The present invention relates generally to automotive vehicle sensors, and more specifically, to a method and apparatus for detecting a roll rate sensor fault.
Current, rollover stability control (RSC) schemes address vehicle roll and include a variety of sensors sensing vehicle dynamic conditions. RSC systems further include a controller controlling a distributed brake pressure for reducing a tire moment such that the net moment of the vehicle is counter to the vehicle roll direction.
The RSC sensors include a speed sensor, a lateral acceleration sensor, a roll rate sensor, and a yaw rate sensor. The roll rate sensor is typically utilized to estimate the roll angle and to calculate the desired control pressure. Fault modes of the roll rate sensor, therefore, may cause unintended braking, reduced performance or even loss of stability. Such fault modes must be rapidly diagnosed and indicated so that the RSC system is shut down.
U.S. Pat. No. 6,315,373 addresses a similar issue of fault detection for a roll control device. It, however, merely addresses the detection of a lateral accelerometer in a system that uses lateral acceleration signals to detect vehicle roll over stability, which is insufficient for a comprehensive RSC system. Furthermore, this method relies heavily on the vehicle suspension model. Variations of the suspension parameters, such as the spring stiffness and damping ratio, may cause an unnecessary false warning (i.e. false positive) or a missed detection (i.e. false negative).
It is therefore desirable to provide a system that rapidly detects a roll rate sensor fault in a rollover stability control system that can be applied to various vehicle platforms without tuning. This method should also be able to detect a fault independent of the specific fault modes as well as detect a fault that is otherwise not detectable by checking electrical specifications.
In one aspect of the invention, a control system for an automotive vehicle having a vehicle body includes a sensor cluster having a housing oriented within the vehicle body. A roll rate sensor is positioned within the housing and generates a roll rate sensor signal corresponding to a roll angular motion of the sensor housing. A controller receives the roll rate sensor signal and generates a reference roll angle. The controller also compares the reference roll angle to the roll rate sensor signal and generates a roll rate sensor fault signal in response a fault determined in said roll rate sensor.
In a further aspect of the invention, a method for detecting a roll rate sensor fault includes generating a reference roll angle, generating a roll rate sensor signal, comparing the reference roll angle to the roll rate sensor signal, and generating a roll rate sensor fault signal.
One objective of the present invention is to provide a method for fault detection of a roll rate sensor onboard a vehicle. Sensor fault is not always detectable by sensor self test and/or system electronic monitoring, having detection relying on the fault to violate sensor specification. Because an in-range signal fault may occur, a redundancy check is included for a safety critical system. The proposed methodology is to provide such a redundancy check through software/analytical redundancy.
The present invention utilizes steering wheel angle, yaw rate, lateral acceleration, and vehicle speed signals to verify roll rate signal. Following the detection, the system, utilizing the roll rate signal may decide to directly shutdown, slowly shutdown, or use a different signal to operate in order to minimize negative effect.
The present invention utilizes both kinematics and dynamics relations among sensor signals and is robust to variation of suspension parameters and unavoidable biases in reference signals. It detects faults independent of the specific fault mode and detects faults that are otherwise not detectable.
Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures the same reference numerals will be used to identify the same components. The present invention is preferably used to detect roll rate sensor fault in conjunction with a dynamic control system for an automotive vehicle, such as a yaw control system or a rollover control system. However, the present invention may also be used to detect roll rate sensor fault in any vehicle system including a roll rate sensor.
Referring to
The vehicle safety system 18 includes the sensor system 16. The sensing system 16 may use a six control sensor set including three axial accelerometers including a lateral accelerometer 27, a longitudinal accelerometer 28, and a vertical accelerometer 29 and three axial rotation rate detectors including a yaw rate sensor 30, a roll rate sensor 31, and a pitch rate sensor 32. The sensor system 16 further includes various other sensors, such as wheel speed sensors 20, a steering angle sensor 33 (hand-wheel sensor), and steering angle position sensors 34 (road-wheel sensors). The various sensors will be further described below.
The vehicle safety system 18 includes the roll rate sensor 31 positioned within the housing of the vehicle safety system 18. The roll rate sensor 31 generates a roll rate sensor signals corresponding to a roll angular motion of the sensor housing.
The vehicle safety system 18 also includes the controller 26. The controller 26 receives the roll rate sensor signals, generates a reference roll angle, and compares the reference roll angle to the roll rate sensor signal. The controller also generates a roll rate sensor fault signal in response to a fault determined in the roll rate sensor.
Based upon inputs from the sensor system 16, the controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors is used in a commercial embodiment. The safety device 38 may control an airbag 40 or a steering actuator or braking actuator at one or more of the wheels of the vehicle. Also, other vehicle components such as a suspension control 48 are used to adjust the suspension to prevent rollover. Suspension control 48 may include an anti-roll bar.
Generally, the vehicle 19 has a weight represented as Mg at the center of gravity of the vehicle 19, where g=9.8 m/s2 and M is the total mass of the vehicle 19.
The reference roll angle, a vehicle roll angle in the inertial frame (or the angle between vehicle body lateral axis and the horizon), is obtained with available signals other than roll rate, which is the signal to be verified. This roll angle is an independent reference (from roll rate) of vehicle (global) roll angle, and is therefore termed the “reference roll angle”.
In one embodiment of the present invention, the reference roll angle is generated within the controller 26 through the kinematics relationship between lateral acceleration, yaw rate, vehicle longitudinal speed, and vehicle roll angle are utilized. In other words,
sin {circumflex over (φ)}=(u·r−ay)/g,
where φ is roll angle, u is vehicle speed, r is yaw rate, g is gravity constant and ay is lateral acceleration.
The reference roll angle is generated by applying steering wheel angle information to reduce the approximation error due to the negligence of the dynamic lateral velocity derivative in the above equation. Another embodiment of the present invention includes generating a reference roll angle using steering wheel angle from the steering angle sensor 33 or steering position sensor 34, yaw rate from the yaw rate sensor 30, lateral acceleration from the lateral acceleration sensor 27, and vehicle longitudinal speed from the speed sensor 20.
Alternately, the dynamic relation between lateral acceleration experienced by the vehicle body and suspension roll motion is used to generate the reference roll angle. The equation representation thereof is:
After obtaining the reference roll angle, the roll rate signal is compensated within the controller 26 for all ‘valid’ signal biases.
A ‘valid’ signal bias refers to a bias that may occur due to either an electrical noise within sensor specification and/or due to a mechanical disturbance from maneuvers/road conditions.
For example, a vehicle pitch angle during a turn will induce a measurement bias due to the difference between inertial frame and rotational frame. To illustrate:
{dot over (φ)}=ωx+sin φ·tan θ·ωy+cos φ·tan θ·ωz
where {dot over (φ)} is Euler roll rate (inertial frame), ωx, ωy, and ωz are the rotational rate of the body-fixed coordinate. That is, ωx is the roll rate sensor measurement, ωz is the yaw rate sensor measurement, and φ is the roll angle of interest. Since vehicle roll angle is generally small, the system 18 is concerned with only the third term (of the right hand side) which is a product of vehicle yaw rate and vehicle pitch angle. That is,
{dot over (φ)}≈ωx+·tan θ·ωz
(Important to note is that when a roll rate fault does occur during a turning maneuver, the compensation mechanism may attempt to compensate the biased roll rate signal by adapting the pitch angle in the above equation.)
The vehicle roll rate signal averages to zero over a long period of time, therefore, electrical long term bias over time with a minute adjustment at each sampling time.
Similarly, the mechanical, long-term sensor alignment pitch angle is controlled with a minute adjustment at each sampling time during vehicle turning (i.e. ωz≠0) Because chattering is warranted with this approach, the adjustment should be small enough to prevent the chattering magnitude from exceeding the desired accuracy. The small adjustment restricts the adaptation speed. One skilled in the art will realize that the minute adjustment is only one possible embodiment of adjustment, and that numerous other methods are included in the present invention. Other adjustments, such as sliding mode control based on the basic logic/assumption described above, can be applied.
Referring to
In operation block 74, current vehicle conditions are checked. In other words, a determination is made whether the yaw rate signal is of significant magnitude such that the signal to noise ratio in the subsequent calculation is meaningful and if current vehicle condition is appropriate to assume zero roll rate.
In inquiry block 76, a check is made whether a fault has already been detected. For a positive response, in operation block 78, roll rate compensation/pitch alignment estimation is stopped if a fault flag is set or is suspected to prevent unneeded and unwanted compensation.
Otherwise, in operation block 80, a compensation for electrical bias occurs with minute adjustments through logic, such as:
rollrate_compensated=rawrollrate−offset_straight−(yawrate*RAD2DEG)*spa—est;
spa—est−=p—SPA_DELTA*(sign(rollrate_compensated*yawrate));
spa—est=min(MAX—SPA,max(MIN—SPA,spa—est)),
where spa_est is the sine of the pitch angle.
In operation block 82, the sine pitch estimation is low pass filtered to minimize undesirable chattering noises, through logic such as:
lpf—spa=k*lpf—spa+(1−k)*spa—est.
In operation block 84, the total roll rate offset due to both electrical bias (offset_straight) and mechanical bias (lpf_spa and yawrate). is calculated through logic, such as:
offset_dynamic=offset_straight+(yawrate*RAD2 DEG)*(lpf—spa).
In operation block 86, the offset straight is updated during straight line driving (i.e. when the turning condition of operation block 74 is not met) through logic as follows:
rollrate_compensated=rawrollrate−offset_straight;
offset_straight+=p_RR_DELTA*(sign(rollrate_compensated)).
Referring again to
The controller 26 compares a high pass filtered reference roll angle to a high pass filtered version of the integration of the compensated roll rate signal. When the two differ and the latter signal is nonzero, a fault is suspected.
The controller 26 compares a low pass filtered version of the derivative of the reference roll angle to the compensated roll rate signal. When the two differ and the roll rate is nonzero, a fault is suspected.
The controller 26 ideally includes a Kalman filter utilizing the suspension dynamic relation between roll angle acceleration, roll angle rate, and roll angle to compare the reference roll angle and the compensated roll rate.
The present invention designs an observer utilizing both the suspension dynamics and kinematics relationship between roll angle and rate. The present invention is robust to suspension parameters variations/uncertainties.
The present invention can be described as a mass-spring system, i.e.:
where k is the (torsional) spring stiffness, or roll stiffness of the suspension, and c is the (roll) damping coefficient (of the suspension). Because the roll stiffness and damping of a vehicle maybe non-linear and may vary between vehicles and between configurations, these parameter uncertainties are lumped into another term in the aforementioned equation as d and are viewed as disturbances. Because the measurement can be defined as any linear combination of roll angle and roll rate, the C matrix in the equation above is left as design parameters.
and
residue=[1−1](y−ŷ),
therefore, it can be shown that
TFd−>residue≡0,
Defining the observer output as ‘residue’ causes a roll rate fault to appear as a residue in the observer output while a roll angle ‘measurement’ error appears as only a transient noise. Moreover, suspension characteristic changes, modeled as disturbance d, do not affect the observer output. Resultantly the same observer design can be applied to various vehicle platforms without tuning.
If the residue exceeds a pre-calibrated threshold, (which can be a pre-calibrated function of vehicle dynamic status,) a fault is suspected.
If a fault condition is indicated during the aforementioned comparison for a short period of time, having a pre-calibrated length, during which time the system did not detect any fault from the source signal that generated reference roll angle, then a roll rate sensor fault is concluded. Alternately, to facilitate a faster detection, a condition is added to check if roll rate signal is away from zero (which is the normal value) during this period.
Special fault detection: for sticky signal fault such that the roll rate signal sticks to a constant value, the following logic is developed:
Following detection of a roll rate sensor fault, the controller 26 responds by either shutting down the safety system 18 or any of the sub-systems of the safety system 18, such as roll-over control and compensation. Alternately, the controller 26 responds to roll rate sensor error by compensating for information that would normally be obtained from the roll rate sensor 31. In one embodiment, the controller 26 compensates for the roll rate sensor using signals from a combination sensors including, but not limited to: the lateral accelerometer 27, the longitudinal accelerometer 28, the vertical accelerometer 29, the yaw rate sensor 30, the pitch rate sensor 32, the wheel speed sensors 20, the steering angle sensor 33 (hand-wheel sensor), and steering angle position sensors 34 (road-wheel sensors). Regardless of the controller response to roll rate fault, a further embodiment of the present invention includes a driver notification of roll rate sensor problems.
Referring now to
In operation block 104, a roll rate sensor signal is generated from the roll rate sensor.
In operation block 106, the reference roll angle is compared to the roll rate sensor signal. In operation block 108, a roll rate sensor fault signal is generated.
In operation, a method for detecting a roll rate sensor fault includes generating a reference roll angle in an inertial frame with available signals other than roll rate, generating a roll rate sensor signal, compensating the roll rate sensor signal for all valid signal biases, comparing the reference roll angle to the roll rate sensor signal through a kinematics relation and a dynamic interaction related by a vehicle suspension, and generating a roll rate sensor fault signal.
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
The present invention claims priority to provisional application No. 60/400,155 filed on Aug. 1, 2002, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2917126 | Phillips | Dec 1959 | A |
3604273 | Kwok et al. | Sep 1971 | A |
3608925 | Murphy | Sep 1971 | A |
3899028 | Morris et al. | Aug 1975 | A |
3948567 | Kasselmann et al. | Apr 1976 | A |
3972543 | Presley et al. | Aug 1976 | A |
4023864 | Lang et al. | May 1977 | A |
RE30550 | Reise | Mar 1981 | E |
4480714 | Yabuta et al. | Nov 1984 | A |
4592565 | Eagle | Jun 1986 | A |
4597462 | Sano et al. | Jul 1986 | A |
4650212 | Yoshimura | Mar 1987 | A |
4679808 | Ito et al. | Jul 1987 | A |
4690553 | Fukamizu et al. | Sep 1987 | A |
4761022 | Ohashi | Aug 1988 | A |
4765649 | Ikemoto et al. | Aug 1988 | A |
4767588 | Ito | Aug 1988 | A |
4778773 | Sukegawa | Oct 1988 | A |
4809183 | Eckert | Feb 1989 | A |
4827416 | Kawagoe et al. | May 1989 | A |
4872116 | Ito et al. | Oct 1989 | A |
4888696 | Akatsu et al. | Dec 1989 | A |
4898431 | Karnopp et al. | Feb 1990 | A |
4930082 | Harara et al. | May 1990 | A |
4951198 | Watanabe et al. | Aug 1990 | A |
4960292 | Sadler | Oct 1990 | A |
4964679 | Rath | Oct 1990 | A |
4967865 | Schindler | Nov 1990 | A |
4976330 | Matsumoto | Dec 1990 | A |
4998593 | Karnopp et al. | Mar 1991 | A |
5033770 | Kamimura et al. | Jul 1991 | A |
5058017 | Adachi et al. | Oct 1991 | A |
5066041 | Kindermann et al. | Nov 1991 | A |
5088040 | Matsuda et al. | Feb 1992 | A |
5089967 | Haseda et al. | Feb 1992 | A |
5163319 | Spies et al. | Nov 1992 | A |
5200896 | Sato et al. | Apr 1993 | A |
5208749 | Adachi et al. | May 1993 | A |
5224765 | Matsuda | Jul 1993 | A |
5228757 | Ito et al. | Jul 1993 | A |
5239868 | Takenaka et al. | Aug 1993 | A |
5247466 | Shimada et al. | Sep 1993 | A |
5261503 | Yasui | Nov 1993 | A |
5265020 | Nakayama | Nov 1993 | A |
5278761 | Ander et al. | Jan 1994 | A |
5282134 | Gioutsos et al. | Jan 1994 | A |
5311431 | Cao et al. | May 1994 | A |
5324102 | Roll et al. | Jun 1994 | A |
5335176 | Nakamura | Aug 1994 | A |
5365439 | Momose et al. | Nov 1994 | A |
5370199 | Akuta et al. | Dec 1994 | A |
5408411 | Nakamura et al. | Apr 1995 | A |
5446658 | Pastor et al. | Aug 1995 | A |
5510989 | Zabler et al. | Apr 1996 | A |
5548536 | Ammon | Aug 1996 | A |
5549328 | Cubalchini | Aug 1996 | A |
5579245 | Kato | Nov 1996 | A |
5598335 | You | Jan 1997 | A |
5602734 | Kithil | Feb 1997 | A |
5610575 | Gioutsos | Mar 1997 | A |
5627756 | Fukada et al. | May 1997 | A |
5634698 | Cao et al. | Jun 1997 | A |
5640324 | Inagaki | Jun 1997 | A |
5648903 | Liubakka | Jul 1997 | A |
5671982 | Wanke | Sep 1997 | A |
5676433 | Inagaki et al. | Oct 1997 | A |
5694319 | Suissa et al. | Dec 1997 | A |
5703776 | Soung | Dec 1997 | A |
5707117 | Hu et al. | Jan 1998 | A |
5707120 | Monzaki et al. | Jan 1998 | A |
5720533 | Pastor et al. | Feb 1998 | A |
5723782 | Bolles, Jr. | Mar 1998 | A |
5732377 | Eckert | Mar 1998 | A |
5732378 | Eckert et al. | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5736939 | Corcoran | Apr 1998 | A |
5737224 | Jeenicke et al. | Apr 1998 | A |
5740041 | Iyoda | Apr 1998 | A |
5742918 | Ashrafi et al. | Apr 1998 | A |
5742919 | Ashrafi et al. | Apr 1998 | A |
5762406 | Yasui et al. | Jun 1998 | A |
5782543 | Monzaki et al. | Jul 1998 | A |
5787375 | Madau et al. | Jul 1998 | A |
5801647 | Survo et al. | Sep 1998 | A |
5809434 | Ashrafi et al. | Sep 1998 | A |
5816670 | Yamada et al. | Oct 1998 | A |
5825284 | Dunwoody et al. | Oct 1998 | A |
5842143 | Lohrenz et al. | Nov 1998 | A |
5857535 | Brooks | Jan 1999 | A |
5869943 | Nakashima et al. | Feb 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5893896 | Imamura et al. | Apr 1999 | A |
5925083 | Ackermann | Jul 1999 | A |
5931546 | Nakashima et al. | Aug 1999 | A |
5944137 | Moser et al. | Aug 1999 | A |
5944392 | Tachihata et al. | Aug 1999 | A |
5946644 | Cowan et al. | Aug 1999 | A |
5964819 | Naito | Oct 1999 | A |
5971503 | Joyce et al. | Oct 1999 | A |
6002974 | Schiffman | Dec 1999 | A |
6002975 | Schiffman et al. | Dec 1999 | A |
6026926 | Noro et al. | Feb 2000 | A |
6038495 | Schiffmann | Mar 2000 | A |
6040916 | Griesinger | Mar 2000 | A |
6050360 | Pattok et al. | Apr 2000 | A |
6055472 | Breunig et al. | Apr 2000 | A |
6062336 | Amberkar et al. | May 2000 | A |
6065558 | Wielenga | May 2000 | A |
6073065 | Brown et al. | Jun 2000 | A |
6079513 | Nishizaki et al. | Jun 2000 | A |
6081761 | Harada et al. | Jun 2000 | A |
6085860 | Hackl et al. | Jul 2000 | A |
6086168 | Rump | Jul 2000 | A |
6089344 | Baughn et al. | Jul 2000 | A |
6104284 | Otsuka | Aug 2000 | A |
6122568 | Madau et al. | Sep 2000 | A |
6122584 | Lin et al. | Sep 2000 | A |
6129172 | Yoshida | Oct 2000 | A |
6141604 | Mattes et al. | Oct 2000 | A |
6141605 | Joyce | Oct 2000 | A |
6144904 | Tseng | Nov 2000 | A |
6149251 | Wuerth et al. | Nov 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6169939 | Raad et al. | Jan 2001 | B1 |
6176555 | Semsey | Jan 2001 | B1 |
6178375 | Breunig | Jan 2001 | B1 |
6179310 | Clare et al. | Jan 2001 | B1 |
6179394 | Browalski et al. | Jan 2001 | B1 |
6184637 | Yamawaki et al. | Feb 2001 | B1 |
6185485 | Ashrafti et al. | Feb 2001 | B1 |
6186267 | Hackl et al. | Feb 2001 | B1 |
6192305 | Schiffmann | Feb 2001 | B1 |
6195606 | Barta et al. | Feb 2001 | B1 |
6198988 | Tseng | Mar 2001 | B1 |
6202009 | Tseng | Mar 2001 | B1 |
6202020 | Kyrtsos | Mar 2001 | B1 |
6206383 | Burdock | Mar 2001 | B1 |
6219604 | Dilger et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6226579 | Hackl et al. | May 2001 | B1 |
6227482 | Yamamoto | May 2001 | B1 |
6233510 | Platner et al. | May 2001 | B1 |
6263261 | Brown et al. | Jul 2001 | B1 |
6266596 | Hartman et al. | Jul 2001 | B1 |
6272420 | Schramm et al. | Aug 2001 | B1 |
6278930 | Yamada et al. | Aug 2001 | B1 |
6282471 | Burdock et al. | Aug 2001 | B1 |
6282472 | Jones et al. | Aug 2001 | B1 |
6282474 | Chou et al. | Aug 2001 | B1 |
6292734 | Murakami et al. | Sep 2001 | B1 |
6292759 | Schiffmann | Sep 2001 | B1 |
6311111 | Leimbach et al. | Oct 2001 | B1 |
6314329 | Madau et al. | Nov 2001 | B1 |
6315373 | Yamada et al. | Nov 2001 | B1 |
6321141 | Leimbach | Nov 2001 | B1 |
6324446 | Brown et al. | Nov 2001 | B1 |
6324458 | Takagi et al. | Nov 2001 | B1 |
6330522 | Takeuchi | Dec 2001 | B1 |
6332104 | Brown et al. | Dec 2001 | B1 |
6338012 | Brown et al. | Jan 2002 | B2 |
6349247 | Schramm et al. | Feb 2002 | B1 |
6351694 | Tseng et al. | Feb 2002 | B1 |
6352318 | Hosomi et al. | Mar 2002 | B1 |
6356188 | Meyers et al. | Mar 2002 | B1 |
6370938 | Leimbach et al. | Apr 2002 | B1 |
6394240 | Barwick | May 2002 | B1 |
6397127 | Meyers et al. | May 2002 | B1 |
6419240 | Burdock et al. | Jul 2002 | B1 |
6428118 | Blosch | Aug 2002 | B1 |
6438464 | Woywod et al. | Aug 2002 | B1 |
6456905 | Katz et al. | Sep 2002 | B2 |
6477480 | Tseng et al. | Nov 2002 | B1 |
6496758 | Rhode et al. | Dec 2002 | B2 |
6496763 | Griessbach | Dec 2002 | B2 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6542792 | Schubert et al. | Apr 2003 | B2 |
6547022 | Hosomi et al. | Apr 2003 | B2 |
6554293 | Fennel et al. | Apr 2003 | B1 |
6556908 | Lu et al. | Apr 2003 | B1 |
6559634 | Yamada | May 2003 | B2 |
6600985 | Weaver | Jul 2003 | B2 |
20020014799 | Nagae | Feb 2002 | A1 |
20020040268 | Yamada et al. | Apr 2002 | A1 |
20020056582 | Chubb | May 2002 | A1 |
20020065591 | Schubert et al. | May 2002 | A1 |
20020075139 | Yamamoto et al. | Jun 2002 | A1 |
20020087235 | Aga et al. | Jul 2002 | A1 |
20020095244 | Rhode et al. | Jul 2002 | A1 |
20020096003 | Yamada et al. | Jul 2002 | A1 |
20020128795 | Schiffmann | Sep 2002 | A1 |
20020139599 | Lu | Oct 2002 | A1 |
20020163437 | Haas | Nov 2002 | A1 |
20020193916 | Katz et al. | Dec 2002 | A1 |
20030055549 | Barta et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
36 16 907 | Nov 1987 | DE |
38 15 938 | Nov 1989 | DE |
43 21 571 | Jan 1994 | DE |
42 27 886 | Feb 1994 | DE |
43 35 979 | Apr 1995 | DE |
43 42 732 | Jun 1995 | DE |
199 07 633 | Oct 1999 | DE |
0 430 813 | Dec 1993 | EP |
0 662 601 | Jul 1995 | EP |
0 758 601 | Feb 1997 | EP |
1 006 026 | Jun 2000 | EP |
24 25 342 | Dec 1979 | FR |
2257403 | Jan 1993 | GB |
2 342 078 | Apr 2000 | GB |
62055211 | Sep 1985 | JP |
63116918 | May 1988 | JP |
63151539 | Jun 1988 | JP |
63203456 | Aug 1988 | JP |
1101238 | Apr 1989 | JP |
2171373 | Jul 1990 | JP |
3042360 | Feb 1991 | JP |
3045452 | Feb 1991 | JP |
4008837 | Jan 1992 | JP |
5016699 | Jan 1993 | JP |
5254406 | Oct 1993 | JP |
6278586 | Oct 1994 | JP |
6297985 | Oct 1994 | JP |
6312612 | Nov 1994 | JP |
8080825 | Mar 1996 | JP |
9005352 | Jan 1997 | JP |
10024819 | Jan 1998 | JP |
10329682 | Dec 1998 | JP |
11011272 | Jan 1999 | JP |
11170992 | Jun 1999 | JP |
11254992 | Sep 1999 | JP |
11255093 | Sep 1999 | JP |
11304663 | Oct 1999 | JP |
11304662 | Nov 1999 | JP |
816849 | Mar 1981 | SU |
Number | Date | Country | |
---|---|---|---|
20040059480 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60400155 | Aug 2002 | US |