The present invention provides methods and materials for providing a coating on a medical device.
Medical devices may be coated so that the surfaces of such devices have desired properties or effects. For example, it may be useful to coat medical devices to provide for the localized delivery of therapeutic agents to target locations within the body, such as to treat localized disease (e.g., heart disease) or occluded body lumens. Localized drug delivery may avoid some of the problems of systemic drug administration, which may be accompanied by unwanted effects on parts of the body which are not to be treated. Additionally, treatment of the afflicted part of the body may require a high concentration of therapeutic agent that may not be achievable by systemic administration. Localized drug delivery may be achieved, for example, by coating balloon catheters, stents and the like with the therapeutic agent to be locally delivered. The coating on medical devices may provide for controlled release, which may include long-term or sustained release, of a bioactive material.
Aside from facilitating localized drug delivery, medical devices may be coated with materials to provide beneficial surface properties. For example, medical devices are often coated with radiopaque materials to allow for fluoroscopic visualization while placed in the body. It is also useful to coat certain devices to achieve enhanced biocompatibility and to improve surface properties such as lubriciousness.
Coatings have been applied to medical devices by processes such as dipping, spraying, vapor deposition, plasma polymerization, spin-coating and electrodeposition. Although these processes have been used to produce satisfactory coatings, they may in some cases have potential drawbacks. For example, it may be difficult to achieve coatings of uniform thicknesses, both on individual parts and on batches of parts.
A conventional self-expandable (SE) stent has an expanded form when not constrained. To deliver the stent to the desired location, the stent is compressed radially and loaded into a delivery system. Typically, an outer tubular sheath retains the compressed stent. The delivery system is tracked to the region of a vessel being stented. The stent is then released from its compressed state, by retracting the sheath and/or pushing the stent out of the sheath. When released from the constraint of the sheath, the stent self-expands back to its expanded form to scaffold the vessel wall.
The present invention provides a system and method for applying a coating to a self-expandable medical device such as a stent.
During loading and deployment of self-expandable stents, there may be significant friction between the stent surface and the sheath. Because the self-expandable stent has a tendency to want to expand to its relaxed state, the stent presses outward against the inner surface of the sheath. Thus, when the stent is being loaded into or deployed out of the sheath, the friction forces may be significant. Longer stents may have higher frictional forces. In the case of coated self-expandable stents, these forces may be damaging to the coating. The coating on the self-expandable stent that is in contact with the inner surface of the sheath is subject to high shear forces during both loading and deployment. Therapeutic agent coatings for medical devices may be relatively soft, for example consisting of a mixture of biodegradable or stable polymers and drugs, or solely drugs. This soft coating can be stripped or damaged by contact with the sheath during loading or deployment.
The present invention provides a system and method for providing a coating on a self-expandable medical device such as a stent while avoiding the issues relating to coating damage from the sheath during loading and deployment. In an embodiment, the present invention comprises a coating applicator at the distal end of the sheath which delivers coating material onto a stent as the stent is deployed from the sheath. Thus, the stent may be loaded into the sheath without a coating on the stent, thereby avoiding shearing off or damaging the coating during loading. Also, the coating is applied only as the stent exits the sheath, thereby avoiding shearing off or damaging the coating during deployment.
a and 1b show a delivery sheath with a distal coating applicator prior to deployment of the stent (
a shows a first embodiment of a coating applicator.
a shows a second embodiment of a coating applicator.
a and 1b show an embodiment of a system for deploying a self-expandable stent with a coating. The system comprises a tubular sheath 2 and self-expandable stent 4.
For clarity, the stent 4 is shown schematically both in its structure and in its relation to the sheath. The stent may take any suitable configuration, and many such configurations are known in the art. It will be appreciated that the because a self-expandable stent 4 has a tendency to want to expand to its relaxed state, the outer surface 8 of the stent 4 ordinarily presses outward against the inner surface 10 of the sheath 2. For clarity of illustration, the figures show a small space between the outer surface 8 of the stent 4 and the inner surface 10 of the sheath 2, although it will be understood that in practice these surfaces will ordinarily be abutting.
As shown in
It will be appreciated that the application of the coating material to the stent is illustrated schematically. The coating material may be applied gradually from the location where the stent enters the coating applicator to the location where the stent exits the coating applicator.
To facilitate the adhesion of the coating material to the outer surface of the stent, the outer surface of the stent may be porous or roughened. The coating applied by the applicator may comprise a therapeutic agent. As described in detail below, the coating applicator may take different forms.
As shown in
The holes 22 may be, for example, about 1 μm in diameter, but other sizes are of course possible. In addition, the holes may be arranged around the entire circumference of the inner surface 12 to deliver a uniform coating. Alternatively, the annular ring 20 can have holes 22 of a varying diameter and/or density to deliver more coating material 14 to a certain portion of the outer surface 8 of the stent 4. For instance, if the target site 26 within the body is known to have a curvature as shown in
A second embodiment of a coating applicator 6 containing a coating material 14 comprises a one or more ball assemblies 30, shown in
The housing 36 can contain the coating material 14 within it. Alternatively, the top 38 of the housing 36 can be open to receive the coating material 14 from a separate reservoir. Alternatively, the top 38 of the housing 36 can have a sponge-like material to assist applying the coating material to the spherical balls 32 as the balls 32 rotate.
The spherical balls 32 are housed almost entirely within the housing 36, but a coating portion 40 protrudes from the housing 36 and is designed to contact the outer surface 8 of the stent 4. The outer surface 34 of spherical balls 32 carries coating material 14 from the reservoir, and this coating material is transferred to the outer surface 8 of stent 4 upon contact. The coating material 14 will stick to the outer surface 8 of the stent 4. The transfer of coating material may be facilitated by having the stent outer surface roughened or porous; by comparison, the surface of the spherical balls 32 may be relatively smooth.
The coating portion 40 changes as the spherical balls 32 rotate, and is defined as the portion located between the proximal side 44 and the distal side 42 of the opening in the housing 36. Due to the relative movement between the spherical balls 32 and the stent 4, the clearance between the spherical balls 32 and the housing 36 at the proximal side 44 of the opening is greater than the clearance between the spherical balls 32 and the housing at the distal side 42 of the opening. Thus, when a portion of a spherical ball 32 rotates into the housing at the distal side 42 of the opening, the housing may shear coating material off of the spherical ball 32 to help force coating material to remain on the stent 4.
The coating applicator 6 can include more than one ring of balls 32 arranged sequentially, as shown in
The spherical balls 32 may have, for example, a diameter of about 150 μm, and the diameter of the ball assembly 30 may be, for example, about 2 mm. The balls can be made of any suitable material, which may be bio-compatible or coated with a bio-compatible material, and may be, for example, steel, carbon steel, chrome steel, stainless steel, cast iron steel, tungsten carbide, titanium, aluminum, hastelloy, cobalt, brass, phosphor bronze, glass, rubber, ceramic, zirconium. Other suitable dimensions and materials are of course possible. The balls 32 may be solid or hollow. Spherical balls of suitable size are known and available and may be obtained, for example, from DIT Holland B. V. (Hilvarenbeek, Netherlands) or JSK°Nanoball (Wermelskirchen, Germany).
In an alternative configuration, instead of using spherical balls 32, a number of cylindrical elements could be used. Alternatively, an O-ring made of elastic or other suitable material could be used in place of the spherical balls 32, wherein the O-ring extends around the circumference of the ring(s).
In a third embodiment of the coating applicator 6, the entire coating applicator 6 is formed from a delivery medium 60, which in this example is a gel 62. The gel 62 can be any biocompatible substance with a high viscosity that will not react with the therapeutic agent 14, and may be, for example, silicone gel or oil. The gel 62 may be embedded with therapeutic agent 14, as shown in
A further embodiment, shown in
A typical stent 4 may have a length, for example, of about 20-40 mm and a wall thickness of about 80-100 μm. The coating material 14 coating may be applied, for example, in an amount of 1 μg/mm2. The coating applicator 6 can be mounted onto the distal end 7 of the sheath 2 by any conventional method, such as gluing, welding, mechanically fixing, melting the end of the sheath, or interference fit. The therapeutic agent in a coating of a medical device of the present invention may be any pharmaceutically acceptable agent such as a non-genetic or genetic therapeutic agent, a biomolecule, a small molecule, or cells.
Exemplary non-genetic therapeutic agents include anti-thrombogenic agents such as heparin, heparin derivatives, prostaglandin (including micellar prostaglandin E1), urokinase, and PPack (dextrophenylalanine proline arginine chloromethyl ketone); anti-proliferative agents such as enoxaparin, angiopeptin, sirolimus (rapamycin), tacrolimus, everolimus, zotarolimus, monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid; anti-inflammatory agents such as dexamethasone, rosiglitazone, prednisolone, corticosterone, budesonide, estrogen, estradiol, sulfasalazine, acetylsalicylic acid, mycophenolic acid, and mesalamine; anti-neoplastic/anti-proliferative/anti-mitotic agents such as paclitaxel, epothilone, cladribine, 5-fluorouracil, methotrexate, doxorubicin, daunorubicin, cyclosporine, cisplatin, vinblastine, vincristine, epothilones, endostatin, trapidil, halofuginone, and angiostatin; anti-cancer agents such as antisense inhibitors of c-myc-oncogene; anti-microbial agents such as triclosan, cephalosporins, aminoglycosides, nitrofurantoin, silver ions, compounds, or salts; biofilm synthesis inhibitors such as non-steroidal anti-inflammatory agents and chelating agents such as ethylenediaminetetraacetic acid, O,O′-bis(2-aminoethyl) ethyleneglycol-N,N,N′,N′-tetraacetic acid and mixtures thereof; antibiotics such as gentamicin, rifampin, minocycline, and ciprofloxacin; antibodies including chimeric antibodies and antibody fragments; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; nitric oxide; nitric oxide (NO) donors such as linsidomine, molsidomine, L-arginine, NO-carbohydrate adducts, polymeric or oligomeric NO adducts; anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, anti-thrombin compounds including anti-thrombin antibodies, platelet receptor antagonists, anti-platelet receptor antibodies, enoxaparin, hirudin, warfarin sodium, dicumarol, aspirin, prostaglandin inhibitors, platelet aggregation inhibitors such as cilostazol and tick antiplatelet factors; vascular cell growth promoters such as growth factors, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogenous vasoactive mechanisms; inhibitors of heat shock proteins such as geldanamycin; angiotensin converting enzyme (ACE) inhibitors; beta-blockers; PAR kinase (PARK) inhibitors; phospholamban inhibitors; protein-bound particle drugs such as ABRAXANE™; and any combinations and prodrugs of the above.
Exemplary biomolecules include peptides, polypeptides and proteins; oligonucleotides; nucleic acids such as double or single stranded DNA (including naked and cDNA), RNA, antisense nucleic acids such as antisense DNA and RNA, small interfering RNA (siRNA), and ribozymes; genes; carbohydrates; angiogenic factors including growth factors; cell cycle inhibitors; and anti-restenosis agents. Nucleic acids may be incorporated into delivery systems such as, for example, vectors (including viral vectors), plasmids or liposomes.
Non-limiting examples of proteins include SERCA 2 protein, monocyte chemoattractant proteins (“MCP-1”) and bone morphogenic proteins (“BMPs”), such as, for example, BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (VGR-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15. Preferred BMPs are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, and BMP-7. These BMPs can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively, or in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNAs encoding them. Non-limiting examples of genes include survival genes that protect against cell death, such as anti-apoptotic Bcl-2 family factors and Akt kinase; serca 2 gene; and combinations thereof. Non-limiting examples of angiogenic factors include acidic and basic fibroblast growth factors, vascular endothelial growth factor, epidermal growth factor, transforming growth factors α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor α, hepatocyte growth factor, and insulin-like growth factor. A non-limiting example of a cell cycle inhibitor is a cathepsin D (CD) inhibitor. Non-limiting examples of anti-restenosis agents include p15, p16, p18, p19, p21, p27, p53, p57, Rb, nFkB and E2F decoys, thymidine kinase and combinations thereof and other agents useful for interfering with cell proliferation.
Exemplary small molecules include hormones, nucleotides, amino acids, sugars, and lipids and compounds that have a molecular weight of less than 100 kD.
Exemplary cells include stem cells, progenitor cells, endothelial cells, adult cardiomyocytes, and smooth muscle cells. Cells can be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), or genetically engineered. Non-limiting examples of cells include side population (SP) cells, lineage negative (Lin−) cells including Lin− CD34−, Lin−CD34+, Lin−c Kit+, mesenchymal stem cells including mesenchymal stem cells with 5-aza, cord blood cells, cardiac or other tissue derived stem cells, whole bone marrow, bone marrow mononuclear cells, endothelial progenitor cells, skeletal myoblasts or satellite cells, muscle derived cells, G0 cells, endothelial cells, adult cardiomyocytes, fibroblasts, smooth muscle cells, adult cardiac fibroblasts+5-aza, genetically modified cells, tissue engineered grafts, MyoD scar fibroblasts, pacing cells, embryonic stem cell clones, embryonic stem cells, fetal or neonatal cells, immunologically masked cells, and teratoma derived cells.
Any of the therapeutic agents may be combined to the extent that such combination is biologically compatible.
Although the invention is described with reference to a self-expandable stent, the coating applicator can be used on other medical devices to coat the medical devices during delivery. Non-limiting examples of self-expandable medical devices that may be used according to the present invention include neurocoils, vena cava filters, filters, grafts, and heart valves. It is also possible that the invention could be adapted for use with non self-expandable medical devices which can include stents (balloon expandable or otherwise), catheters, guide wires, balloons, filters (e.g., vena cava filters), stent grafts, vascular grafts, intraluminal paving systems, pacemakers, electrodes, leads, defibrillators, joint and bone implants, spinal implants, access ports, intra-aortic balloon pumps, heart valves, sutures, artificial hearts, neurological stimulators, cochlear implants, retinal implants, and other devices that can be used in connection with therapeutic coatings. Such medical devices are implanted or otherwise used in body structures, cavities, or lumens such as the vasculature, gastrointestinal tract, abdomen, peritoneum, airways, esophagus, trachea, colon, rectum, biliary tract, urinary tract, prostate, brain, spine, lung, liver, heart, skeletal muscle, kidney, bladder, intestines, stomach, pancreas, ovary, uterus, cartilage, eye, bone, joints, and the like.
In the case, for example, of non-self expandable systems, a spring or pressure system could be added to insure that there is still a contact force between the coating applicator and the medical device. Thus, for example, the system may be adapted to coat a balloon-expandable stent crimped on a balloon. In an embodiment similar to that illustrated in
If desired, the medical device may also contain a radio-opacifying agent within its structure to facilitate viewing the medical device during insertion and at any point while the device is implanted. Non-limiting examples of radio-opacifying agents are bismuth subcarbonate, bismuth oxychloride, bismuth trioxide, barium sulfate, tungsten, and mixtures thereof.
The examples described herein are merely illustrative, as numerous other embodiments may be implemented without departing from the spirit and scope of the exemplary embodiments of the present invention. Moreover, while certain features of the invention may be shown on only certain embodiments or configurations, these features may be exchanged, added, and removed from and between the various embodiments or configurations while remaining within the scope of the invention. Likewise, methods described and disclosed may also be performed in various sequences, with some or all of the disclosed steps being performed in a different order than described while still remaining within the spirit and scope of the present invention.
The present application claims priority to U.S. provisional application Ser. No. 61/021,801 filed Jan. 17, 2008, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61021801 | Jan 2008 | US |