System and method for deteching roll rate sensor fault

Information

  • Patent Grant
  • 6941205
  • Patent Number
    6,941,205
  • Date Filed
    Wednesday, July 16, 2003
    21 years ago
  • Date Issued
    Tuesday, September 6, 2005
    19 years ago
Abstract
A control system for an automotive vehicle having a vehicle body includes a sensor cluster having a housing oriented within the vehicle body. A roll rate sensor is positioned within the housing and generates a roll rate sensor signal corresponding to a roll angular motion of the sensor housing. A controller receives the roll rate sensor signal and generates a reference roll angle. The controller also compares the reference roll angle to the roll rate sensor signal and generates a roll rate sensor fault signal in response a fault determined in said roll rate sensor.
Description
TECHNICAL FIELD

The present invention relates generally to automotive vehicle sensors, and more specifically, to a method and apparatus for detecting a roll rate sensor fault.


BACKGROUND

Current, rollover stability control (RSC) schemes address vehicle roll and include a variety of sensors sensing vehicle dynamic conditions. RSC systems further include a controller controlling a distributed brake pressure for reducing a tire moment such that the net moment of the vehicle is counter to the vehicle roll direction.


The RSC sensors include a speed sensor, a lateral acceleration sensor, a roll rate sensor, and a yaw rate sensor. The roll rate sensor is typically utilized to estimate the roll angle and to calculate the desired control pressure. Fault modes of the roll rate sensor, therefore, may cause unintended braking, reduced performance or even loss of stability. Such fault modes must be rapidly diagnosed and indicated so that the RSC system is shut down.


U.S. Pat. No. 6,315,373 addresses a similar issue of fault detection for a roll control device. It, however, merely addresses the detection of a lateral accelerometer in a system that uses lateral acceleration signals to detect vehicle roll over stability, which is insufficient for a comprehensive RSC system. Furthermore, this method relies heavily on the vehicle suspension model. Variations of the suspension parameters, such as the spring stiffness and damping ratio, may cause an unnecessary false warning (i.e. false positive) or a missed detection (i.e. false negative).


It is therefore desirable to provide a system that rapidly detects a roll rate sensor fault in a rollover stability control system that can be applied to various vehicle platforms without tuning. This method should also be able to detect a fault independent of the specific fault modes as well as detect a fault that is otherwise not detectable by checking electrical specifications.


SUMMARY OF THE INVENTION

In one aspect of the invention, a control system for an automotive vehicle having a vehicle body includes a sensor cluster having a housing oriented within the vehicle body. A roll rate sensor is positioned within the housing and generates a roll rate sensor signal corresponding to a roll angular motion of the sensor housing. A controller receives the roll rate sensor signal and generates a reference roll angle. The controller also compares the reference roll angle to the roll rate sensor signal and generates a roll rate sensor fault signal in response a fault determined in said roll rate sensor.


In a further aspect of the invention, a method for detecting a roll rate sensor fault includes generating a reference roll angle, generating a roll rate sensor signal, comparing the reference roll angle to the roll rate sensor signal, and generating a roll rate sensor fault signal.


One objective of the present invention is to provide a method for fault detection of a roll rate sensor onboard a vehicle. Sensor fault is not always detectable by sensor self test and/or system electronic monitoring, having detection relying on the fault to violate sensor specification. Because an in-range signal fault may occur, a redundancy check is included for a safety critical system. The proposed methodology is to provide such a redundancy check through software/analytical redundancy.


The present invention utilizes steering wheel angle, yaw rate, lateral acceleration, and vehicle speed signals to verify roll rate signal. Following the detection, the system, utilizing the roll rate signal may decide to directly shutdown, slowly shutdown, or use a different signal to operate in order to minimize negative effect.


The present invention utilizes both kinematics and dynamics relations among sensor signals and is robust to variation of suspension parameters and unavoidable biases in reference signals. It detects faults independent of the specific fault mode and detects faults that are otherwise not detectable.


Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of a vehicle with variable vectors and coordinator frames in accordance with one embodiment of the present invention.



FIG. 2 is a block diagram of the vehicle sensor system from FIG. 1.



FIG. 3 is a logic flow diagram of a method for signal compensation of the roll rate signal for all ‘valid’ biases in accordance with another embodiment of the present invention.



FIG. 4 is a logic flow diagram of a method for detecting a roll rate sensor fault in accordance with another embodiment of the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following figures the same reference numerals will be used to identify the same components. The present invention is preferably used to detect roll rate sensor fault in conjunction with a dynamic control system for an automotive vehicle, such as a yaw control system or a rollover control system. However, the present invention may also be used to detect roll rate sensor fault in any vehicle system including a roll rate sensor.


Referring to FIGS. 1 and 2, a safety system 18 for an automotive vehicle 19 having a sensing system 16 (sensing cluster), including a roll rate sensor 31, and a controller 26, is illustrated. Various forces and moments are acting thereon during a rollover condition.


The vehicle safety system 18 includes the sensor system 16. The sensing system 16 may use a six control sensor set including three axial accelerometers including a lateral accelerometer 27, a longitudinal accelerometer 28, and a vertical accelerometer 29 and three axial rotation rate detectors including a yaw rate sensor 30, a roll rate sensor 31, and a pitch rate sensor 32. The sensor system 16 further includes various other sensors, such as wheel speed sensors 20, a steering angle sensor 33 (hand-wheel sensor), and steering angle position sensors 34 (road-wheel sensors). The various sensors will be further described below.


The vehicle safety system 18 includes the roll rate sensor 31 positioned within the housing of the vehicle safety system 18. The roll rate sensor 31 generates a roll rate sensor signals corresponding to a roll angular motion of the sensor housing.


The vehicle safety system 18 also includes the controller 26. The controller 26 receives the roll rate sensor signals, generates a reference roll angle, and compares the reference roll angle to the roll rate sensor signal. The controller also generates a roll rate sensor fault signal in response to a fault determined in the roll rate sensor.


Based upon inputs from the sensor system 16, the controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors is used in a commercial embodiment. The safety device 38 may control an airbag 40 or a steering actuator or braking actuator at one or more of the wheels of the vehicle. Also, other vehicle components such as a suspension control 48 are used to adjust the suspension to prevent rollover. Suspension control 48 may include an anti-roll bar.


Generally, the vehicle 19 has a weight represented as Mg at the center of gravity of the vehicle 19, where g=9.8 m/s2 and M is the total mass of the vehicle 19.


The reference roll angle, a vehicle roll angle in the inertial frame (or the angle between vehicle body lateral axis and the horizon), is obtained with available signals other than roll rate, which is the signal to be verified. This roll angle is an independent reference (from roll rate) of vehicle (global) roll angle, and is therefore termed the “reference roll angle”.


In one embodiment of the present invention, the reference roll angle is generated within the controller 26 through the kinematics relationship between lateral acceleration, yaw rate, vehicle longitudinal speed, and vehicle roll angle are utilized. In other words,


 sin {circumflex over (φ)}=(u·r−ay)/g,


where φ is roll angle, u is vehicle speed, r is yaw rate, g is gravity constant and ay is lateral acceleration.


The reference roll angle is generated by applying steering wheel angle information to reduce the approximation error due to the negligence of the dynamic lateral velocity derivative in the above equation. Another embodiment of the present invention includes generating a reference roll angle using steering wheel angle from the steering angle sensor 33 or steering position sensor 34, yaw rate from the yaw rate sensor 30, lateral acceleration from the lateral acceleration sensor 27, and vehicle longitudinal speed from the speed sensor 20.


Alternately, the dynamic relation between lateral acceleration experienced by the vehicle body and suspension roll motion is used to generate the reference roll angle. The equation representation thereof is:
t[φφ.]=[01-K-C][φφ.]+[0M/I*H]ay.


After obtaining the reference roll angle, the roll rate signal is compensated within the controller 26 for all ‘valid’ signal biases.


A ‘valid’ signal bias refers to a bias that may occur due to either an electrical noise within sensor specification and/or due to a mechanical disturbance from maneuvers/road conditions.


For example, a vehicle pitch angle during a turn will induce a measurement bias due to the difference between inertial frame and rotational frame. To illustrate:

{dot over (φ)}=ωx+sin φ·tan θ·ωy+cos φ·tan θ·ωz

where {dot over (φ)} is Euler roll rate (inertial frame), ωx, ωy, and ωz are the rotational rate of the body-fixed coordinate. That is, ωx is the roll rate sensor measurement, ωz is the yaw rate sensor measurement, and φ is the roll angle of interest. Since vehicle roll angle is generally small, the system 18 is concerned with only the third term (of the right hand side) which is a product of vehicle yaw rate and vehicle pitch angle. That is,

{dot over (φ)}≈ωx+·tan θ·ωz


(Important to note is that when a roll rate fault does occur during a turning maneuver, the compensation mechanism may attempt to compensate the biased roll rate signal by adapting the pitch angle in the above equation.)


The vehicle roll rate signal averages to zero over a long period of time, therefore, electrical long term bias over time with a minute adjustment at each sampling time.


Similarly, the mechanical, long-term sensor alignment pitch angle is controlled with a minute adjustment at each sampling time during vehicle turning (i.e. ωz≠0) Because chattering is warranted with this approach, the adjustment should be small enough to prevent the chattering magnitude from exceeding the desired accuracy. The small adjustment restricts the adaptation speed. One skilled in the art will realize that the minute adjustment is only one possible embodiment of adjustment, and that numerous other methods are included in the present invention. Other adjustments, such as sliding mode control based on the basic logic/assumption described above, can be applied.


Referring to FIG. 3, a logic flow diagram 70 of signal compensation of the roll rate signal for all ‘valid’ biases is illustrated. Logic starts in operation block 72 where the signals to be processed are pre-filtering (e.g. with a low pass filter).


In operation block 74, current vehicle conditions are checked. In other words, a determination is made whether the yaw rate signal is of significant magnitude such that the signal to noise ratio in the subsequent calculation is meaningful and if current vehicle condition is appropriate to assume zero roll rate.


In inquiry block 76, a check is made whether a fault has already been detected. For a positive response, in operation block 78, roll rate compensation/pitch alignment estimation is stopped if a fault flag is set or is suspected to prevent unneeded and unwanted compensation.


Otherwise, in operation block 80, a compensation for electrical bias occurs with minute adjustments through logic, such as:


 rollrate_compensated=rawrollrate−offset_straight−(yawrate*RAD2DEG)*spaest;
spaest−=pSPA_DELTA*(sign(rollrate_compensated*yawrate));
spaest=min(MAXSPA,max(MINSPA,spaest)),

where spa_est is the sine of the pitch angle.


In operation block 82, the sine pitch estimation is low pass filtered to minimize undesirable chattering noises, through logic such as:

lpfspa=k*lpfspa+(1−k)*spaest.


In operation block 84, the total roll rate offset due to both electrical bias (offset_straight) and mechanical bias (lpf_spa and yawrate). is calculated through logic, such as:

offset_dynamic=offset_straight+(yawrate*RAD2 DEG)*(lpfspa).


In operation block 86, the offset straight is updated during straight line driving (i.e. when the turning condition of operation block 74 is not met) through logic as follows:

rollrate_compensated=rawrollrate−offset_straight;
offset_straight+=p_RR_DELTA*(sign(rollrate_compensated)).


Referring again to FIGS. 1 and 2, the compensated roll rate signal is compared, within the controller 26, with the reference roll angle through kinematics relation and the dynamic interaction related by vehicle suspension. During the comparison, a fault is not declared under a plausible bias due to imperfect compensation (of electrical/mechanical disturbances) nor when the accuracy of reference vehicle roll angle is in question.


The controller 26 compares a high pass filtered reference roll angle to a high pass filtered version of the integration of the compensated roll rate signal. When the two differ and the latter signal is nonzero, a fault is suspected.


The controller 26 compares a low pass filtered version of the derivative of the reference roll angle to the compensated roll rate signal. When the two differ and the roll rate is nonzero, a fault is suspected.


The controller 26 ideally includes a Kalman filter utilizing the suspension dynamic relation between roll angle acceleration, roll angle rate, and roll angle to compare the reference roll angle and the compensated roll rate.


The present invention designs an observer utilizing both the suspension dynamics and kinematics relationship between roll angle and rate. The present invention is robust to suspension parameters variations/uncertainties.


The present invention can be described as a mass-spring system, i.e.:
x.=[01-k-c]x+[01]d,x=[ϕϕ.],andy=[c11c12c21c22]x+f,

where k is the (torsional) spring stiffness, or roll stiffness of the suspension, and c is the (roll) damping coefficient (of the suspension). Because the roll stiffness and damping of a vehicle maybe non-linear and may vary between vehicles and between configurations, these parameter uncertainties are lumped into another term in the aforementioned equation as d and are viewed as disturbances. Because the measurement can be defined as any linear combination of roll angle and roll rate, the C matrix in the equation above is left as design parameters.
y^=[1101]x^,Additionally,x^.=[01-k-c]x^+[1000](y-y^),

and

residue=[1−1](y−ŷ),

therefore, it can be shown that





TFd−>residue≡0, TFroll_angle_errresidue=ss+1,andTFroll_rate_errresidue=-1s+1.


Defining the observer output as ‘residue’ causes a roll rate fault to appear as a residue in the observer output while a roll angle ‘measurement’ error appears as only a transient noise. Moreover, suspension characteristic changes, modeled as disturbance d, do not affect the observer output. Resultantly the same observer design can be applied to various vehicle platforms without tuning.


If the residue exceeds a pre-calibrated threshold, (which can be a pre-calibrated function of vehicle dynamic status,) a fault is suspected.


If a fault condition is indicated during the aforementioned comparison for a short period of time, having a pre-calibrated length, during which time the system did not detect any fault from the source signal that generated reference roll angle, then a roll rate sensor fault is concluded. Alternately, to facilitate a faster detection, a condition is added to check if roll rate signal is away from zero (which is the normal value) during this period.


Special fault detection: for sticky signal fault such that the roll rate signal sticks to a constant value, the following logic is developed:

    • If (abs(high pass filtered rollrate)<threshold1) holds true for more than a precalibrated constant.
    • (abs(high pass filtered suspension roll angle (from lateral acceleration))>threshold2) holds true for more than a precalibrated constant (not necessarily continuously),
    • then a fault is suspected. If this suspected situation has happened for more than a precalibrated number of times, set the fault flag.


Following detection of a roll rate sensor fault, the controller 26 responds by either shutting down the safety system 18 or any of the sub-systems of the safety system 18, such as roll-over control and compensation. Alternately, the controller 26 responds to roll rate sensor error by compensating for information that would normally be obtained from the roll rate sensor 31. In one embodiment, the controller 26 compensates for the roll rate sensor using signals from a combination sensors including, but not limited to: the lateral accelerometer 27, the longitudinal accelerometer 28, the vertical accelerometer 29, the yaw rate sensor 30, the pitch rate sensor 32, the wheel speed sensors 20, the steering angle sensor 33 (hand-wheel sensor), and steering angle position sensors 34 (road-wheel sensors). Regardless of the controller response to roll rate fault, a further embodiment of the present invention includes a driver notification of roll rate sensor problems.


Referring now to FIG. 4, a logic flow diagram 100 of a method for detecting a roll rate sensor fault is illustrated. Logic starts in operation block 102, where a reference roll angle is generated from available signals other than the roll rate signal, as was discussed previously.


In operation block 104, a roll rate sensor signal is generated from the roll rate sensor.


In operation block 106, the reference roll angle is compared to the roll rate sensor signal. In operation block 108, a roll rate sensor fault signal is generated.


In operation, a method for detecting a roll rate sensor fault includes generating a reference roll angle in an inertial frame with available signals other than roll rate, generating a roll rate sensor signal, compensating the roll rate sensor signal for all valid signal biases, comparing the reference roll angle to the roll rate sensor signal through a kinematics relation and a dynamic interaction related by a vehicle suspension, and generating a roll rate sensor fault signal.


While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

Claims
  • 1. A method for detecting a roll rate sensor fault comprising: generating a reference roll angle; generating a roll rate sensor signal; comparing said reference roll angle to said roll rate sensor signal; and generating a roll rate sensor fault signal in response to comparing said reference roll angle to said roll rate sensor signal; and compensating for a valid signal bias in said roll rate sensor signal.
  • 2. A method as recited in claim 1, wherein compensating for a valid signal bias further comprises adjusting an electrical long term bias over time with a minute adjustment at each sampling time or a sliding mode control.
  • 3. A method as recited in claim 1, wherein compensating for a valid signal bias further comprises adjusting a mechanical long term sensor alignment pitch angle with a minute adjustment at each sampling time during vehicle turning or a sliding mode control during vehicle turning.
  • 4. A method as recited in claim 1, wherein compensating for a valid signal bias further comprises halting roll rate sensor signal compensation in response to a fault flag or in response to a situation where compensation is unnecessary.
  • 5. A method as recited in claim 1, wherein generating said reference roll angle further comprises sensing at least one of lateral acceleration, yaw rate, vehicle longitudinal speed, vehicle roll angle, wheel speed, or a GPS.
  • 6. A method as recited in claim 1 further comprising refining said reference roll angle through steering wheel angle information to reduce a negligence error of a lateral velocity derivative.
  • 7. A method as recited in claim 1 further comprising refining said reference roll angle with a calculation of a dynamic relation between a vehicle lateral acceleration and a suspension roll motion.
  • 8. A method as recited in claim 1, wherein comparing said reference roll angle to said roll rate sensor signal comprises comparing a low pass filter version of a derivative of said reference roll angle with said roll rate sensor signal.
  • 9. A method as recited in claim 1, wherein comparing said reference roll angle to said roll rate sensor signal comprises comparing a high pass filtered reference roll angle with a high pass filtered version of an integration of said roll rate sensor signal.
  • 10. A method as recited in claim 1, wherein comparing said reference roll angle to said roll rate sensor signal comprises comparing said reference roll angle and said roll rate sensor signal through building a filter utilizing both a suspension dynamics and a kinematics relationship between roll angle and roll rate.
  • 11. A method as recited in claim 1, wherein comparing said reference roll angle to said roll rate sensor signal comprises comparing said reference roll angle to said roll rate sensor signal through an observer that utilizes a kinematics relation and a dynamics relation.
  • 12. A method as recited in claim 1, wherein comparing said reference roll angle to said roll rate sensor signal further comprises utilizing generating a dynamic bias estimate with a logic having said vehicle roll rate signal averaging to zero over a long period of time.
  • 13. A method as recited in claim 1, wherein generating said roll rate sensor fault signal further comprises generating a lateral acceleration signal; filtering said lateral acceleration signal; generating a filtered lateral acceleration signal; high pass filtering said roll rate sensor signal; generating a filtered roll rate sensor signal; and comparing said filtered lateral acceleration signal to said filtered roll rate sensor signal.
  • 14. A method as recited in claim 1 further comprising shutting down a safety system in response to roll rate sensor fault or error.
  • 15. A method as recited in claim 1 further comprising generating a substitute signal for said roll rate signal in response to roll rate sensor fault.
  • 16. A method for detecting a roll rate sensor fault comprising: generating a reference roll angle in an inertial frame with available signals other than roll rate; generating a roll rate sensor signal; compensating said roll rate sensor signal for all valid signal biases; comparing said reference roll angle to said roll rate sensor signal through a kinematics relation and a dynamic interaction related by a vehicle suspension; and generating a roll rate sensor fault signal comparing said reference roll angle to said roll rate sensor signal.
  • 17. A method as recited in claim 16, wherein compensating for a valid signal bias further comprises halting roll rate sensor signal compensation in response to a fault flag or in response to a situation where compensation is unnecessary.
  • 18. A method as recited in claim 16, wherein generating said roll rate sensor fault signal further comprises generating a lateral acceleration signal; filtering said lateral acceleration signal; generating a filtered lateral acceleration signal; high pass filtering said roll rate sensor signal; generating a filtered roll rate sensor signal; and comparing said filtered lateral acceleration signal to said filtered roll rate sensor signal.
  • 19. A method as recited in claim 16 further comprising refining said reference roll angle with a calculation of a dynamic relation between a vehicle lateral acceleration and a suspension roll motion.
  • 20. A control system for an automotive vehicle having a vehicle body comprising: a sensor cluster having a housing oriented within the vehicle body; a roll rate sensor positioned within the housing adapted to generate a roll rate sensor signal corresponding to an roll angular motion of the sensor housing; and a controller adapted to receive said roll rate sensor signal, said controller further adapted to generate a reference roll angle, and compare said reference roll angle to said roll rate sensor signal, said controller further adapted to generate a roll rate sensor fault signal in response to a fault determined in said roll rate sensor, wherein said controller is further adapted to compensate said roll rate sensor signal for all valid signal biases.
  • 21. A system as recited in claim 20, wherein said controller is further adapted to refine said reference roll angle through steering wheel angle information.
  • 22. A system as recited in claim 20, wherein said controller is further adapted to shut down a roll over detection system in response to said roll rate sensor fault signal.
  • 23. A system as recited in claim 20, wherein said controller is further adapted to generate a substitute roll rate signal from sensor signals from at least one of a lateral accelerometer, a longitudinal accelerometer, a vertical accelerometer, a yaw rate sensor, a pitch rate sensor, a wheel speed sensor, a steering angle sensor, or a steering angle position sensor.
  • 24. A method for detecting a vehicle-dynamic sensor fault comprising: generating a reference vehicle-dynamic sensor signal; generating a vehicle-dynamic sensor signal; and compensating for a valid signal bias in said vehicle-dynamic sensor signal by adjusting a mechanical long term sensor alignment angle with a minute adjustment at each sampling time during a vehicle operation.
  • 25. The method of claim 24 further comprising comparing said reference vehicle-dynamic sensor signal to said vehicle-dynamic sensor signal.
  • 26. The method of claim 25 further comprising generating a sensor fault signal.
RELATED APPLICATION

The present invention claims priority to provisional application No. 60/400,155 filed on Aug. 1, 2002, the disclosure of which is incorporated by reference herein.

US Referenced Citations (194)
Number Name Date Kind
2917126 Phillips Dec 1959 A
3604273 Kwok et al. Sep 1971 A
3608925 Murphy Sep 1971 A
3899028 Morris et al. Aug 1975 A
3948567 Kasselmann et al. Apr 1976 A
3972543 Presley et al. Aug 1976 A
4023864 Lang et al. May 1977 A
RE30550 Reise Mar 1981 E
4480714 Yabuta et al. Nov 1984 A
4592565 Eagle Jun 1986 A
4597462 Sano et al. Jul 1986 A
4650212 Yoshimura Mar 1987 A
4679808 Ito et al. Jul 1987 A
4690553 Fukamizu et al. Sep 1987 A
4761022 Ohashi Aug 1988 A
4765649 Ikemoto et al. Aug 1988 A
4767588 Ito Aug 1988 A
4778773 Sukegawa Oct 1988 A
4809183 Eckert Feb 1989 A
4827416 Kawagoe et al. May 1989 A
4872116 Ito et al. Oct 1989 A
4888696 Akatsu et al. Dec 1989 A
4898431 Karnopp et al. Feb 1990 A
4930082 Harara et al. May 1990 A
4951198 Watanabe et al. Aug 1990 A
4960292 Sadler Oct 1990 A
4964679 Rath Oct 1990 A
4967865 Schindler Nov 1990 A
4976330 Matsumoto Dec 1990 A
4998593 Karnopp et al. Mar 1991 A
5033770 Kamimura et al. Jul 1991 A
5058017 Adachi et al. Oct 1991 A
5066041 Kindermann et al. Nov 1991 A
5088040 Matsuda et al. Feb 1992 A
5089967 Haseda et al. Feb 1992 A
5163319 Spies et al. Nov 1992 A
5200896 Sato et al. Apr 1993 A
5208749 Adachi et al. May 1993 A
5224765 Matsuda Jul 1993 A
5228757 Ito et al. Jul 1993 A
5239868 Takenaka et al. Aug 1993 A
5247466 Shimada et al. Sep 1993 A
5261503 Yasui Nov 1993 A
5265020 Nakayama Nov 1993 A
5278761 Ander et al. Jan 1994 A
5282134 Gioutsos et al. Jan 1994 A
5311431 Cao et al. May 1994 A
5324102 Roll et al. Jun 1994 A
5335176 Nakamura Aug 1994 A
5365439 Momose et al. Nov 1994 A
5370199 Akuta et al. Dec 1994 A
5408411 Nakamura et al. Apr 1995 A
5446658 Pastor et al. Aug 1995 A
5510989 Zabler et al. Apr 1996 A
5548536 Ammon Aug 1996 A
5549328 Cubalchini Aug 1996 A
5579245 Kato Nov 1996 A
5598335 You Jan 1997 A
5602734 Kithil Feb 1997 A
5610575 Gioutsos Mar 1997 A
5627756 Fukada et al. May 1997 A
5634698 Cao et al. Jun 1997 A
5640324 Inagaki Jun 1997 A
5648903 Liubakka Jul 1997 A
5671982 Wanke Sep 1997 A
5676433 Inagaki et al. Oct 1997 A
5694319 Suissa et al. Dec 1997 A
5703776 Soung Dec 1997 A
5707117 Hu et al. Jan 1998 A
5707120 Monzaki et al. Jan 1998 A
5720533 Pastor et al. Feb 1998 A
5723782 Bolles, Jr. Mar 1998 A
5732377 Eckert Mar 1998 A
5732378 Eckert et al. Mar 1998 A
5732379 Eckert et al. Mar 1998 A
5736939 Corcoran Apr 1998 A
5737224 Jeenicke et al. Apr 1998 A
5740041 Iyoda Apr 1998 A
5742918 Ashrafi et al. Apr 1998 A
5742919 Ashrafi et al. Apr 1998 A
5762406 Yasui et al. Jun 1998 A
5782543 Monzaki et al. Jul 1998 A
5787375 Madau et al. Jul 1998 A
5801647 Survo et al. Sep 1998 A
5809434 Ashrafi et al. Sep 1998 A
5816670 Yamada et al. Oct 1998 A
5825284 Dunwoody et al. Oct 1998 A
5842143 Lohrenz et al. Nov 1998 A
5857535 Brooks Jan 1999 A
5869943 Nakashima et al. Feb 1999 A
5878357 Sivashankar et al. Mar 1999 A
5893896 Imamura et al. Apr 1999 A
5925083 Ackermann Jul 1999 A
5931546 Nakashima et al. Aug 1999 A
5944137 Moser et al. Aug 1999 A
5944392 Tachihata et al. Aug 1999 A
5946644 Cowan et al. Aug 1999 A
5964819 Naito Oct 1999 A
5971503 Joyce et al. Oct 1999 A
6002974 Schiffman Dec 1999 A
6002975 Schiffman et al. Dec 1999 A
6026926 Noro et al. Feb 2000 A
6038495 Schiffmann Mar 2000 A
6040916 Griesinger Mar 2000 A
6050360 Pattok et al. Apr 2000 A
6055472 Breunig et al. Apr 2000 A
6062336 Amberkar et al. May 2000 A
6065558 Wielenga May 2000 A
6073065 Brown et al. Jun 2000 A
6079513 Nishizaki et al. Jun 2000 A
6081761 Harada et al. Jun 2000 A
6085860 Hackl et al. Jul 2000 A
6086168 Rump Jul 2000 A
6089344 Baughn et al. Jul 2000 A
6104284 Otsuka Aug 2000 A
6122568 Madau et al. Sep 2000 A
6122584 Lin et al. Sep 2000 A
6129172 Yoshida Oct 2000 A
6141604 Mattes et al. Oct 2000 A
6141605 Joyce Oct 2000 A
6144904 Tseng Nov 2000 A
6149251 Wuerth et al. Nov 2000 A
6161905 Hac et al. Dec 2000 A
6169939 Raad et al. Jan 2001 B1
6176555 Semsey Jan 2001 B1
6178375 Breunig Jan 2001 B1
6179310 Clare et al. Jan 2001 B1
6179394 Browalski et al. Jan 2001 B1
6184637 Yamawaki et al. Feb 2001 B1
6185485 Ashrafti et al. Feb 2001 B1
6186267 Hackl et al. Feb 2001 B1
6192305 Schiffmann Feb 2001 B1
6195606 Barta et al. Feb 2001 B1
6198988 Tseng Mar 2001 B1
6202009 Tseng Mar 2001 B1
6202020 Kyrtsos Mar 2001 B1
6206383 Burdock Mar 2001 B1
6219604 Dilger et al. Apr 2001 B1
6223114 Boros et al. Apr 2001 B1
6226579 Hackl et al. May 2001 B1
6227482 Yamamoto May 2001 B1
6233510 Platner et al. May 2001 B1
6263261 Brown et al. Jul 2001 B1
6266596 Hartman et al. Jul 2001 B1
6272420 Schramm et al. Aug 2001 B1
6278930 Yamada et al. Aug 2001 B1
6282471 Burdock et al. Aug 2001 B1
6282472 Jones et al. Aug 2001 B1
6282474 Chou et al. Aug 2001 B1
6292734 Murakami et al. Sep 2001 B1
6292759 Schiffmann Sep 2001 B1
6311111 Leimbach et al. Oct 2001 B1
6314329 Madau et al. Nov 2001 B1
6315373 Yamada et al. Nov 2001 B1
6321141 Leimbach Nov 2001 B1
6324446 Brown et al. Nov 2001 B1
6324458 Takagi et al. Nov 2001 B1
6330522 Takeuchi Dec 2001 B1
6332104 Brown et al. Dec 2001 B1
6338012 Brown et al. Jan 2002 B2
6349247 Schramm et al. Feb 2002 B1
6351694 Tseng et al. Feb 2002 B1
6352318 Hosomi et al. Mar 2002 B1
6356188 Meyers et al. Mar 2002 B1
6370938 Leimbach et al. Apr 2002 B1
6394240 Barwick May 2002 B1
6397127 Meyers et al. May 2002 B1
6419240 Burdock et al. Jul 2002 B1
6428118 Blosch Aug 2002 B1
6438464 Woywod et al. Aug 2002 B1
6456905 Katz et al. Sep 2002 B2
6477480 Tseng et al. Nov 2002 B1
6496758 Rhode et al. Dec 2002 B2
6496763 Griessbach Dec 2002 B2
6498976 Ehlbeck et al. Dec 2002 B1
6542792 Schubert et al. Apr 2003 B2
6547022 Hosomi et al. Apr 2003 B2
6554293 Fennel et al. Apr 2003 B1
6556908 Lu et al. Apr 2003 B1
6559634 Yamada May 2003 B2
6600985 Weaver Jul 2003 B2
20020014799 Nagae Feb 2002 A1
20020040268 Yamada et al. Apr 2002 A1
20020056582 Chubb May 2002 A1
20020065591 Schubert et al. May 2002 A1
20020075139 Yamamoto et al. Jun 2002 A1
20020087235 Aga et al. Jul 2002 A1
20020095244 Rhode et al. Jul 2002 A1
20020096003 Yamada et al. Jul 2002 A1
20020128795 Schiffmann Sep 2002 A1
20020139599 Lu Oct 2002 A1
20020163437 Haas Nov 2002 A1
20020193916 Katz et al. Dec 2002 A1
20030055549 Barta et al. Mar 2003 A1
Foreign Referenced Citations (39)
Number Date Country
36 16 907 Nov 1987 DE
38 15 938 Nov 1989 DE
43 21 571 Jan 1994 DE
42 27 886 Feb 1994 DE
43 35 979 Apr 1995 DE
43 42 732 Jun 1995 DE
199 07 633 Oct 1999 DE
0 430 813 Dec 1993 EP
0 662 601 Jul 1995 EP
0 758 601 Feb 1997 EP
1 006 026 Jun 2000 EP
24 25 342 Dec 1979 FR
2257403 Jan 1993 GB
2 342 078 Apr 2000 GB
62055211 Sep 1985 JP
63116918 May 1988 JP
63151539 Jun 1988 JP
63203456 Aug 1988 JP
1101238 Apr 1989 JP
2171373 Jul 1990 JP
3042360 Feb 1991 JP
3045452 Feb 1991 JP
4008837 Jan 1992 JP
5016699 Jan 1993 JP
5254406 Oct 1993 JP
6278586 Oct 1994 JP
6297985 Oct 1994 JP
6312612 Nov 1994 JP
8080825 Mar 1996 JP
9005352 Jan 1997 JP
10024819 Jan 1998 JP
10329682 Dec 1998 JP
11011272 Jan 1999 JP
11170992 Jun 1999 JP
11254992 Sep 1999 JP
11255093 Sep 1999 JP
11304663 Oct 1999 JP
11304662 Nov 1999 JP
816849 Mar 1981 SU
Related Publications (1)
Number Date Country
20040059480 A1 Mar 2004 US
Provisional Applications (1)
Number Date Country
60400155 Aug 2002 US