizing a placement of each media sheet of the multiple media sheets on the platen and properly orienting each media sheet by scan software. Thereafter, an Optical Character Recognition (OCR) software reads the content displayed on each media sheet and automatically inputs the read content in a database that is included in the scanner.
However, the technique may be incapable of accurately replicating the content displayed on each media sheet of the multiple media sheets in certain situations. For example, in situations wherein the background for scanning of the multiple media sheets, i.e. a color of the scanlid matches a color of the multiple media sheets, the technique may be incapable of demarcating each media sheet of the multiple media sheets. On account of an incapability to demarcate each media sheet, the replicated content of a media sheet may merge with the replicated content of another media sheet being scanned simultaneously by the scanner. Typically, the background for scanning of the multiple media sheets is chosen to be white in color. For media sheets, such as business cards, which are generally white in color, scanning the multiple media sheets simultaneously against the white background may result in merging of edges of the media sheets, thereby precluding an accurate demarcation of each media sheet of the media sheets.
For demarcating each media sheet of the multiple media sheets, the scanlid of the scanner, nowadays, is typically configured to glow in dark. The multiple media sheets are placed on the platen of the scanner and the scanlid is placed over the multiple media sheets for providing the background to the multiple media sheets. The scanlid glows when closed over the multiple media sheets, thereby assisting the scan software to detect the edges of each media sheet, and thus demarcate each media sheet of the multiple media sheets.
However, the scanlid configured to glow in the dark suffers from a few drawbacks. Though the glow of the scanlid enables demarcation of each media sheet of the multiple media sheets, the glow may hinder the replication of the content of a single media sheet being scanned, and as such, the scanlid may need to be reconfigured for scanning the single media sheet. Further, in case of thin media sheets, such as receipts, newspaper cuttings, and the like, the glow may pass through the thin media sheets causing undesirable effects in the replication of the content. Further, the glow of the scanlid may get undesirably charged when the scanlid is exposed to light in a well-lit room.
Accordingly, there is a need to demarcate each media sheet of multiple media sheets by a scanner. Further, there exists a need to demarcate each media sheet of multiple media sheets by a scanner and preclude configuration of a scanlid of the scanner to glow in the dark.
In view of the foregoing disadvantages inherent in the prior art, the general purpose of the present disclosure is to provide a scanner and a method for demarcating each media sheet of one or more media sheets by the scanner, to include all the advantages of the prior art, and to overcome the drawbacks inherent therein.
Accordingly, in one aspect, the present disclosure provides a scanner. The scanner includes a platen, a scanlid, an illuminating mechanism and a scanhead. The platen accommodates one or more media sheets thereon. The scanlid is pivotally coupled relative to the platen and is capable of being movable between a closed position in which the scanlid substantially covers the platen and an open position in which the platen is substantially uncovered. The scanlid provides a background for scanning of the one or more media sheets. The illuminating mechanism is operably coupled to the scanlid. The illuminating mechanism is capable of being activated for selectively illuminating the background for scanning of the one or more media sheets. The scanhead is configured to scan the one or more media sheets. Scanning of the one or more media sheets by the scanhead upon activation of the illuminating mechanism captures a background image of the one or more media sheets. Scanning of the one or more media sheets by the scanhead upon deactivation of the illuminating mechanism captures a foreground image of the one or more media sheets. Edges of each media sheet of the one or more media sheets are detected based on the background image and the detected edges of each media sheet demarcate each media sheet of the one or more media sheets.
Further, in another aspect, the present disclosure provides a method for demarcating each media sheet of one or more media sheets by a scanner. The method includes illuminating a background of the one or more media sheets. The one or more media sheets are scanned upon illumination of the background for capturing a background image of the one or more media sheets. Edges of each media sheet of the one or more media sheets are detected based on the background image and the detected edges of each media sheet demarcate each media sheet of the one or more media sheets.
Furthermore, in yet another aspect, the present disclosure provides a computer program product embodied on a computer readable medium for demarcating each media sheet of one or more media sheets by a scanner. The computer program product includes a program module having instructions for illuminating a background of the one or more media sheets. Further, the program module has instructions for scanning the one or more media sheets upon illumination of the background for capturing a background image of the one or more media sheets. Furthermore, the program module has instructions for detecting edges of each media sheet of the one or more media sheets based on the background image. The detected edges of each media sheet demarcate each media sheet of the one or more media sheets.
The background image captured by illuminating a background provides information of edges of the one or more media sheets and assists in demarcating each media sheet of the one or more media sheets scanned simultaneously by the scanner. Further, the illuminating mechanism configured to selectively illuminate the background of the one or more media sheets, enables demarcating each media sheet of the one or more media sheets scanned by the scanner and precludes the need to configure the scanlid to glow in the dark.
The above-mentioned and other features and advantages of the present disclosure, and the manner of attaining them, will become more apparent and the present disclosure will be better understood by reference to the following description of embodiments of the present disclosure taken in conjunction with the accompanying drawings, wherein:
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” and “coupled,” and variations thereof herein are used broadly and encompass direct and indirect connections and couplings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
In addition, it should be understood that embodiments of the present disclosure include both hardware and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that, in at least one embodiment, the electronic based aspects of the present disclosure may be implemented in software. As such, it should be noted that a plurality of hardware and software-based devices, as well as a plurality of different structural components may be utilized to implement the present disclosure.
The present disclosure provides a scanner for demarcating edges of each media sheet of one or more media sheets. The scanner includes a platen, a scanlid, an illuminating mechanism and a scanhead. The platen accommodates one or more media sheets thereon. The scanlid is pivotally coupled relative to the platen and is capable of being movable between a closed position in which the scanlid substantially covers the platen and an open position in which the platen is substantially uncovered. The scanlid provides a background for scanning of the one or more media sheets. The illuminating mechanism is operably coupled to the scanlid. The illuminating mechanism is capable of being activated for selectively illuminating the background for scanning of the one or more media sheets. The scanhead is configured to scan the one or more media sheets. Scanning of the one or more media sheets by the scanhead upon activation of the illuminating mechanism captures a background image of the one or more media sheets. Scanning of the one or more media sheets by the scanhead upon deactivation of the illuminating mechanism captures a foreground image of the one or more media sheets. Edges of each media sheet of the one or more media sheets are detected based on the background image and the detected edges of each media sheet demarcate each media sheet of the one or more media sheets.
Referring now to the drawings and particularly to
Platen 102 is capable of accommodating one or more media sheets (not shown) thereon. Scanlid 104 is pivotally coupled relative to platen 102 and is capable of being movable between a closed position (not shown) in which scanlid 104 substantially covers platen 102 and an open position (not shown) in which platen 102 is substantially uncovered by scanlid 104. Scanlid 104 provides a background for scanning of the one or more media sheets accommodated on platen 102. Illuminating mechanism 106 is operably coupled to scanlid 104. Illuminating mechanism 106 is capable of being activated for selectively illuminating the background for scanning of the one or more media sheets. Scanhead 108 is configured to scan the one or more media sheets.
For the purpose of description of the present disclosure, a media sheet of the one or more media sheets may be defined as a sheet of paper that includes content. For example the media sheet, such as a business card, may include the content, such as contact information of a person. The one or more media sheets may be simultaneously accommodated on platen 102. Platen 102 may be substantially covered by scanlid 104 when scanlid 104 is in the closed position. Scanlid 104, in the closed position, is configured to provide the background for scanning of the one or more media sheets when the one or more media sheets are accommodated on platen 102.
Scanlid 104 is operably coupled to illumination mechanism 106. Illuminating mechanism 106 is capable of being selectively activated for illuminating the background of the one or more media sheets accommodated on platen 102. Illuminating mechanism 106 may be activated by at least one of a scanner default setting, a user input and one or more properties of each media sheet of the one or more media sheets. The scanner default setting may refer to a preset configuration of scanner 100. Alternatively, illuminating mechanism 106 may be activated by the user input, such as a click of a mouse, a stroke on a keyboard, a press of a switch, and the like, provided by a user of scanner 100. The user input may be provided to scanner 100 through an input module (not shown), such as a keyboard, a touch-screen, and the like. The input module may be included in scanner 100, or alternatively, the input module may be included in a processing system, such as a computer system, connected to scanner 100.
Illuminating mechanism 106 may also be activated automatically by the one or more properties of each media sheet. A property of the one or more properties of each media sheet may be one of a thickness of each media sheet and a color thereof. In an embodiment of the present disclosure, scanner 100 may include a sensing device (not shown) that may be capable of detecting the one or more properties of each of the one or more media sheets. The sensing device may automatically detect the one or more properties of the one or more media sheets, and activate illuminating mechanism 106. For example, the sensing device may automatically detect thicknesses of each of two media sheets accommodated on platen 102, and activate illuminating mechanism 106.
Scanhead 108 is configured to scan the one or more media sheets placed on platen 102 and covered by scanlid 104. A scan of the one or more media sheets by scanhead 108 upon activation of illuminating mechanism 106 captures a background image of the one or more media sheets. A scan of the one or more media sheets by scanhead 108 upon deactivation of illuminating mechanism 106 captures a foreground image of the one or more media sheets. It will be apparent to a person skilled in the art that scanhead 108 may utilize a scan bar (not shown) coupled to platen 102 for scanning the one or more media sheets. The scan bar may execute an illumination sequence of red Light Emitting Diodes (LEDs) blue LEDs and green LEDs, repeatedly, for scanning of the one or more media sheets.
For the purpose of description of this disclosure, the background image of the one or more media sheets refers to an image of the one or more media sheets, scanned with the background of the one or more media sheets illuminated. Illumination of the background provided by scanlid 104 prior to scanning of the one or more media sheets highlights edges of the one or more media sheets. The background image includes information of the edges of the one or more media sheets. The scan operation for capturing the background image may or may not be performed with illumination of light sources disposed on the scan bar of scanhead 108
The foreground image of the one or more media sheets refers to a conventionally scanned image of the one or more media sheets. The foreground image of the one or more media sheets is captured precluding illumination of the background. Further, the foreground image includes information of the content of the one or more media sheets.
In an embodiment of the present disclosure, a default scan resolution for scanhead 108 is 300 dots per inch (dpi). In an alternative embodiment of the present disclosure, scanhead 108 may scan at a scan resolution of 600 dpi by discarding every alternate line of the one or more media sheets, as opposed to a default scan resolution of 300 dpi. A scan of the one or more media sheets with the background illuminated may be performed on alternate discarded lines for capturing a portion of the background image. Similarly, the foreground image may be captured in portions, thereby capturing the background image and the foreground image simultaneously.
Memory module 110 may be configured to store the background image and the foreground image captured by scanhead 108. Specifically, memory module 110 may be configured to store the information of the edges of each media sheet and the information of the content of each media sheet. Each media sheet of the one or more media sheets may be separately stored in memory module 110 based on the edges detected from the background image.
In an embodiment of the present disclosure, the background image captured by scanhead 108 may be amplified by stretching a dynamic range of the background image. A technique for stretching the dynamic range of the background image may be a histogram stretch which amplifies a dynamic difference between the one or more media sheets and the background provided by scanlid 104. Thereafter, the amplified background image may be run through an industry standard edge detection algorithm, such as Sobel operator, Prewitt operator, Canny operator, and the like.
After running the background image through the edge detection algorithm, the information of the edges of each media sheet may be passed to an image segmentation algorithm that extracts the information of the content of each media sheet from the foreground image. Thereafter, a deskew algorithm may be applied to the information of the content of each media sheet extracted from the foreground image. It will be apparent to a person skilled in the art that the deskew algorithm assists in removing skew defects present in the information of the content of each media sheet extracted from the foreground image. Thereafter, an Optical Character Recognition (OCR) software may be capable of reading the content of each media sheet that has been extracted based on the information of the edges detected in the background image. Further, the OCR software may store the content of each media sheet separately in memory module 110.
It is understood that each component of scanner 100, such as platen 102, scanlid 104, illuminating mechanism 106, scanhead 108, memory module 110, the input module, the sensing device and the scan bar may be implemented as a hardware module, a firmware module, or any combination thereof. Further, it is understood that scanner 100 may be coupled with the processing system, such as the computer system, for viewing demarcated media sheets of the one or more media sheets. Further, scanner 100 may include requisite electrical or mechanical connections for communicably coupling the various components of scanner 100, such as platen 102, scanlid 104, illuminating mechanism 106, scanhead 108, memory module 110, the input module, the sensing device and the scan bar. Furthermore, it is understood that scanner 100 may include typical components (not shown), such as a battery unit and a microcontroller for performing typical functions of scanner 100. Demarcation of the edges of each media sheet by a scanner is explained in further detail in embodiments described in conjunction with
Platen 202 of scanner 200 is capable of accommodating one or more media sheets (not shown) thereon. Scanlid 204 is pivotally coupled relative to platen 202 through a hinge 208a and a hinge 208b (hereinafter collectively referred to as ‘hinges 208’). Scanlid 204 is movable about hinges 208 for assuming an open position and a closed position. Specifically, scanlid 204 is movable between an open position (as depicted in
Scanlid 204 includes a front surface 204a and a back surface (not shown) opposite to front surface 204a. As depicted in
When scanlid 204 is in the closed position over platen 202 on which the one or media sheets are accommodated, a background image of the one or more media sheets may be captured by illuminating the background during scanning of the one or more media sheets. Further, a foreground image may be captured by conventionally scanning the one or more media sheets, precluding illumination of the background. The background image and the foreground image may be scanned by the scanhead, as explained in
One or more media sheets may be accommodated on platen 302. Scanlid 304 is pivotally coupled relative to platen 302 and is depicted to assume a position between a closed position (not shown) in which scanlid 304 substantially covers platen 302 and an open position (not shown) in which platen 302 is substantially uncovered by scanlid 304. Scanlid 304 includes translucent screen 308 having a first surface 310 and a second surface (not shown) opposite to first surface 310. In the closed position, scanlid 304 provides a background for scanning the one or more media sheets. More specifically, the second surface of translucent screen 308 faces the one or more media sheets in the closed position of scanlid 304, and provides the background to the one or more media sheets.
Illuminating mechanism 306 is disposed on first surface 310 of translucent screen 308 of scanlid 304, as depicted in
It is understood that various combinations of the embodiments as explained in
The scanhead of scanner 300 captures the background image and the foreground image of the one or more media sheets, as explained in connection with
Platen 402 is configured to accommodate the one or more media sheets thereon. Scanlid 404 is coupled relative to platen 402 through hinges, such as a hinge 408a, a hinge 408b, a hinge 408c and a hinge 408d (hereinafter collectively referred to as ‘hinges 408’). Scanlid 404 is capable of a pivotal motion relative to platen 402 about hinges 408. Scanlid 404 may move between an open position (as depicted) in which platen 402 is uncovered by scanlid 404 and a closed position (not shown) in which platen 402 is substantially covered by scanlid 404. In the closed position, scanlid 404 provides a background for scanning of one or more media sheets.
Scanlid 404 includes a front surface 410 and a back surface (not shown). Illuminating mechanism 406 is disposed on front surface 410 of scanlid 404. Illuminating mechanism 406 includes a substantially wedge-shaped light guide 412 and one or more LEDs, such as LED 414. Wedge-shaped light guide 412 is disposed on scanlid 404 and forms the background for scanning the one or more media sheets. Wedge-shaped light guide 412 is coupled to scanlid 404 by fasteners, such as a fastener 416a, a fastener 416b, a fastener 416c and a fastener 416d (herein after collectively referred to as ‘fasteners 416’). It is understood that scanlid 404 may be configured to include fasteners 416. Further, other coupling mechanisms, such as a hook and loop fasteners, and the like, may also be utilized for disposing wedge-shaped light guide 412 on scanlid 404.
LED 414 is disposed on a central portion of a lateral edge 412a of wedge-shaped light guide 412, as shown in
It is understood that various combinations of the embodiments explained in conjunction with
Method 500 begins at 502. At 504, a background of the one or media sheets is illuminated. At 506, the one or media sheets are scanned upon illumination of the background for capturing a background image of the one or more media sheets. At 508, edges of each media sheet of the one or more media sheets are detected based on the background image. At 510, method 500 ends.
At 502, one or more media sheets may be placed on a platen of the scanner, such as platen 202 of scanner 200. A scanlid of the scanner, such as scanlid 204 of scanner 200, may then be placed in a closed position over the platen. The scanlid substantially covers the platen in the closed position. The scanlid provides a background to the one or more media sheets in the closed position.
At 504, the background of the one or more media sheets is illuminated. Further, at 506, the one or more media sheets are scanned upon illumination of the background for capturing a background image of the one or more media sheets. The background image of the one or more media sheets refers to an image that is captured when the one or more media sheets are scanned with the background illuminated. The background image includes information of the edges of the one or more media sheets. Scanning the media sheets to capture the background image may or may not be performed by illuminating light sources in the scan bar of scanhead 108.
In an embodiment of the present disclosure, the background may be illuminated based on activation of an illuminating mechanism, such as illuminating mechanism 206 of scanner 200. The illuminating mechanism may be activated based on at least one of scanner default setting, a user input and one or more properties of each media sheet of the one or more media sheets. A property of the one or more properties of each media sheet may be one of a thickness of each media sheet and a color thereof. The illuminating mechanism may be activated as explained in conjunction with
At 508, edges of each media sheet of the one or more media sheets are detected based on the background image captured from the scanned one or more media sheets. Illumination of the background prior to scanning of the one or more media sheets highlights edges of the one or more media sheets, thereby substantially distinguishing between each media sheet of the one or more media sheets captured in the background image.
Thereafter, the one or more media sheets accommodated on the platen of the scanner are scanned for capturing a foreground image of the one or more media sheets. The foreground image is captured precluding illumination of the background of the one or more media sheets. The foreground image of the one or more media sheets refers to a conventionally scanned image of the one or more media sheets. A conventional scan by the scanner involves execution of an illumination sequence of red LEDs, blue LEDs and green LEDs by a scan bar of the scanner. The illumination sequence is repeated in a cycle for capturing the foreground image of the one or more media sheets. The foreground image includes information of content of the one or more media sheets.
In an embodiment of the present disclosure, the foreground image is captured prior to the background image. Specifically, the background of the one or media sheets may be illuminated, and thereafter the one or more media sheets may be scanned for capturing the background image.
In another embodiment of the present disclosure, the one or more media sheets may be scanned for capturing the background image and the foreground image simultaneously. More specifically, the scan bar executes the illumination sequence of red LEDs, blue LEDs and green LEDs for capturing a portion of the foreground image. Thereafter, the background is illuminated and the scanhead of the scanner scans the one or more sheets for capturing a portion of the background image. The cyclical order causes a portion of the foreground image to be captured, followed by capturing of a portion of the background image in an alternating manner. The cyclical order of capturing portions of the foreground image and the background image is repeated till the one or more media sheets are completely scanned.
Thereafter, the foreground image and the background image may be stored in a memory module, such as memory module 110 explained in conjunction with
The edges of each media sheet of the one or more media sheets may be detected by utilizing edge detection algorithms as explained in conjunction with
Demarcating edges of each media sheet of one or more media sheets by a scanner, such as scanner 100, scanner 200, scanner 300 and scanner 400 and a method, such as method 500 is beneficial for separating each media sheet of the one or more media sheets that are scanned simultaneously. Specifically, content of each media sheet can be separated and accessed by utilizing the scanner disclosed herein. The one or more media sheets are separated by illuminating a background of the one or more media sheets. The background is illuminated by utilizing an illuminating mechanism, such as illuminating mechanism 106, illuminating mechanism 206, illuminating mechanism 306 and illuminating mechanism 406,
Further, the illuminating mechanism utilizes substantially less intensity of light for illuminating the background of the one or more media sheets, thereby precluding a reflection of light onto replicated content while scanning thin media sheets, such as bill receipts. Furthermore, the illuminating mechanism, such as illuminating mechanism 206 utilizing light guide film 210, requires a single Light Emitting Diode (LED) for illuminating the background, thereby enabling cost effective implementation. Still further, edge detection algorithms utilized for obtaining information of the edges of each media sheet are simple to implement in Application-Specific Integrated Circuits (ASICs) of existing scanners. For instance, a 3*3 (or greater) mask may be run on the background image, enabling on-the-fly detection of the edges of each media sheet. Further, the edge detection algorithms as explained above are immune to factors, such as the content of each media sheet or color of each media sheet, thereby adding robustness to the algorithms.
As described above, the embodiments of the present disclosure may be embodied in the form of a computer program product for demarcating each media sheet of one or more media sheets by a scanner, such as scanner 100, scanner 200, scanner 300 and scanner 400. Embodiments of the present disclosure may also be at least partly embodied in the form of program module containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the program module is loaded into and executed by a scanner, the scanner becomes an apparatus for practicing the present disclosure. The program module includes instructions for illuminating a background of the one or more media sheets. Further, the program module includes instructions for scanning the one or more media sheets upon illumination of the background for capturing a background image of the one or more media sheets. Still further, the program module includes instructions for detecting edges of each media sheet of the one or more media sheets based on the background image. The detected edges of each media sheet demarcate each media sheet of the one or more media sheets.
The program module also includes instructions for scanning the one or more media sheets precluding illumination of the background for capturing a foreground image of the one or more media sheets. Further, the program module includes instructions for storing the foreground image and the background image.
It is understood that the present disclosure as described above, may be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a scanner, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a scanner, the scanner becomes an apparatus for practicing the present disclosure. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
The foregoing description of several methods and an embodiment of the present disclosure have been presented for purposes of illustration. It is not intended to be exhaustive or to limit the present disclosure to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above description. It is intended that the scope of the present disclosure be defined by the claims appended hereto.