Various embodiments relate to a system and method for detecting one or more analytes in a fluid.
It is known to detect one or more analytes in a fluid. For example, where the fluid is water, it is known to detect the presence of one or more analytes in order to establish the quality of the water. Establishing water quality can be an important precursor to determining if the water is fit for human consumption.
Analysis of fluid quality parameters is usually performed off-line and using wet chemistry methods. These methods can take hours or days to complete, require skilled personnel and involve the use of toxic chemicals. Accordingly, it is desirable to develop automated systems and methods which can be performed in-line with the fluid system and do not require use of toxic chemicals.
Various embodiments provide a system for detecting one or more analytes in a fluid, the system comprising: a controller adapted to obtain one or more sample streams of the fluid, the controller being configured in use to form a plurality of output streams, each output stream comprising at least part of one of the one or more sample streams; and a detector adapted to receive from the controller the plurality of output streams and comprising a plurality of sensors, each sensor being operable to detect an interaction between a corresponding detecting agent and a corresponding analyte, the detector being configured in use to detect one or more said interactions using the plurality of output streams to determine if the fluid contains one or more said analytes.
In an embodiment, the corresponding detecting agent of one of the plurality of sensors is formed on said one sensor.
In an embodiment, the interaction detected by said one sensor comprises binding of the corresponding analyte to the corresponding detecting agent, and wherein the controller is adapted to obtain a flushing fluid configured in use to remove a bound analyte, the controller being configured in use to provide the flushing fluid to the detector to remove the bound corresponding analyte from said one sensor.
In an embodiment, the controller is adapted to obtain a regeneration fluid configured in use to form a detecting agent when exposed to a sensor, the controller being configured in use to provide the regeneration fluid to the detector to form the corresponding detecting agent of one of the plurality of sensors by exposing said one sensor to the regeneration fluid.
In an embodiment, the regeneration fluid comprises the corresponding detecting agent and exposure of said one sensor to the regeneration fluid transfers the corresponding detecting agent to said one sensor.
In an embodiment, the system further comprises: a regeneration fluid reservoir adapted to temporarily store the regeneration fluid before the controller obtains the regeneration fluid, the regeneration fluid reservoir being configured in use to control the temperature of the stored regeneration fluid.
In an embodiment, the controller is adapted to obtain at least one amplifying fluid configured in use to amplify an interaction to aid detection thereof by a sensor, the controller being configured in use to add the at least one amplifying fluid to one of the plurality of output streams.
In an embodiment, the system further comprises: an amplifying fluid reservoir adapted to temporarily store the at least one amplifying fluid before the controller obtains the at least one amplifying fluid, the amplifying fluid reservoir being configured in use to control the temperature of the stored at least one amplifying fluid.
In an embodiment, the controller is adapted to obtain a buffering fluid configured in use to maintain a predetermined pH in an output stream to which it is added, the controller being configured in use to add the buffering fluid to one of the plurality of output streams.
In an embodiment, one of the plurality of sensors is housed within a sensor cell having an adjustable volume for receiving a portion of one of the plurality of output streams, said one sensor being operable to detect the interaction using the portion of said one output stream received in the sensor cell.
In an embodiment, the controller comprises a pumping device operable to adjust the flow of said one output stream through the sensor cell.
In an embodiment, the pumping device is configured in use to provide an intermittent flow of said one output stream through the sensor cell.
In an embodiment, the controller is configured in use to provide one of the plurality of output streams to the detector at a different time to another of the plurality of output streams.
In an embodiment, the system further comprises: a sampler adapted to receive the fluid from a fluid source and comprising a storage unit for temporarily storing the fluid, the sampler being configured in use to form the one or more sample streams from the fluid stored in the storage unit.
In an embodiment, the system further comprises: a data acquirer adapted to receive electronic data from one of the plurality of sensors, wherein the electronic data indicates detection of the analyte corresponding to said one sensor.
In an embodiment, the data acquirer is operable to receive electronic data from said one sensor only when the pumping device flows said one output stream through the sensor cell.
In an embodiment, said one sensor is additionally operable to detect background noise and include in the electronic data an indication of the background noise detected at said one sensor, and wherein the data acquirer is configured in use to use the indication of the background noise to cancel background noise in the electronic data.
In an embodiment, the system further comprises: a notifier adapted to receive the electronic data from the data acquirer, wherein the notifier is configured in use to generate a notification in dependence on the received electronic data.
In an embodiment, the corresponding detecting agent of one of the plurality of sensors is different to the corresponding detecting agent of another of the plurality of sensors, and wherein the interaction relating to said one sensor indicates the presence of a different corresponding analyte to the interaction relating to said other sensor.
In an embodiment, one of the plurality of sensors is operable to detect a level of interaction using the corresponding detecting agent, wherein the level of interaction indicates an amount of the corresponding analyte which is present.
In an embodiment, the interaction comprises binding together of the corresponding detecting agent and the corresponding analyte, and wherein at least one sensor detects the interaction by detecting a physical change caused by the binding operation.
In an embodiment, the corresponding detecting agent and the corresponding analyte bind together and the interaction comprises unbinding of the corresponding analyte and at least part of the corresponding detecting agent, and wherein at least one sensor detects the interaction by detecting a physical change caused by the unbinding operation.
In an embodiment, the interaction comprises at least one chemical reaction, and wherein at least one sensor detects the interaction by detecting a physical change caused by the at least one chemical reaction.
In an embodiment, the physical change is at least one of the following group: a change in mass, a change in electrical resistivity, a change in electrical conductivity, a change in refractive index, a change in electric current, a change in electric potential.
In an embodiment, the physical change occurs to the at least one sensor.
In an embodiment, the detecting agent is one of the following group: an antibody, a protein, an oligonucleotide, a polymer, an inorganic material, an organic substance.
In an embodiment, one of the plurality of sensors is at least one of the following group: a piezoelectric sensor, an electrochemical sensor, an electrochemical quartz crystal microbalance sensor, a surface plasmon resonance sensor, an oxidation reduction potential sensor.
Various embodiments provide a method for detecting one or more analytes in a fluid, the method comprising: obtaining one or more sample streams of the fluid, forming a plurality of output streams, each output stream comprising at least part of one of the one or more sample streams, detecting one or more interactions using the plurality of output streams and a plurality of sensors, wherein each sensor is operable to detect an interaction between a corresponding detecting agent and a corresponding analyte, and determining if the fluid contains one or more said analytes based on the one or more detected interactions.
In an embodiment, the method further comprises: forming the corresponding detecting agent of one of the plurality of sensors on said one sensor.
In an embodiment, the interaction detected by said one sensor comprises binding of the corresponding analyte to the corresponding detecting agent, and the method further comprises removing the bound corresponding analyte from said one sensor by exposing said one sensor to a flushing fluid configured in use to remove a bound analyte.
In an embodiment, the method further comprises: forming a corresponding detecting agent of one of the plurality of sensors by exposing said one sensor to a regeneration fluid.
In an embodiment, the regeneration fluid comprises the corresponding detecting agent and exposure of said one sensor to the regeneration fluid transfers the corresponding detecting agent to said one sensor.
In an embodiment, the method further comprises: temporarily storing the regeneration fluid before exposing said one sensor to the regeneration fluid; and controlling the temperature of the regeneration fluid whilst it is being temporarily stored.
In an embodiment, the method further comprises: adding at least one amplifying fluid to one of the plurality of output streams, the at least one amplifying fluid being configured in use to amplify an interaction to aid detection thereof by a sensor.
In an embodiment, the method further comprises: temporarily storing the at least one amplifying fluid before adding the at least one amplifying fluid to said one output stream; and controlling the temperature of the at least one amplifying fluid whilst it is being temporarily stored.
In an embodiment, the method further comprises: adding a buffering fluid to one of the plurality of output streams, the buffering fluid being configured in use to maintain a predetermined pH in said one output stream.
In an embodiment, the method further comprises: adjusting a flow of at least one output stream through at least one of the plurality of sensors.
In an embodiment, the method further comprises: adjusting the flow to be intermittent.
In an embodiment, said step of detecting one or more interactions comprises using one of the plurality of output streams at a different time to another of the plurality of output streams.
In an embodiment, the method further comprises: obtaining the fluid from a fluid source; and temporarily storing the obtained fluid before forming the one or more sample streams of the fluid from the temporarily stored fluid.
In an embodiment, the method further comprises: receiving electronic data from one of the plurality of sensors, wherein the electronic data indicates detection of the analyte corresponding to said one sensor.
In an embodiment, electronic data is received from said one sensor only when said one output stream flows through said one sensor.
In an embodiment, said one sensor is additionally operable to detect background noise and include in the electronic data an indication of the background noise detected at said one sensor; and the method further comprises cancelling background noise in the electronic data using the indication of the background noise.
In an embodiment, the method further comprises: generating a notification in dependence on the received electronic data.
In an embodiment, the corresponding detecting agent of one of the plurality of sensors is different to the corresponding detecting agent of another of the plurality of sensors, and wherein the interaction relating to said one sensor indicates the presence of a different corresponding analyte to the interaction relating to said other sensor.
In an embodiment, the method further comprises: detecting a level of interaction using one of the plurality of sensors, wherein the level of interaction indicates an amount of the corresponding analyte which is present.
In an embodiment, the interaction comprises binding together of the corresponding detecting agent and the corresponding analyte; and, the method further comprises detecting the interaction by detecting a physical change caused by the binding operation.
In an embodiment, the corresponding detecting agent and the corresponding analyte bind together and the interaction comprises unbinding of the corresponding analyte and at least part of the corresponding detecting agent; and, the method further comprises detecting the interaction by detecting a physical change caused by the unbinding operation.
In an embodiment, the interaction comprises at least one chemical reaction; and, the method further comprises detecting the interaction by detecting a physical change caused by the at least one chemical reaction
In an embodiment, the physical change is at least one of the following group: a change in mass, a change in electrical resistivity, a change in electrical conductivity, a change in refractive index, a change in electric current, a change in electric potential.
In an embodiment, the physical change occurs to the corresponding sensor.
In an embodiment, the detecting agent is one of the following group: an antibody, a protein, an oligonucleotide, a polymer, an inorganic material, an organic substance.
In an embodiment, one of the plurality of sensors is at least one of the following group: a piezoelectric sensor, an electrochemical sensor, an electrochemical quartz crystal microbalance sensor, a surface plasmon resonance sensor, an oxidation reduction potential sensor.
Embodiments of the invention will be better understood and readily apparent to one of ordinary skill in the art from the following written description, by way of example only, and in conjunction with the drawings, wherein like reference signs relate to like components, in which:
Various embodiments relate to a system and method for detecting one or more analytes in a fluid.
In an embodiment, the controller 4 is also in communication with at least one sample stream 10 of fluid. In an embodiment, the fluid of the sample stream 10 is obtained from a fluid source 12. In an embodiment, the sample stream 10 may be contained within a tube which is in fluid communication with both the fluid source 12 and the controller 4. However, in another embodiment, no fluid source 12 is present and the sample stream 10 is obtained directly from a tube in fluid communication with the controller 4.
In an embodiment, the controller 4 is configured in use to obtain at least one sample stream 10 of the fluid. For example, the controller 4 may obtain the sample stream 10 by virtue of a direct or indirect coupling to a tube containing the sample stream. In an embodiment, the controller 4 may obtain the sample stream 10 via a pumping device (not shown), i.e. the controller 4 may pump the sample stream 10 to the controller 4, for example, from a fluid source 12.
In an embodiment, the controller 4 is configured in use to form the plurality of output streams 8 using at least one sample stream 10. In an embodiment, each output stream 8 includes at least part of one sample stream 10. In an embodiment, the controller 4 may form the plurality of output streams 8 by combining and/or splitting one or more sample streams 10 using a pumping device (not shown) and a switching device (not shown). In an embodiment, the switching device may include a network of tubes and valves which are configured in use to channel at least part of each input sample stream 10 into one or more of the plurality of output streams 8.
In an embodiment, the detector 6 is adapted to receive from the controller 4 the plurality of output streams 8. For example, the controller 4 may include a pumping device configured in use to pump each output stream 8 to the detector 6. In an embodiment, the detector 6 includes a plurality of sensors. In an embodiment, the plurality of sensors are arranged to form a sensor array or a sensor bank. In an embodiment, the detector 6 includes a different sensor for each output stream 8 provided by the controller 4. In an embodiment, the controller 4 is configured to provide a plurality of output streams 8 to the plurality of sensors of the detector 6, such that the system 2 provides a multiple channel sensor system 2 for detecting one or more analytes in a fluid. Specifically, each channel may be considered as one fluid connection between an output stream 8 and a sensor.
In an embodiment, each sensor is operable to detect an interaction using a corresponding detecting agent in the presence of a corresponding analyte. In an embodiment, the interaction may be a physical interaction or a chemical interaction. In an embodiment, the sensor is a biosensor configured to detect a change in a physical property caused by the interaction. In an embodiment, the physical property is a physical property of the sensor itself. In an embodiment, the biosensor is a piezoelectric biosensor which detects a change in vibration frequency caused by the interaction. In an embodiment, the biosensor is a surface plasmon resonance biosensor which detects a change in optical properties caused by the interaction. In an embodiment, the biosensor is an electrochemical biosensor which detects a change in electrical properties caused by the interaction.
In an embodiment, the analyte corresponds with the detecting agent and visa versa. In other words, the detecting agent and analyte form an associated set, wherein each member of the set interacts with the other member when they are put together. In an embodiment, the detecting agent corresponds with the sensor. In an embodiment, one or more of the sensors are associated with, i.e. correspond with, a different detecting agent. In another embodiment, one or more sensors correspond with the same detecting agent. In an embodiment, a coating which is applied to an external surface of a sensor includes the detecting agent corresponding to that sensor. In another embodiment, the controller 4 provides to the sensor a fluid which includes the detecting agent corresponding to that sensor.
In an embodiment, the detector 6 is configured in use to detect one or more interactions using the plurality of output streams 8 to determine if one or more analytes are present in the fluid from which the sample streams 10 were taken. Specifically, each sensor is operable to detect an interaction caused when a detecting agent corresponding to the sensor is combined with an analyte corresponding to the detecting agent. Accordingly, if the sensor includes an external coating containing the detecting agent, and the sensor is exposed to an output stream 8 containing the analyte, an interaction may occur and the sensor may detect the interaction. Therefore, the sensor may be used to detect the presence of the analyte in an output stream 8 to which the sensor is exposed. If the plurality of output streams 8 is provided to the plurality of sensors, multiple analytes may be detected. In an embodiment, each output stream 8 is provided to a different sensor, and each different sensor is configured to detect a different analyte. Therefore, detection of a plurality of different analytes in the output streams 8 may be performed. In an embodiment, each output stream 8 may originate from the same fluid, therefore, detection of one or more analytes in that fluid may be performed.
In an embodiment, one or more output streams 8 may originate from a different fluid source 12 to one or more other output streams 8, i.e. they may contain sample streams 10 from different fluid sources 12. In an embodiment, one or more of the sensors may detect the same analyte. In an embodiment, one or more of the sensors may detect a different analyte. In an embodiment, a single sensor may be operable to detect multiple different analytes. For example, the sensor may include an external coating comprising two or more detecting agents, wherein two or more of these detecting agents each cause an interaction in the presence of a different analyte.
In an embodiment, the controller 4 is configured to control the time at which each sample stream 10 is obtained. In an embodiment, the controller 4 is configured to control the time at which each output stream 8 is provided to a sensor of the detector 6. Accordingly, the controller 4 may be configured to hold or store fluid during its transition from a sample stream 10 to an output stream 8. Furthermore, in an embodiment, the controller 4 may be configured in use to provide some or all of the output streams 8 to the detector 6 for analyte detection at substantially the same time. In this way, the system 2 may be configured in use to simultaneously detect the presence of different analytes in the fluid. In an embodiment, the controller 4 may be configured in use to provide some or all of the output streams 8 to the detector 6 for analyte detection at different times, such as, for example, in an ordered sequence. In this way, the system 2 may be configured in use to periodically detect the presence of a single analyte in a fluid. Stated differently, the controller 4 may be configured in use to implement a queuing system 2. Accordingly, different samples and, therefore, different output streams 8, may be held in the queue such that they are only examined for analytes once it is their turn.
At 50, one or more sample streams 10 of a fluid under test are obtained. In an embodiment, the or each sample stream 10 is pumped from a fluid source. In an embodiment, the fluid source relating to one or more sample streams 10 may be different to the fluid source relating to one or more other sample streams 10.
At 52, the or each sample stream 10 is used to form a plurality of output streams 8, wherein each output stream includes at least part of an obtained sample stream 10. In an embodiment, the plurality of output streams 8 is formed by combining and/or splitting-up obtained sample streams 10.
At 54, one or more interactions are detected using the plurality of output streams 8 and a plurality of sensors. In an embodiment, each sensor is exposed to a different one of the plurality of output streams 8. In an embodiment, each sensor is operable to detect an interaction using a corresponding detecting agent in the presence of a corresponding analyte. Accordingly, detection of an interaction by a sensor may indicate the presence of a specific analyte associated with the sensor. In an embodiment, an external coating of the sensor includes the detecting agent. In another embodiment, the controller 4 provides the detecting agent to the sensor in a fluid.
At 56, it is determined whether or not the fluid contains one or more analytes based on which sensors detected interactions. In an embodiment, the specific analytes contained within the fluid may be identified based on which specific sensors detected an interaction.
In the above-described embodiments, analyte detection may be indicated by any suitable indicator. For example, the detector 6 may provide a light and/or a sound to indicate that one or more particular analytes are present. In an embodiment, the detector 6 may include a display screen; and the detector 6 may present the detection results on the display screen.
According to the above-described embodiments, it is possible to detect the presence of one or more analytes in a fluid. In an embodiment, the fluid is water and each detected analyte indicates the presence of an impurity. Accordingly, an advantage of the above-described embodiments is that water quality can be determined and monitored. Another advantage is that many different analytes may be detected simultaneously or sequentially. Therefore, many different fluid parameters may be detected. In an embodiment, it is an advantage that many different water parameters and water impurities can be detected and monitored.
An advantage of the above-described embodiments is that multiple analytes may be detected simultaneously since one or more of the sensors may be exposed to an output stream at substantially the same time as one or more other sensors. It is also an advantage that different sensors may be exposed to an output stream 8 at different times. Accordingly, periodic monitoring of the presence of one or more analytes may be achieved.
It is an advantage of the above-described embodiments that continuous monitoring may be achieved. Specifically, a sequence of sample streams 10 may be converted into a corresponding sequence of output streams 8 and exposed to a detector 6 sensor in the time order in which they were generated. For example, a first output stream comprising a first sample stream 10 may be exposed to a first sensor for detection at a first time. However, detection may require ten time units to perform. Accordingly, during the subsequent nine time units, second to tenth corresponding operations may be performed in sequence. It is then possible to provide a detection result every time unit following the tenth time unit, in spite of the fact that it takes ten time units to generate a single detection result. This process may be looped in order to continue to provide one detection result every time unit. Accordingly, continuous and real-time monitoring may be achieved.
The following describes a system comprising a multiple channel piezoelectric sensor array in accordance with various embodiments.
Analysis of water quality parameters can be performed off-line using wet chemistry methods. These methods require costly and bulky instruments, long operation time, skilled personnel and the usage of toxic chemicals. For some parameters, the analysis time required may be hours or days. Some of these methods have been automated and utilized in-line with a water system. However, the tedious procedures which they necessarily include hinder their applications for online, real-time and continuous monitoring of water quality. Moreover, the amount of toxic chemicals introduced into the water system increases as the demand for water quality analysis increases. The usage and disposal of these chemicals can become a significant public concern.
Also, optical spectral methods can be used to monitor water quality parameters, such as, nitrates and nitrites, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total organic carbon (TOC) containing substances absorbing light in Ultraviolet (UV) to visible spectra range. However, these methods do not respond to compounds without unsaturated bonds, such as aliphatic amines, amino acids and carbohydrates. Also, the accuracy of the results obtained from these methods depends largely on the composition of the water samples used and the localized calibration. Accordingly, the accuracy may vary significantly between applications, for example, in a range from 60% to 90%. Furthermore, only a few fundamental water quality parameters such as pH, turbidity and conductivity can be reliably analyzed online using these simple physical methods.
In an embodiment, at least one of the sensors of the detector is a piezoelectric sensor. In an embodiment, the piezoelectric sensor includes quartz crystals. Piezoelectric sensors are advantageous because they provide good sensitivity at a relatively low-cost. In an embodiment, the piezoelectric sensor is configured such that when its surface interacts with a target species (i.e. an analyte) a change is produced in the sensor's physical properties, such as, for example, vibration frequency, surface impedance and surface acoustic wave. For example, the frequency change (Δf) due to mass change (Δm) can be expressed by the following Sauerbrey equation formulae (1):
wherein f0 is the resonant frequency (Hz) of the sensor; A is the piezoelectrically active crystal area (cm2); ρq is the density of quartz (2.648 g/cm3); and, μq is the shear modulus of quartz for AT-cut crystal (2.947×1011 g/cm·s2).
In an embodiment, an external surface of the piezoelectric sensor is coated with one or more receptors (i.e. detecting agents), such as, for example, antibodies and polymers that can interact with a specific type of group of targets (i.e. analytes).
In an embodiment, the piezoelectric sensor may be configured to additionally take electrochemical measurements. In an embodiment, the sensor may be an electrochemical quartz crystal microbalance (EQCM) sensor. However, in an embodiment, differently from conventional EQCM methods, the EQCM sensor may be used to measure oxidation reduction potential (ORP) which is an indicator for general water quality parameters such as nitrate, COD, BOD, and TOC.
The following provides a detailed description of a system for detecting one or more analytes in a fluid containing the above-mentioned sensor in accordance with an embodiment.
As seen more particularly in
As seen more particularly in
As seen more particularly in
In an embodiment, the buffering fluid 120 is configured in use to maintain a predetermined pH in the fluid to which it is added. In an embodiment, the buffering fluid 120 includes two parts, an acidic part and an alkaline part, wherein the two parts are mixed together in appropriate proportions by the controller 101 to provide a mixture having a predetermined pH. For example, it may be the case that an interaction between a detecting agent and an analyte may occur best, or may provide a more easily detectable interaction, when the fluid in which the interaction occurs is at a particular pH. Accordingly, the controller 101 may be configured in use to obtain buffering fluid 120 and add it to one or more of output streams 118. Accordingly, interaction detection and, therefore, analyte detection may be more reliable.
In an embodiment, the buffering fluid 120 is contained within a reservoir which is in fluid communication with the controller 101. In an embodiment, the controller 101 may be configured to provide one or more different buffering fluids 120 to an output stream 118. In an embodiment, each different buffing fluid 120 may be stored in a different reservoir or a different partition or portion of the same reservoir.
In an embodiment, a sensor includes an external coating having the corresponding detecting agent. Accordingly, when an analyte corresponding to the detecting agent is present, the analyte binds with the detecting agent. This binding action provides the interaction which may be detected by a sensor to indicate that the analyte is present. However, following detection, the analyte bound to the external surface of the sensor may be removed, for example, to permit subsequent separate sensing operations. Accordingly, in an embodiment, the controller 101 is adapted to obtain a flushing fluid 126 which is configured in use to remove a bound analyte. In an embodiment, the controller 101 is configured in use to provide the flushing fluid 126 to one or more sensors of the detector 102 to remove bound analytes. Accordingly, the controller 101 may prepare the sensor for subsequent separate sensing operations. In an embodiment, the flushing fluid 126 may be the same as the buffering fluid 120.
In an embodiment, the flushing fluid 126 is contained within a reservoir which is in fluid communication with the controller 101. In an embodiment, the controller 101 may be configured to provide one or more different flushing fluids 126 to one or more sensors of the array. In an embodiment, each different flushing fluid 126 may be stored in a different reservoir or a different partition or portion of the same reservoir.
In an embodiment, a detecting agent is provided to a sensor via a regeneration fluid 122. For example, the regeneration fluid 122 may react with the sensor surface to form the detecting agent on the sensor surface. Alternatively, the regeneration fluid 122 may include the detecting agent such that contacting the sensor surface with the regeneration fluid 122 transfers the detecting agent to the sensor surface. In any case, in an embodiment, the controller 101 is configured in use to obtain a regeneration fluid 122 and provide the regeneration fluid 122 to one or more sensors of the detector 102. In this way, the controller 101 may prepare the one or more sensors for interaction detection and, therefore, analyte detection.
In an embodiment, the regeneration fluid 122 is contained within a reservoir which is in fluid communication with the controller 101. In an embodiment, the controller 101 may be configured to provide one or more different regeneration fluids 122 to one or more sensors of the array. In an embodiment, each different regeneration fluid 122 may be stored in a different reservoir or a different partition or portion of the same reservoir.
In an embodiment, the amplifying fluid 124 is configured in use to amplify an interaction which occurs in a fluid to which it is added, thereby aiding detection of the interaction. For example, it may be the case that an interaction between a detecting agent and an analyte does not produce a significant enough interaction to be reliably detected. In an embodiment, the interaction may be amplified by the analyte binding to the amplifying fluid. Accordingly, the controller 101 may be configured in use to obtain amplifying fluid 124 and add it to one or more of output streams 118 in advance of sending that output stream 118 to a sensor for analyte detection. Accordingly, interaction detection and, therefore, analyte detection may be improved.
In an embodiment, the amplifying fluid 124 is contained within a reservoir which is in fluid communication with the controller 101. In an embodiment, the controller 101 may be configured to provide one or more different amplifying fluids 124 to an output stream 118. In an embodiment, each different amplifying fluid 124 may be stored in a different reservoir or a different partition or portion of the same reservoir.
Various embodiments include a reservoir for temporarily storing a fluid, such as, for example, a buffering fluid 120, a flushing fluid 126, a regenerating fluid 122, and/or an amplifying fluid 124. In an embodiment, such fluids are temporarily stored before the controller 101 obtains the fluid, for example, for provision to a sensor or for addition to an output stream. In an embodiment, the reservoir is configured in use to control the temperature of the fluid stored therein. In an embodiment, the reservoir is configured in use to control the temperature of the fluid leaving the reservoir. For example, the reservoir may include a heat sink to remove heat from the fluid to lower the fluid temperature. Additionally or alternatively, the reservoir may include a heat exchanger to add heat to the fluid to raise the fluid temperature. Accordingly, it is an advantage that where a fluid performs optimally at a particular temperature, or within a particular temperature range, the system may be configured in use to ensure that the fluid is maintained substantially at that particular temperature, or within that particular temperature range, when it is being used. Additionally, it is an advantage that where a fluid lasts longer when stored at a particular temperature, or within a particular temperature range, the system may be configured in use to ensure that the fluid is maintained substantially at that particular temperature, or within that particular temperature range, when it is being stored.
In an embodiment, a fluid sample may also be temporarily stored in a reservoir before use by the controller 101. Accordingly, it may be possible to set the temperature of the output stream by controlling the temperature of the fluid sample, rather than, or in addition to, controlling the temperature of the buffering fluid 120, the flushing fluid 126, the regenerating fluid 122, and/or the amplifying fluid 124.
In an embodiment, a dual-crystal piezoelectric sensor 400 including two quartz crystals 401 is inserted into the above-mentioned sensor chamber 305 (
In an embodiment, the dual-crystal piezoelectric sensor 400 has four metal electrode pins 408 connecting to two electrodes of the two sensor crystals 401. In an embodiment, the two sensor crystals 401 are linked in parallel in a circuit by plugging the four pins 408 in connectors which are linked to a circuit board equipped with an oscillation generator, a frequency counter and a microprocessor. In an embodiment, the two sensor crystals 401 are linked to the circuit board separately. In an embodiment, the circuit board contains eight channels of data acquisition, each of which contains two sets of identical circuits connecting to two sensor crystals 401 of one dual-crystal piezoelectric sensor 400. In an embodiment, data acquired by the referencing crystal 405 is used to cancel off background noise and interference in the data from the sensing crystal 404.
In an embodiment, the dual crystal piezoelectric sensor 400 includes a built-in ORP electrode for complementary COD/BOD/TOC analysis. In an embodiment, as in an EQCM sensor, the gold electrode on the quartz crystal surface can be used as a working electrode of an ORP electrode. In an embodiment, a metal wire is placed in the sample chamber 301 of a sensor cell 300 as a counter electrode. In an embodiment, suitable electrode metals are gold, platinum and nickel. In an embodiment, an optional reference electrode can also be used to improve the accuracy of the ORP measurement.
In an embodiment, the system 100 may be configured to perform data processing and reporting. As seen more particularly on
In an embodiment, it may be the case that analyte detection is best when performed at a particular temperature, or within a particular temperature range. For example, this temperature or temperature range may be dependent on the precise composition of the output stream. However, it may not have been possible to bring that output stream to the particular temperature or within the particular temperature range. Accordingly, it may be possible to measure the actual temperature of the output stream and adjust the electronic data received from the detector 102 to compensate for the difference between the actual temperature and the optimum temperature. Accordingly, the data acquirer 103 may be configured to perform a temperature compensation algorithm.
In an embodiment, the sensors 400 are operable to detect a level of interaction, wherein the level of interaction indicates an amount of the corresponding analyte which is present. In an embodiment, the level of interaction corresponds to the quantity of interactions detected by the sensor. An advantage of this operation is that the amount of an analyte present in a sample may be detected, rather than simply detecting the presence of the analyte. For example, the fluid may be water and the analyte may relate to a particular component of the water. In an embodiment, the presence of only a small quantity of the analyte may not make the water unfit for human consumption; however, the presence of a large quantity may make the water unfit for human consumption. Therefore, it is an advantage that the system according to various embodiments may detect an amount of analyte present.
As seen more particularly on
In an embodiment, the role of the data acquirer 103 and/or the notifier 108 may be performed by a computing device.
As shown in
Computing device 1000 further includes a main memory 1008, such as a random access memory (RAM), and a secondary memory 1010. Secondary memory 1010 may include, for example, a hard disk drive 1012 and/or a removable storage drive 1014, which may include a floppy disk drive, a magnetic tape drive, an optical disk drive, or the like. Removable storage drive 1014 reads from and/or writes to a removable storage unit 1018 in a well known manner. Removable storage unit 1018 may include a floppy disk, magnetic tape, optical disk, or the like, which is read by and written to by removable storage drive 1014. As will be appreciated by persons skilled in the relevant art(s), removable storage unit 1018 includes a computer readable storage medium having stored therein computer executable program code instructions and/or data.
In an alternative implementation, secondary memory 1010 may additionally or alternatively include other similar means for allowing computer programs or other instructions to be loaded into computing device 1000. Such means can include, for example, a removable storage unit 1022 and an interface 1020. Examples of a removable storage unit 1022 and interface 1020 include a program cartridge and cartridge interface (such as that found in video game console devices), a removable memory chip (such as an EPROM or PROM) and associated socket, and other removable storage units 1022 and interfaces 1020 which allow software and data to be transferred from the removable storage unit 1022 to computer system 1000.
Computing device 1000 also includes at least one communication interface 1024. Communication interface 1024 allows software and data to be transferred between computing device 1000 and external devices via a communication path 1026. In various embodiments, communication interface 1024 permits data to be transferred between computing device 1000 and a data communication network, such as a public data or private data communication network. Examples of communication interface 1024 can include a modem, a network interface (such as Ethernet card), a communication port, and the like. Software and data transferred via communication interface 1024 are in the form of signals which can be electronic, electromagnetic, optical or other signals capable of being received by communication interface 1024. These signals are provided to the communication interface via communication path 1026. For example, the computing device 1000 may use the communication interface 1024 to communicate with the internet and/or external devices wirelessly via WiFi, 3G/4G, GSM, Bluetooth, Near Field Communication, etc. In an embodiment, the computing device 1000 is configured to communicate with a remote storage volume (not shown) such that data may be stored in and retrieved from the remote storage volume. In an embodiment, the computing device 1000 may communicate with the remote storage volume using the at least one communication interface 1024. In an embodiment, the remote storage volume is a cloud storage system.
As shown in
As used herein, the term “computer program product” may refer, in part, to removable storage unit 1018, removable storage unit 1022, a hard disk installed in hard disk drive 1012, or a carrier wave carrying software over communication path 1026 (wireless link or cable) to communication interface 1024. A computer readable medium can include magnetic media, optical media, or other recordable media, or media that transmits a carrier wave or other signal. These computer program products are devices for providing software to computer system 1000.
Computer programs (also called computer program code) are stored in main memory 1008 and/or secondary memory 1010. Computer programs can also be received via communication interface 1024. Such computer programs, when executed, may enable the computing device 1000 to perform one or more features of the data acquirer and/or notifier disclosed herein. In various embodiments, the computer programs, when executed, enable the processor 1004 to perform features of the data acquirer and/or notifier disclosed herein. Accordingly, such computer programs represent controllers of the computer system 1000.
Software may be stored in a computer program product and loaded into computing device 1000 using removable storage drive 1014, hard disk drive 1012, or interface 1020. Alternatively, the computer program product may be downloaded to computer system 1000 over communications path 1026. The software, when executed by the processor 1004, causes the computing device 1000 to perform functions of the data acquirer 103 and/or notifier 108 disclosed herein.
It is to be understood that the embodiment of
An advantage of the above-described embodiment is that a multiple channel piezoelectric sensor system is provided for online monitoring of water quality parameters. In an embodiment, the system includes an array of piezoelectric sensors with different types of receptor coatings for detection of multiple water quality parameters covering inorganic, organic and biological species. Stated differently, different sensors may include different coatings of detecting agents, wherein each coating may be capable of detecting a different analyte.
An advantage of the above-described embodiments is that a controller may draw water samples from a water source or piping system and introduce the sample to the sensor cell array (i.e. detector) wherein the piezoelectric sensors are mounted. Advantageously, water quality parameters may be analyzed by detecting a change in a physical property of the sensors. Furthermore, the system may be configured such that warnings, alarms and process control commands may be displayed on a local or remote monitor and be sent to one or more prescribed recipients when certain water quality thresholds are reached.
The following describes methods of online monitoring of fluid parameters, in accordance with various embodiments.
In an embodiment, the system is configured to perform fingerprinting of a fluid under test. For example, the fluid may be water and the system may be employed to detect the presence of a particular species of bacteria which may render the water unfit for human consumption. Furthermore, different strains of the bacteria may be more harmful than others. Accordingly, in an embodiment, sensors of the detector may be configured in use to detect an analyte which corresponds to the bacteria. Additionally, in an embodiment, different samples of the fluid under test may be combined with different amplifying fluids. For example, different strains of the bacteria may cause a more detectable interaction in the presence of different amplifying fluids.
In use, the controller may combine each sample with a different amplifying fluid or mixture of amplifying fluids. Following which, interactions may be detected using the various output streams. The detection data obtained for all output streams may be combined and considered as a whole by the data acquirer to investigate the presence of the bacteria in the water under test. For example, the presence of the bacteria may be detected using multiple output samples and multiple different amplifying fluids and amplifying fluid mixtures. Therefore, it may be possible to confidently determine that the water under test contains the bacteria. However, this information alone may not make it possible to identify the particular bacteria strain. Since different strains of the bacteria cause more detectable interactions in the presence of a different amplifying fluid or mixture of amplifying fluids, the interaction magnitudes (i.e. levels) associated with each amplifying fluid or amplifying fluid mixture may be used to identify which strain of bacteria is present in the water under test. For example, a high magnitude detected using certain amplifying fluids and a low magnitude detected using other certain amplifying fluids may indicate one specific strain. Stated differently, multiple magnitudes may be considered together and used as a fingerprint which identifies the presence of one particular bacteria strain. Accordingly, the detection data magnitudes from multiple sensors may be used to identify the fingerprint of particular fluid components.
In an embodiment, sample streams pumped from the sampler are combined and/or split into multiple channels in the detector to form a plurality of output streams. In an embodiment, the plurality of output streams are directed to sensor cells with sensors coated with various receptors (i.e. detecting agents) to interact with target species (i.e. analytes). In an embodiment, a frequency change resulting from interactions detected at one or more of the sensors are recorded. Accordingly, direct measurement of target species or pollutants (i.e. analytes) is achieved. In an embodiment, the sensor may be additionally configured to perform ORP analysis. Accordingly, carbohydrates and amino acids may be analyzed to determine the concentration thereof, so that the concentration may be used for prediction of water quality parameters, such as, for example, COD, BOD, and TOC. Therefore, data acquired from ORP analysis may be complementary to, and correlated with, data acquired from piezoelectric sensing.
In an embodiment, stepwise sample flow with intermittent static data acquisition may be performed. In an embodiment, the sample streams are interrupted and controlled by the controller in such a way that sample streams flow through the sensor cells in a stepwise or intermittent manner. This operation creates a slow flow rate during sensing periods to ensure effective sensing. In an embodiment, data acquisition is turned on and off when the output stream is in static state and moving state, respectively. Stated differently, the system is configured such that data is only acquired from a sensor during times when the output stream being directed through the sensor is stationary, i.e. not when the output stream is flowing. Advantageously, static data acquisition improves stability of electronic data obtained from a sensor.
In an embodiment, sample dividing and cyclic sequential sensing for continuous monitoring may be performed. Specifically, it may take a time T to complete a sensing operation in respect of an output stream having a flow rate FL1. If the sensing flow rate is lower than the main fluid stream flow rate FL2, more than one sensor cells may be used to continuously monitor the complete stream. In an embodiment, the number of sensor cells N is determined by N=FL2/FL1. In an embodiment, FL1 is controlled to ensure that N is an integral number. In an embodiment, a sample stream is divided into N sequential portions and each portion is directed to a sensor cell n at time t=nT/N wherein n is 1, 2 . . . N. Accordingly, data from these N sensor cells may be combined to recover the complete data line. In an embodiment, this process is controlled by the controller and is performed in a cyclic way for continuous monitoring.
In various embodiments, aspects of the system may be configured to reduce bubbling of fluid, i.e. the formation of bubbles in the fluid. For example, the various tubes of the system may be configured with rounded bends, rather than sharp bends. In this way, it may be possible to reduce turbulence in the fluid and, therefore, reduce the chances of bubbles being present in the output streams when they contact the sensors. This can be an advantage because such bubbles may impede detection of interactions and, therefore, hinder the detection of analytes.
In various embodiments, a pumping device is provided to provide an intermittent flow of an output stream through a sensor cell. In an embodiment, the pumping device comprises a peristaltic pump. In an embodiment, the intermittent flow is generated by activation and deactivation of the pumping device, i.e. the pumping device is alternately switched on and off. However, in another embodiment, the pumping device includes a liquid motion switch to enhance the stability of the stepwise sample flow. For example, rather than turning on and off, the liquid motion switch may be configured to control the pumping operation of the pumping device to alternatively operate on the output stream and not operate on the output stream. Stated differently, the pumping device operates continuously; however, it may only periodically operate on the output stream. Accordingly, noise generated by the switching on and off of the pumping device may be avoided. Therefore, the stability of the electronic data signals received from the detector may be improved.
It is an advantage of various embodiments that a system is provided which allows flexible arrangements of sample chambers. For example, the system may be configured to detect a single analyte in a plurality of samples, detect a plurality of analytes in a single sample or detect a plurality of analytes in a plurality of samples. Additionally, one or more different samples may be examined at the same or different times to one or more other samples.
It is an advantage that the controller is programmable to deliver output streams comprising one or more samples and, optionally, one or more buffering fluids and/or one or more amplifying fluids. In an embodiment, the controller may operate according to a protocol which can be controlled, such as, for example, by a computing device (e.g. computing device 1000).
It is an advantage of various embodiments that online monitoring of a wide range of water quality parameters may be performed. It is an advantage of various embodiments that continuous and real-time monitoring is achieved. It is an advantage of various embodiments that multiple water quality parameters can be detected simultaneously.
It is an advantage of various embodiments that analytes may be detected in a fluid automatically. Stated differently, no skilled personnel may be required, for example, to perform wet chemistry methods. Instead, various embodiments may function automatically to collect fluid sample streams and analyse the fluid in those streams for the presence of one or more analytes.
Accordingly, detection may be performed considerably faster compared to methods utilising wet chemistry methods performed by skilled personnel.
It is an advantage of various embodiments that a multi-functional system is provided. For example, the controller can be used to generate different output streams comprising different combinations of sample streams, buffer fluids and/or amplifying fluids. Also, the controller can be used to provide each output stream to different sensors for detections of different analytes. Further, the controller can be used to provide different output streams to a corresponding sensor at different times, such that different output streams can be analysed at the same or different time to other output streams.
It is an advantage of various embodiments of the invention that the sensor system features high selectivity and sensitivity by using coating recipes. The coating recipes allow the sensor to bind to analytes and amplifying agents so that detectable, or more detectable, signals are generated. It is an advantage of various embodiments of the invention that COD, BOD, TOC, etc. can be monitored by biosensing and electrochemical sensing within the sensor system.
b illustrates another example of a coating recipe, comprising a sensing agent 704b. In an embodiment, the sensing agent 704b is different from the sensing agent 704a of
The embodiment of
It is an advantage of various embodiments that no toxic chemicals are added to the fluid under test. For example, where an embodiment is used for detecting water quality, the process of testing the water does not render the water toxic or unfit for human consumption.
In an embodiment, a system for detecting one or more analytes in a fluid provides a multiple channel piezoelectric sensor system comprising: a sampler, a controller, a sensor cell array equipped with dual-crystal piezoelectric sensors plus ORP electrodes (i.e. a detector) and a data process/reporting module (i.e. a data acquirer and a notifier). An advantage of various embodiments is that the system can monitor various water quality parameters including COD, BOD and TOC. In an embodiment, monitoring of COD, BOD and TOC is done by detection of carbohydrates and amino acids using piezoelectric sensing coupled with ORP analysis. In an embodiment, continuous monitoring is achieved by using sample dividing and cyclic sequential sensing. In an embodiment, signal stability is enhanced by using dual-crystal piezoelectric sensors for noise elimination. In an embodiment, signal stability is enhanced by using stepwise sample flow with intermittent static data acquisition. In an embodiment, mathematical and statistical methods are used for noise elimination and data processing.
In an embodiment, it is to be understood that the detector may include any number of sensors. For example, the detector may include 5, 10, 100, 500, or 1000 or more sensors. Additionally, in an embodiment, each sensor may be the same; however, in another embodiment, one or more sensors may be different from one or more other sensors. For example, some sensors could include piezoelectric biosensors, whilst other sensors may include surface plasmon resonance biosensors, whilst other sensors may include electrochemical sensors. In an embodiment, one sensor may include the functionality of multiple sensors.
In an embodiment, the controller may form or generate the same number of output streams as there are sensors of the detector. Accordingly, the controller may provide a different one of its output streams to a different one of the detector's sensors. Additionally or alternatively, the controller may provide multiple output streams to the same detector sensor. Additionally or alternatively, the controller may split one or more output streams and provide each portion to a different detector sensor. In an embodiment, the number of output streams may be more than the number of detector sensors. In an embodiment, the number of output streams may be less than the number of number of detector sensors.
In some above-described embodiments, the controller is configured to control the time at which each sample stream is obtained and/or the time at which each output stream is provided to a sensor of the detector. Accordingly, the controller may be configured to hold or store fluid during its transition from a sample stream to an output stream. This may be an advantage in situations where fluids, such as, amplifying fluids, are added to the output stream. Specifically, the controller may allow the output stream to be pre-processed before it is contacted with a sensor. Stated differently, while the output stream is being held in the controller, the amplifying fluid may be acting on analytes in order that a more detectable interaction is obtained when the detecting agent is later introduced via a sensor. In an embodiment, a specific pre-processing container may be provided in the controller which is configured in use to hold fluid undergoing a preprocessing operation. In an embodiment, the pre-processing container may be one of the above-described reservoirs.
In the above-described embodiments, the fluid in which one or more analytes are detected is described in general terms. Further, in various embodiments, the fluid is water. In an embodiment, the fluid is drinking water, process water, recycled water, treated water, ground water, reservoir water and catchment water. However, it is to be understood that various embodiments are equally applicable for detecting one or more analytes in any other fluid, such as, for example, any liquid or any gas. In an embodiment, wherein the fluid is a liquid, the fluid may be an aqueous solution, a solution of organic compounds, oil, a beverage, such as, milk, a carbonated drink, a soda, a fruit drink, a fruit juice, or a body fluid, such as, blood or urin. In an embodiment, wherein the fluid is a gas, the fluid may be breathing air, oxygen, or the vapour of a liquid, outgassing from a liquid and/or a solid.
In the above-described embodiment, the various fluid streams disclosed are transported or carried using a tube. It is to be understood that the term tube is not taken to be limiting. Instead, the term tube is used to include any vessel suitable for carrying a fluid. For example, the tube could be a pipe, a conduit, a channel. Additionally, the tube may be flexible or rigid.
In the above-described embodiments, an interaction is said to occur when a detecting agent and a corresponding analyte bind together in each other presence. However, in an embodiment, an interaction may occur not when a single detecting agent and a single analyte bind together, but when two or more different detecting agents bind together with one or more analytes. In an embodiment, an interaction may occur not when a single detecting agent and single analyte bind together, but when two or more different analytes bind together with one or more detecting agents.
In an embodiment, an analyte may be an organic molecule, an inorganic molecule or a microorganism. In an embodiment, an analyte may be a contaminant or an impurity. In an embodiment, non-limiting examples of an analyte include: herbicides, pesticides, drugs, hormones, cations, anions, metal complex, particles, bacteria and viruses.
In an embodiment, a detecting agent may be an organic molecule, such as for example, an enzyme, an antibody or an organic polymer. In an embodiment, a detecting agent may be an inorganic molecule, such as, for example, a salt or an inorganic polymer. In an embodiment, a detecting agent may be a biologically sensitive agent or a chemically sensitive agent. In an embodiment, non-limiting examples of a detecting agent include: functional proteins, antibodies, oligonucleotides, and imprint polymers. In an embodiment, the detecting agent may be an antibody, a protein, an oligonucleotide or a polymer, an inorganic material, an organic substance.
In an embodiment, a flushing fluid is any fluid which can be used to remove a bound analyte from a sensor. For example, the analyte may be bound to an external coating of the sensor, wherein the coating includes a detecting agent. In an embodiment, non-limiting examples of a flushing fluid include: buffer solutions with different acidity from the buffering fluid, detergents, and organic solvents.
In an embodiment, a regeneration fluid is any fluid which can be used to form a detecting agent when it is exposed to a sensor. For example, the regeneration fluid may react with the sensor surface to form the detecting agent on the sensor surface. Alternatively, the regeneration fluid may include the detecting agent such that contacting the sensor surface with the regeneration fluid transfers the detecting agent to the sensor surface. In an embodiment, non-limiting examples of a regeneration fluid include: chemically modified functional proteins, antibodies, oligonucleotides, imprint polymers, and biotin.
In an embodiment, an amplifying fluid is any fluid which can be used to amplify an interaction caused by an analyte binding with a detecting agent. In an embodiment, the interaction may be amplified by the analyte binding to the amplifying fluid. In an embodiment, non-limiting examples of an amplifying fluid include: functional proteins, antibodies, oligonucleotides, polymers, nanoparticles, micro-beads.
In an embodiment, a buffering fluid is any fluid which can be used to maintain or set a predetermined pH in a fluid to which it is added. In an embodiment, non-limiting examples of a buffering fluid include: aqueous solutions of acetate, phosphate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and tris(hydroxymethyl)aminomethane (Tris).
In an embodiment, an interaction is the binding of an analyte with a detecting agent. In an embodiment, the binding may be permanent or, alternatively, may be temporary. In an embodiment, the binding may include covalent binding. In an embodiment, the binding may include ionic binding. In an embodiment, the binding may include coordinative binding. In an embodiment, the binding may include metallic bonding. In an embodiment, the binding may include van der Waals forces. In an embodiment, the binding may include electrostatic binding. In an embodiment, the binding may include enzymatic binding, i.e. binding of an enzyme.
In an embodiment, an interaction is the conversion of a detecting agent caused by the presence of an analyte. In an embodiment, an interaction is the conversion of an analyte caused by the presence of a detecting agent. In an embodiment, the conversion may be temporary or, alternatively, may be permanent.
In an embodiment, a detecting agent and a corresponding analyte bind together and the interaction comprises unbinding of the corresponding analyte and at least part of the detecting agent. In an embodiment, the unbinding operation corresponds to at least one of the above-described binding operations. In an embodiment, analyte-specific molecules are immobilized on the sensor surface. The immobilized molecules are combined with substrates and signal amplification particles. In the presence of the analyte, the substrate will cleave into multiple pieces. The signal amplification particles attached on the cleaved substrates will be removed, resulting in an observable change in detection signal. Thus, through the monitoring of signal change, it is possible to determine the concentration of the analyte in the solution.
In an embodiment, the interaction comprises at least one chemical reaction, and at least one sensor detects the interaction by detecting a physical change caused by the at least one chemical reaction. In an embodiment, the chemical reaction may include an inorganic reaction, an organic reaction, a biochemical reaction.
In an embodiment, the system is provided in a portable casing so that it may be carried by a user from one fluid analysis location to another fluid analysis location. Non-limiting examples of a fluid analysis location may be a water treatment facility, a restaurant, a domestic house or a commercial building.
It will be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to one or more of the above-described embodiments without departing from the spirit or scope of the invention as broadly described in the appended claims. The above-described embodiments are, therefore, to be considered in all respects to be illustrative and not restrictive.
It is also to be understood that one or more features of one embodiment may be combined with one or more features from one or more other embodiments in order to form one or more new embodiments, without departing from the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG2012/000231 | 6/28/2012 | WO | 00 | 12/31/2013 |
Number | Date | Country | |
---|---|---|---|
61503690 | Jul 2011 | US |