1. Field of the Invention
The disclosed invention relates, for example, to systems and methods for determining when an inappropriate connector is mated to another connector such as a connecting jack.
2. Background Art
Certain modular connectors, such as conventional RJ-11 and RJ-45 connectors, are constructed with similar physical characteristics but provide differing connection mechanisms. For example, conventional RJ-11 and RJ-45 connectors are similar in shape but have a different maximum number of conductors and are typically used for different purposes. The RJ-45 connector supports up to eight conductors and is typically used in computer, router, switch, printer, and game console connections. The RJ-11 connector is typically used in telephonic, digital video recorder, and video set-top box applications, and supports up to six conductors. Frequently, only two or four conductors are implemented in an RJ-11-based connection.
While a male RJ-45 connector is wider than an RJ-11 jack and cannot be plugged in to such a jack, the male RJ-11 connector (and other similar, smaller connectors) can be plugged into an RJ-45 jack. In many cases, end users assume that if the end of a cable fits into a jack, it is the right cable for the job. That assumption is inaccurate, for example, as illustrated in
Therefore, what is needed is an improved system and method for detecting incorrect connections and providing an indication when the wrong connector has been mated with a device.
In a preferred embodiment, a connector device (for example, a jack) is provided with a sensing mechanism that detects mating of another connector to the connector device, and differentiates between matching and non-matching connectors. The sensing mechanism generates a signal to indicate that a non-matching connector has been mated with the connector device.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings, like reference numbers may indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number may identify the drawing in which the reference number first appears.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those skilled in the art with access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields in which the invention would be of significant utility.
In
In an embodiment, the modular jack 200 is an RJ-45 jack and may typically have six or eight contacts 204 depending on the requirements of the circuit in which jack 200 is used. In the embodiment illustrated in
In the embodiment shown, modular jack 200 is provided with two spring contacts 206 and 208 located in receptacle 202. When pressure is applied to spring contacts 206 and 208 they are forced into contact with contacts 210 and 212 respectively. Spring contacts 206 and 208 and contacts 210 and 212 are preferably each connected to a contact external to modular jack 200, such as one of the contacts 214. In this manner, a sensing circuit 216 (shown in
Referring again to
In contrast, spring contact 206 is located such that spring contact 206 will be forced against contact 210 only if an RJ-45 connector is inserted into receptacle 202 of jack 200. In the exemplary embodiment shown, spring contact 206 is located at the edge of receptacle 202 in a location where an RJ-45 connector would force spring contact 206 into electrical connection with contact 210, but a smaller RJ-11 connector inserted into jack 200 would not actuate spring contact 206. Thus placed, spring contact 206 will be forced into electrical connection with contact 210 only if an RJ-45 connector is inserted into receptacle 202. Sensing circuit 216 (shown in
The placement of spring contact 206 and contact 210 depends on the configuration of the connector and the “correct” connection that is to be detected. Spring contact 206 and contact 210, or a functionally equivalent device, may be placed either in a position where they would be closed or opened when a correct connection is made. The logic of the sensing circuit connected to the contacts is then adjusted to produce the desired operation based on the position of spring contact 206.
In operation, in a typical embodiment, if sensing circuit 216 detects continuity between spring contact 206 and contact 210, an RJ-45 connector has been inserted. If, however, sensing circuit 216 detects continuity between spring contact 208 and contact 212, indicating the insertion of a connector, but does not detect continuity between spring contact 206 and contact 210, then an incorrect connector insertion may have occurred. If this condition continues for a predetermined time period, sensing circuit 216 actuates indicator 218 to indicate an incorrect connection.
It will be understood that in general terms, the combination of spring contact 206 and contact 210 form a first sensing device that senses the position of a connector mated with the connector on which they are installed. Similarly, the combination of spring contact 208 and contact 212 form a second sensing device that senses the position of a connector mated with the connector on which they are installed. While these sensing devices have been disclosed as simple spring contacts, the sensing devices are not limited to this example and may include any switch or switch-like device, proximity sensor, or other presence sensing device, using any desired technology whether presently known or unknown.
Indicator 218 may be any audible, visual, tactile, or other indicator that can be interpreted by a human or machine, as appropriate to the application. As one example, in many Ethernet interfaces one or more light emitting diodes (LEDs) are provided to indicate link and activity status. Indicator circuit 218 may be configured to generate an error signal by controlling these existing LEDs in a predetermined manner, such as by flashing both the link and activity lights either simultaneously or with an alternating flash pattern. In another embodiment, the indicator may include generating a signal to another circuit or system, for example a computer or game console. Software or firmware in any connected device may receive the generated error signal and produce a display of an error indication, instructions, and/or other information on a screen or display associated with the device. For example, a computer or game console may display a specific error message indicating that the wrong cable has been connected in response to a generated error indicator signal.
The invention is not limited to the configuration shown and described in these embodiments, which are merely exemplary of a variety of possible configurations. For example, the invention is not limited to detecting incorrect insertions of RJ-11 connectors into RJ-45 jacks, but is applicable to any situation wherein more than one standard connector will fit into a given jack. In addition, the invention is not limited to jacks or to the particular design or configuration of jack shown in the drawings, or to devices designed for installation on circuit boards. The invention may be applied to any connecting device, regardless of whether it has a jack configuration or whether it is male or female. That is, the principles disclosed may be applied to any type of connector, regardless of its configuration or how it is installed, if it is installed at all. Further, the invention is not limited to the positions and design of the sensing circuits and sensing devices, which may be any sensing devices that will operate effectively to detect an incorrect connection according to one or more of the principles and concepts disclosed herein. It should also be noted that while the mating of a smaller connector (such as an RJ-11) to a compatible but different connector has been described in the exemplary embodiments in terms of being an error, in some applications it is intended that such mismatched connections be made. In those applications, an error indication may be generated in response to switch positions that indicate, for example, that an RJ-45 connector has been mated to an RJ-45 jack.
If the correct connection has been made, control passes to step 306. In step 306, which is optional, a signal or indicator of any desired type may be provided to indicate a correct connection. If a correct connection has not been made, control passes to step 308. In step 308, which is optional but preferred, an indication of an incorrect connection is provided. The indication may be any audible, visual, tactile, or other indicator that can be interpreted by a human or machine, as appropriate to the application. As one example, in many Ethernet interfaces one or more light emitting diodes (LEDs) are provided to indicate link and activity status. An error signal may be generated by controlling these existing LEDs in a predetermined manner, such as by flashing both the link and activity lights either simultaneously or with an alternating flash pattern.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention.
The present invention has been described above with the aid of functional building blocks and method steps illustrating the performance of specified functions and relationships thereof. The boundaries of these functional building blocks and method steps have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed. Any such alternate boundaries are thus within the scope and spirit of the claimed invention. One skilled in the art will recognize that these functional building blocks can be implemented by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.