1. Technical Field
Embodiments of the present disclosure relate to systems and methods for detecting motion of an electronic device, and more particularly to a system and method for detecting a falling state of the electronic device.
2. Description of Related Art
Electronic devices are easily lost by people. Once electronic devices have fallen out from pockets or bags of people, it is difficult to find out where the electronic devices are, especially when people are walking/moving.
What is needed, therefore, is an improved system and method for detecting a falling state of the electronic device.
All of the processes described may be embodied in, and fully automated via, functional code modules executed by one or more general purpose computers or processors. The code modules may be stored in any type of computer-readable medium or other storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware or electronic apparatus.
The electronic device 1 may include a global position system (GPS) 3, a speaker 4, a vibrator 5, a processor 6, a storage system 7, and a display 8. The GPS 3 is operable to locate a position of the electronic device 1. The speaker 4 may output audio signals, such as songs, rings, etc. The vibrator 5 may vibrate the electronic device 1 when a vibration mode provided by the electronic device 1 is selected. The display 8 may display various information, such as messages, images, videos, and so on.
The processor 6 executes one or more computerized operations of the electronic device 1 and other applications, to provide functions of the electronic device 1. The storage system 7 stores one or more programs, such as programs of an operating system, other applications of the electronic device 1, and various kinds of data, such as songs, images, messages, etc. In one embodiment, the electronic device 1 may be a mobile phone, and the storage system 7 may be a memory of the electronic device 1 or an external storage card, such as a memory stick, a Subscriber Identification Module (SIM) card, a smart media card, a compact flash card, or any other type of memory card.
In one embodiment, the electronic device 1 includes a setting module 20, an acquiring module 22, a calculating module 24, and an alarming module 26. The modules 20, 22, 24, and 26 may be executed by the processor 6 to perform one or more operations of the electronic device 1, such as detecting if the electronic device 1 is in a falling state.
The setting module 20 sets a time interval to collect position information of the electronic device 1. The time interval may be set at 0.01 seconds, for example. The setting module 20 also sets a hotkey to enable/disable the detecting system 2. In one embodiment, the hotkey may be any key-press or a key-press combination on the electronic device 1. In another embodiment, the hotkey may be a character string including alphanumeric characters and/or symbols, such as β#detecting#.β
The setting module 20 further sets one or more alarm means to alarm a user of the electronic device 1 when the electronic device is in a falling state. In one embodiment, the alarm means may include an audible alarm, a vibration alarm, a blinking alarm, and/or any combination of the above-mentioned alarms.
The acquiring module 22 activates the GPS 3 to locate a position of the electronic device 1, and acquires position information of the electronic device 1 from the GPS 3 at each time interval. The position information may include longitude, latitude, and altitude of the electronic device 1.
The acquiring module 22 further acquires a current altitude value of the electronic device 1 from current position information acquired from the GPS 3, and stores the current altitude value into the storage system 7. Depending on the embodiment, the setting module 20 may allocate specified storage space to store a plurality of altitude values of the electronic device 1, and clear the plurality of altitude values when the detecting system 2 is disabled/turned off.
The calculating module 24 determines a previous altitude value acquired in a previous time interval, and calculates an altitude difference between the current altitude value and the previous altitude value of the electronic device 1. The calculating module 24 further determines if the altitude difference is larger than zero, and calculates an acceleration of the electronic device 1 according to the altitude difference and the time interval if the altitude difference is larger than zero.
The alarming module 26 determines if the calculated acceleration is larger or equal to the acceleration of gravity (e.g., 9.81 m/s2). If the calculated acceleration is larger or equal to the acceleration of gravity, the alarming module 26 detects that the electronic device 1 is in a falling state. If the calculated acceleration is less than the acceleration of gravity, the alarming module 26 determines that the electronic device 1 is in a normal state.
The alarming module 24 further activates one or more of the alarm means when the electronic device 1 is in a falling state, such as outputting audio alerts through the speaker 4, vibrating the electronic device 1 through the vibrator 5, and/or blinking through the display 8. In one embodiment, the output audio alerts may be a specified song, or specified ring tone.
In block S2, the setting module 20 sets a time interval to collect position information of the electronic device 1, and sets a hotkey to enable/disable the detecting system 2. The time interval may be set at 0.01 seconds, for example.
In block S4, the setting module 20 sets one or more alarm means to alarm a user of the electronic device 1 when the electronic device is in a falling state. In one embodiment, the alarm means may include an audible alarm, a vibration alarm, a blinking alarm, and/or any combination of the above-mentioned alarms.
In block S6, the acquiring module 22 activates the GPS 3 to locate a position of the electronic device 1 when the detecting system 2 is enabled, and acquires position information of the electronic device 1 from the GPS 3 at each time interval. As mentioned above, the position information may include longitude, latitude, and altitude of the electronic device 1.
In block S8, the acquiring module 22 acquires a current altitude value of the electronic device 1 from current position information acquired from the GPS 3, and stores the current altitude value into the storage system 7.
In block S10, the calculating module 24 determines a previous altitude value acquired in a previous time interval, and calculates an altitude difference between the current altitude value and the previous altitude value of the electronic device 1.
In block S12, the calculating module 24 calculates an acceleration of the electronic device 1 according to the altitude difference and the time interval.
In block S14, the alarming module 26 determines if the calculated acceleration is larger or equal to the acceleration of gravity. If the calculated acceleration is larger or equal to the acceleration of gravity, in block S16, the alarming module 26 detects that the electronic device 1 is in a falling state.
In block S18, the alarming module 26 activates one or more of the alarm means when the electronic device 1 is in a falling state, such as outputting audio alerts through the speaker 4, vibrating the electronic device 1 through the vibrator 5, and/or blinking through the display 8. In one embodiment, the output audio alerts may be a specified song, or specified ring tone.
If the calculated acceleration is less than the acceleration of gravity, in block S20, the alarming module 26 determines that the electronic device 1 is in a normal state, and then the procedure returns to block S8.
Although certain inventive embodiments of the present disclosure have been specifically described, the present disclosure is not to be construed as being limited thereto. Various changes or modifications may be made to the present disclosure without departing from the scope and spirit of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0304140 | Aug 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6459988 | Fan et al. | Oct 2002 | B1 |
20050046580 | Miranda-Knapp et al. | Mar 2005 | A1 |
20070159343 | Crucilla | Jul 2007 | A1 |
20080117042 | Hyde et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
101102375 | Jan 2008 | CN |
Number | Date | Country | |
---|---|---|---|
20100045525 A1 | Feb 2010 | US |