Not Applicable
Not Applicable
The present invention relates to mechanical drive trains in which a motor is connected to a load through one or more rotating components, including drive shafts, couplings and gear boxes. More particularly, the present invention pertains to methods and devices used to detect discontinuities in a drive train caused by broken drive shafts, loose couplings, gear failures and the like.
Many machines employ rotating drive trains to transmit power from a motor to a load. Frequently, such drive trains include a connected sequence of different rotating components, including drive shafts, couplings and gear boxes. One example of such a machine is a lifting hoist. The drive train in the hoist will have an electric motor on one end, coupled to a brake drum on the other end. In many such applications, a component failure in the drive train can cause a catastrophic failure of the machine, such as a load drop, and present a threat to the safety of the persons using or working around the hoist. Accordingly, prompt detection of drive train discontinuities that can lead to such a failure is critical.
Attempts have been made in the prior art to monitor mechanical drive trains for discontinuities using a programmable logic controller and a custom ladder-logic style program tailored to meet the needs of the specific drive train. However, these systems require separate hardware and software input from the drive unit itself. A system which integrated the necessary components directly into the drive unit would therefore be more efficient and flexible for accurately detecting and responding to all discontinuities in a complex mechanical drive train.
The purpose of this invention is to detect a speed deviation between two points in a rotating mechanical drive train in a machine, such as a lifting hoist. Two incremental shaft encoders are mounted on the two extreme ends of the drive train. The encoders generate data which is representative of the rotational speed of the drive train component proximate to where the encoder is mounted. The data from the encoders is communicated to a logic unit associated with operation of the drive train, such as a variable frequency motor drive (VFD). Software in the logic unit monitors and compares the speed of both encoders, accounting for variances in encoder resolution and gear ratio parameters. If a difference in speeds (as monitored and indicated by the encoders) is greater than a preset value for a period longer than a preset time period, the logic unit displays an error message and a programmed action (such as motor shutdown and load braking) is executed.
Looking at
A first shaft encoder 1 (
Preferably, the VFD logic unit includes sufficient hardware and software to provide programmable flexibility in processing the pulse train data from the encoders. One embodiment of the VFD logic unit is shown on
Upon processing the input data from the encoders 1, 7 to determine the rotational speeds, a speed differential module will compare the rotational speeds to each other. If the results of the comparison exceed a predetermined amount, for a predetermined amount of time which is programmed into a delay timer within the speed differential module, a signal is transmitted to an output interface. The output interface then implements a preprogrammed “discontinuity detected” action. Options for “discontinuity detected” actions include stopping the hoist motor 2, applying the primary hoist brake 3, displaying a “snap shaft” alert on the display of hoist operator panel 20 (
Accordingly, one embodiment of the system of this invention includes the programmable software parameters summarized in the table below. The programmable parameters can be set using the hoist operator panel 20 (
For a typical VFD used in a lifting hoist, the table below summarizes the parameter ranges that could be used:
Parameter U1-30 should be monitored during operation to obtain the exact speed difference in Hz between the two shafts. The low-speed shaft speed is normalized internally by multiplying the speed by the gear ratio. The value of C11-12 should be adjusted at system initialization such that U1-30 approaches 0.0.
If the hoist motor 2 is running and the brakes 3, 6 are functioning properly, the data received from the first shaft encoder 1 is compared to the data received from the second shaft encoder 7, after the data is adjusted using the programmed PPR and electronic gear ratio parameters. If the results of the comparison exceed the allowable shaft speed delta programmed into the system, the process continues. Otherwise, the delay timer is set to “0” and the process ends.
When the process continues, an internal timer is incremented with the result compared to the delay timer. If the value of the internal timer is greater than the delay timer, a signal initiating a preprogrammed “discontinuity detected” action is generated. “Discontinuity detected” actions will typically include stopping the hoist motor, applying the hoist drum brake, displaying a “snap shaft” alert on the hoist operator panel 20 display and closing relays on an output terminal block.
If the value of the internal timer is not greater than the delay timer, the system will resume monitoring the encoder outputs to determine if the preprogrammed allowable shaft speed delta is still exceeded. In this way, a premature and unnecessary hoist shutdown is avoided. Otherwise, a false discontinuity could be signaled based merely on encoder data corresponding to shaft backlash or other normal conditions existing in the hoist drive train.
Thus, although there have been described particular embodiments of the present invention of a new and useful System and Method for Detecting a Discontinuity in a Mechanical Drive Train, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
This application is a Non-Provisional Utility application which claims benefit of co-pending U.S. Patent Application Ser. No. 60/729,668 filed Oct. 24, 2005, entitled “System and Method for Detecting a Discontinuity in a Mechanical Drive Train” which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4175727 | Clarke | Nov 1979 | A |
4177973 | Miller et al. | Dec 1979 | A |
4493479 | Clark | Jan 1985 | A |
4597497 | Aberegg | Jul 1986 | A |
5167400 | Gazel-Anthoine | Dec 1992 | A |
5671912 | Langford et al. | Sep 1997 | A |
6097165 | Herron | Aug 2000 | A |
6517171 | Oshiro et al. | Feb 2003 | B2 |
20010041958 | Oshiro et al. | Nov 2001 | A1 |
20050127749 | Hartmann et al. | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60729668 | Oct 2005 | US |