Embodiments of the present invention relate generally to malicious content detection. More particularly, embodiments of the invention relate to detecting phishing activity based on predicting a password for decrypting an electronic attachment provided as part of a communication message for malicious content detection.
Malicious software, or malware for short, may include any program or file that is harmful by design to a computer. Malware includes computer viruses, worms, Trojan horses, adware, spyware, and any programming that gathers information about a computer or its user or otherwise operates without permission. The owners of the computers are often unaware that these programs have been added to their computers and are often similarly unaware of their function.
Malicious network content is a type of malware distributed over a network via websites, e.g., servers operating on a network according to a hypertext transfer protocol (HTTP) standard or other well-known standard. Malicious network content distributed in this manner may be actively downloaded and installed on a computer, without the approval or knowledge of its user, simply by the computer accessing the web site hosting the malicious network content (the “malicious web site”). Malicious network content may be embedded within objects associated with web pages hosted by the malicious web site. Malicious network content may also enter a computer on receipt or opening of email. For example, email may contain an attachment, such as a PDF document, with embedded malicious executable programs. Furthermore, malicious content may exist in files contained in a computer memory or storage device, having infected those files through any of a variety of attack vectors.
Various processes and devices have been employed to prevent the problems associated with malicious content. For example, computers often run antivirus scanning software that scans a particular computer for viruses and other forms of malware. The scanning typically involves automatic detection of a match between content stored on the computer (or attached media) and a library or database of signatures of known malware. The scanning may be initiated manually or based on a schedule specified by a user or system administrator associated with the particular computer. Unfortunately, by the time malware is detected by the scanning software, some damage on the computer or loss of privacy may have already occurred, and the malware may have propagated from the infected computer to other computers. Additionally, it may take days or weeks for new signatures to be manually created, the scanning signature library updated and received for use by the scanning software, and the new signatures employed in new scans.
Moreover, anti-virus scanning utilities may have limited effectiveness to protect against all exploits by polymorphic malware. Polymorphic malware has the capability to mutate to defeat the signature match process while keeping its original malicious capabilities intact. Signatures generated to identify one form of a polymorphic virus may not match against a mutated form. Thus polymorphic malware is often referred to as a family of virus rather than a single virus, and improved anti-virus techniques to identify such malware families is desirable.
Another type of malware detection solution employs virtual environments to replay content within a sandbox established by virtual machines (VMs). Such solutions monitor the behavior of content during execution to detect anomalies that may signal the presence of malware. One such system offered by FireEye, Inc., the assignee of the present patent application, employs a two-phase malware detection approach to detect malware contained in network traffic monitored in real-time. In a first or “static” phase, a heuristic is applied to network traffic to identify and filter packets that appear suspicious in that they exhibit characteristics associated with malware. In a second or “dynamic” phase, the suspicious packets (and typically only the suspicious packets) are replayed within one or more virtual machines. For example, if a user is trying to download a file over a network, the file is extracted from the network traffic and analyzed in the virtual machine. The results of the analysis aids in determining whether the file is malicious. The two-phase malware detection solution may detect numerous types of malware and, even malware missed by other commercially available approaches. Through verification, the two-phase malware detection solution may also achieve a significant reduction of false positives relative to such other commercially available approaches. Dealing with false positives in malware detection may needlessly slow or interfere with download of network content or receipt of email, for example. This two-phase approach has even proven successful against many types of polymorphic malware and other forms of advanced persistent threats.
In some situations, malicious content comes in a form of encrypted attachment to an email. In order to perform a malicious content analysis on the attachment, it has to be decrypted first. Conventional malware detection systems cannot perform malware detection without a necessary password because the content has been encrypted.
Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment. Also, the term “email” generally denotes a communication message being digital data with a particular format such as one or more packet(s), frame(s), or any other series of bits having a prescribed format, which may include, but not limited or restricted to an electronic mail message, an instant message (IM), or another type of communication message.
Aspects of the invention are directed to detecting phishing activity in the form of communication messages, which include malicious content within easily decrypted attachments and are generated to leverage social relationships of trust between a targeted recipient and an apparent sender. The social relationship and apparent encryption of a message is desired to encourage the sender to decrypt the attachment and cause malware to be uploaded and installed on the recipient's computer system or electronic device. Illustrative techniques for detecting phishing activity involves predicting a password for decrypting an attachment for the purpose of malicious content detection are described herein.
Often, malware writers attach encrypted attachments to a communication message generally referred to as an “email” (e.g., an electronic mail message or an instant message, etc.) with a view to enticing a particular recipient to open and decrypt the attachment, thereby releasing a malicious executable or other malware within the recipient's computer system or device. The malware writers often rely on a social relationship of trust between the apparent (though usually not actual) “sender” of the email and the recipient to make it appear that it is safe to open the attachment. For example, the relationship may be familial or a work relationship. Accordingly, the encryption of the attachment is not intended to actually protect the attachment content, but rather to use the encryption to lull the recipient into believing the attachment is safe to open. In addition, malware authors often provide the password explicitly within the body of the email itself or at least provide hints or clues to the recipient to make the password obvious from the content so as to facilitate decryption by the recipient. To detect malware within the “faux” encrypted attachment by a malware detection system, embodiments of the invention take advantage of this tendency (or trick) of malware authors to use the included or “hinted at” password within a malware detection system to decrypt the attachment and then detect the embedded malware. After decryption, a malware detection system equipped in this way may monitor the behavior the malware, and generate signatures for detection of malware in other email traffic.
According to one embodiment, when an email having an attachment is received, the attachment is examined to determine whether the attachment has been encrypted. If the attachment has been encrypted, a list of default passwords is used in an attempt to decrypt the attachment. The list of default passwords may be those commonly used by ordinary users in the world, which may be collected and distributed periodically. If the attachment can be decrypted using the default passwords, a content analysis is performed on the decrypted content to determine whether the attached content likely contains malicious content.
If the attachment cannot be decrypted using any of the default passwords, according to one embodiment, a password predictor is invoked to parse the email to locate any possible passwords hints within various portions of the email (e.g. body, subject line, address line, etc.) and attempt to determine or predict one or more password candidates. The password candidates may be determined based on certain content or password patterns (e.g., text phrases) or certain metadata (e.g., domain, addresses) of the email. The password candidates are then used in an attempt to decrypt the encrypted attachment. If the encrypted attachment can be decrypted using any of the password candidates, a content analysis (e.g., static analysis and/or dynamic analysis) is performed on the decrypted attachment. As a result, at least some encrypted content can be analyzed for malware detection. Behavior of execution of the decrypted attachment is then monitored and new malware signatures may be generated for future detection. Alternatively, content of the email may be scanned and analyzed prior to applying the list of default passwords to predict the password. Furthermore, the above mentioned multiple password prediction approaches may be performed individually or in combination, in series or in parallel with no particular order or sequence.
According to one embodiment, in response to an email having an attachment received from an email sender (e.g., clients 102) to be delivered to a recipient (e.g., clients 103), EMDS 101 is configured to determine whether the attachment has been encrypted by a password. If the attachment is not encrypted, the attachment is then extracted from the email and a content analysis may be performed on the extracted attachment, for example, by dynamic analysis module 112 and/or static analysis module 113 for dynamic content analysis (also referred to a behavioral analysis) and/or static analysis, respectively.
If the attachment has been encrypted, a list of default passwords 111 is used in an attempt to decrypt the attachment. The list of default passwords 111 may be those commonly used by ordinary users in the world and collected based on prior analysis over a period of time. If the attachment can be decrypted using the default passwords 111, the content analysis is performed, for example, by dynamic analysis module 112 and/or static analysis module 113, on the decrypted content to determine whether the attached content likely contains malicious content.
If the attachment cannot be decrypted using the default passwords 111, according to one embodiment, a password predictor 110 is invoked to parse the email to locate or identify any possible passwords hints within the email and attempt to determine or predict one or more password candidates. As described above, a sender of the email may provide obvious hints of a password that can be used to decrypt the encrypted attachment to lull the recipient of the email to believe that the attachment is safe to decrypt, giving certain information (e.g., relationship of the sender and recipient) obtained from the email. The purpose of the sender is to convince the recipient to decrypt the attachment using a password provided or hinted by the sender, such that malicious content can be dispatched. Accordingly, an embodiment of the invention is to take advantage of such tendency to predict or determine the password and to decrypt the attachment, such that a malicious content analysis can be performed on the decrypted attachment.
According to one embodiment, the password candidates may be determined based on certain content or password patterns (e.g., text phrases) or certain metadata (e.g., domain, addresses) of the email. The password candidates are then used in an attempt to decrypt the encrypted attachment. If the encrypted attachment can be decrypted using any of the password candidates, the content analysis (e.g., static analysis and/or dynamic analysis) is performed on the decrypted attachment. As a result, at least some encrypted content can be analyzed for malware detection. Once the attachment has been determined not to contain malicious content, the email, as well as the attachment, is then forwarded, for example, via the associated communication (e.g. email, IM, etc.) server 105, to the intended recipient(s) 103A-103B. Otherwise, the email and the attachment may be prevented from being delivered to the intended recipient. Instead, an alert may be generated and sent to an administrator of the local network and/or the intended recipient. Alternatively, only the email is delivered without delivering the attachment and a warning message is displayed to alert the intended recipient(s).
Note that the configuration as shown in
If encrypted attachment 203 can be decrypted to become decrypted content 207 using default passwords 111, a content analysis is performed on decrypted content 207. In one embodiment, a static content analysis is performed on decrypted content 207 by static analysis module 113, for example, based on heuristics to generate a static malicious indicator or score 208. In addition, a dynamic or behavioral content analysis is performed on decrypted content 207 by dynamic analysis module 112, for example, by replaying decrypted content 207 in an isolated operating environment (e.g., virtual machine or sandboxed environment) and observing behaviors of decrypted content 207 to generate a dynamic malicious indicator or score 209. The indicators or scores 208-209 are then utilized to determine whether decrypted content 207 is mostly likely malicious.
If attachment processing module 206 cannot decrypt the encrypted attachment 203 using default passwords 111, according to one embodiment, attachment processing module 206 invokes password predictor 110 to parse email 201 in an attempt to identify any password candidates based on email content 202 and/or email metadata or attributes, for example, in view of a set of password patterns 210, which may be collected and distributed periodically. An email sender often puts a password for the attachment in the email or uses a password that is closely related to the content or attribute of the email. In one embodiment, password predictor 110 is configured to identify certain commonly used phrases in the email, and based on the identified commonly used phrases, password predictor 110 is configured to identify and extract a password candidate from the nearby content (e.g., texts within a predetermined proximity of a particular phrase.
In one embodiment, if password predictor 110 identifies a phrase 204 from email content 202 that matches a predetermined pattern or template as part of password patterns 210 (in this example, “the password is asd34fjd” that matches a predetermined pattern or template of “the password is”), password predictor 110 may extract the nearby content (in this example, “asd34fjd” that immediately follows the phrase of “the password is”) as a password candidate 205. Password candidate 205 is then utilized to decrypt the encrypted content 203 and a content analysis is performed if the encrypted content 203 can be decrypted.
According to some embodiments, password patterns 210 may further include other patterns that may also be utilized to identify password candidates, such as, for example, “password,” “pass,” “p/w,” and “here is the password.” In one embodiment, up to a predetermined number (e.g., five) of words before or after the predetermined patterns may be utilized as potential password candidates. Some common words such as pronouns, adjectives, adverbs, and verbs may be excluded from the phrase during the prediction of passwords. Some words between some annotations, such as, for example, “{ },” “[ ],” “( ),” single quotes, and double quotes, may be identified as potential password candidates. Furthermore, certain words related to a sender of the email, such as a domain name, may be utilized as at least the hints to predict passwords. Some email metadata or attributes, such as, for example, the FROM, TO, and/or SUBJECT fields of an email, may also be utilized. Certain information of the URLs of the Web download may also be utilized as password candidates. Note that any of the above information may be combined to predict the passwords.
It will be appreciated that the above variety of password approaches can be utilized individually or in combination, in serious or in parallel with any order or sequence. For example, the password prediction based on email content may be performed first prior to applying a list of default passwords. Alternatively, the password prediction operations based on email content, default passwords, and email metadata may be performed in parallel. Also note that password predictor 110 may be implemented in software (e.g., application, device driver, as part of operating system), hardware (e.g., integrated circuit or a processor having machine-executable code running therein), or a combination of thereof.
The malicious content detection system 850 is illustrated with a server device 810 and a client device 830, each coupled for communication via a communication network 820. In various embodiments, there may be multiple server devices and multiple client devices sending and receiving data to/from each other, and the same device can serve as either a server or a client in separate communication sessions. Although
Note that throughout this application, network content is utilized as an example of content for malicious content detection purposes; however, other types of content can also be applied. Network content may include any data transmitted over a network (i.e., network data). Network data may include text, software, images, audio, or other digital data. An example of network content includes web content, or any network data that may be transmitted using a Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) protocol, or be transmitted in a manner suitable for display on a Web browser software application. Another example of network content includes email messages, which may be transmitted using an email protocol such as Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), or Internet Message Access Protocol (IMAP4). A further example of network content includes Instant Messages, which may be transmitted using an Instant Messaging protocol such as Session Initiation Protocol (SIP) or Extensible Messaging and Presence Protocol (XMPP). In addition, network content may include any network data that is transferred using other data transfer protocols, such as File Transfer Protocol (FTP).
The malicious network content detection system 850 may monitor exchanges of network content (e.g., Web content) in real-time rather than intercepting and holding the network content until such time as it can determine whether the network content includes malicious network content. The malicious network content detection system 850 may be configured to inspect exchanges of network content over the communication network 820, identify suspicious network content, and analyze the suspicious network content using a virtual machine to detect malicious network content. In this way, the malicious network content detection system 850 may be computationally efficient and scalable as data traffic volume and the number of computing devices communicating over the communication network 820 increases. Therefore, the malicious network content detection system 850 may not become a bottleneck in the computer network system 800.
The communication network 820 may include a public computer network such as the Internet, in which case a firewall 825 may be interposed between the communication network 820 and the client device 830. Alternatively, the communication network may be a private computer network such as a wireless telecommunication network, wide area network, or local area network, or a combination of networks. Though the communication network 820 may include any type of network and be used to communicate different types of data, communications of web data may be discussed below for purposes of example.
The malicious network content detection system 850 is shown as coupled with the network 820 by a network tap 840 (e.g., a data/packet capturing device). The network tap 840 may include a digital network tap configured to monitor network data and provide a copy of the network data to the malicious network content detection system 850. Network data may comprise signals and data that are transmitted over the communication network 820 including data flows from the server device 810 to the client device 830. In one example, the network tap 840 monitors and copies the network data without an appreciable decline in performance of the server device 810, the client device 830, or the communication network 820. The network tap 840 may copy any portion of the network data, for example, any number of data packets from the network data. In embodiments where the malicious content detection system 850 is implemented as an dedicated appliance or a dedicated computer system, the network tap 840 may include an assembly integrated into the appliance or computer system that includes network ports, network interface card and related logic (not shown) for connecting to the communication network 820 to non-disruptively “tap” traffic thereon and provide a copy of the traffic to the heuristic module 860. In other embodiments, the network tap 840 can be integrated into a firewall, router, switch or other network device (not shown) or can be a standalone component, such as an appropriate commercially available network tap. In virtual environments, a virtual tap (vTAP) can be used to copy traffic from virtual networks.
The network tap 840 may also capture metadata from the network data. The metadata may be associated with the server device 810 and/or the client device 830. For example, the metadata may identify the server device 810 and/or the client device 830. In some embodiments, the server device 810 transmits metadata which is captured by the tap 840. In other embodiments, a heuristic module 860 (described herein) may determine the server device 810 and the client device 830 by analyzing data packets within the network data in order to generate the metadata. The term, “content,” as used herein may be construed to include the intercepted network data and/or the metadata unless the context requires otherwise.
The malicious network content detection system 850 may include a heuristic module 860, a heuristics database 862, a scheduler 870, a virtual machine pool 880, an analysis engine 882 and a reporting module 884. In some embodiments, the network tap 840 may be contained within the malicious network content detection system 850.
The heuristic module 860 receives the copy of the network data from the network tap 840 and applies heuristics to the data to determine if the network data might contain suspicious network content. The heuristics applied by the heuristic module 860 may be based on data and/or rules stored in the heuristics database 862. The heuristic module 860 may examine the image of the captured content without executing or opening the captured content. For example, the heuristic module 860 may examine the metadata or attributes of the captured content and/or the code image (e.g., a binary image of an executable) to determine whether a certain portion of the captured content matches a predetermined pattern or signature that is associated with a particular type of malicious content. In one example, the heuristic module 860 flags network data as suspicious after applying a heuristic analysis. This detection process is also referred to as a static malicious content detection. The suspicious network data may then be provided to the scheduler 870. In some embodiments, the suspicious network data is provided directly to the scheduler 870 with or without buffering or organizing one or more data flows.
When a characteristic of the packet, such as a sequence of characters or keyword, is identified that meets the conditions of a heuristic, a suspicious characteristic of the network content is identified. The identified characteristic may be stored for reference and analysis. In some embodiments, the entire packet may be inspected (e.g., using deep packet inspection techniques) and multiple characteristics may be identified before proceeding to the next step. In some embodiments, the characteristic may be determined as a result of an analysis across multiple packets comprising the network content. A score related to a probability that the suspicious characteristic identified indicates malicious network content is determined.
The heuristic module 860 may also provide a priority level for the packet and/or the features present in the packet. The scheduler 870 may then load and configure a virtual machine from the virtual machine pool 880 in an order related to the priority level, and dispatch the virtual machine to the analysis engine 882 to process the suspicious network content.
The heuristic module 860 may provide the packet containing the suspicious network content to the scheduler 870, along with a list of the features present in the packet and the malicious probability scores associated with each of those features. Alternatively, the heuristic module 860 may provide a pointer to the packet containing the suspicious network content to the scheduler 870 such that the scheduler 870 may access the packet via a memory shared with the heuristic module 860. In another embodiment, the heuristic module 860 may provide identification information regarding the packet to the scheduler 870 such that the scheduler 870, or virtual machine may query the heuristic module 860 for data regarding the packet as needed.
The scheduler 870 may identify the client device 830 and retrieve a virtual machine associated with the client device 830. A virtual machine may itself be executable software that is configured to mimic the performance of a device (e.g., the client device 830). The virtual machine may be retrieved from the virtual machine pool 880. Furthermore, the scheduler 870 may identify, for example, a Web browser running on the client device 830, and retrieve a virtual machine associated with the web browser.
In some embodiments, the heuristic module 860 transmits the metadata identifying the client device 830 to the scheduler 870. In other embodiments, the scheduler 870 receives one or more data packets of the network data from the heuristic module 860 and analyzes the one or more data packets to identify the client device 830. In yet other embodiments, the metadata may be received from the network tap 840.
The scheduler 870 may retrieve and configure the virtual machine to mimic the pertinent performance characteristics of the client device 830. In one example, the scheduler 870 configures the characteristics of the virtual machine to mimic only those features of the client device 830 that are affected by the network data copied by the network tap 840. The scheduler 870 may determine the features of the client device 830 that are affected by the network data by receiving and analyzing the network data from the network tap 840. Such features of the client device 830 may include ports that are to receive the network data, select device drivers that are to respond to the network data, and any other devices coupled to or contained within the client device 830 that can respond to the network data. In other embodiments, the heuristic module 860 may determine the features of the client device 830 that are affected by the network data by receiving and analyzing the network data from the network tap 840. The heuristic module 860 may then transmit the features of the client device to the scheduler 870.
The virtual machine pool 880 may be configured to store one or more virtual machines. The virtual machine pool 880 may include software and/or a storage medium capable of storing software. In one example, the virtual machine pool 880 stores a single virtual machine that can be configured by the scheduler 870 to mimic the performance of any client device 830 on the communication network 820. The virtual machine pool 880 may store any number of distinct virtual machines that can be configured to simulate the performance of a wide variety of client devices 830.
The analysis engine 882 simulates the receipt and/or display of the network content from the server device 810 after the network content is received by the client device 110 to analyze the effects of the network content upon the client device 830. The analysis engine 882 may identify the effects of malware or malicious network content by analyzing the simulation of the effects of the network content upon the client device 830 that is carried out on the virtual machine. There may be multiple analysis engines 882 to simulate multiple streams of network content. The analysis engine 882 may be configured to monitor the virtual machine for indications that the suspicious network content is in fact malicious network content. Such indications may include unusual network transmissions, unusual changes in performance, and the like. This detection process is referred to as a dynamic malicious content detection.
The analysis engine 882 may flag the suspicious network content as malicious network content according to the observed behavior of the virtual machine. The reporting module 884 may issue alerts indicating the presence of malware, and using pointers and other reference information, identify the packets of the network content containing the malware. Additionally, the server device 810 may be added to a list of malicious network content providers, and future network transmissions originating from the server device 810 may be blocked from reaching their intended destinations, e.g., by firewall 825.
The computer network system 800 may also include a further communication network 890, which couples the malicious content detection system (MCDS) 850 with one or more other MCDS, of which MCDS 892 and MCDS 894 are shown, and a management system 896, which may be implemented as a Web server having a Web interface. The communication network 890 may, in some embodiments, be coupled for communication with or part of network 820. The management system 896 is responsible for managing the MCDS 850, 892, 894 and providing updates to their operation systems and software programs. Also, the management system 896 may cause malware signatures generated by any of the MCDS 850, 892, 894 to be shared with one or more of the other MCDS 850, 892, 894, for example, on a subscription basis. Moreover, the malicious content detection system as described in the foregoing embodiments may be incorporated into one or more of the MCDS 850, 892, 894, or into all of them, depending on the deployment. Also, the management system 896 itself or another dedicated computer station may incorporate the malicious content detection system in deployments where such detection is to be conducted at a centralized resource.
Further information regarding an embodiment of a malicious content detection system can be had with reference to U.S. Pat. No. 8,171,553, the disclosure of which being incorporated herein by reference in its entirety.
As described above, the detection or analysis performed by the heuristic module 860 may be referred to as static detection or static analysis, which may generate a first score (e.g., a static detection score) according to a first scoring scheme or algorithm. The detection or analysis performed by the analysis engine 882 is referred to as dynamic detection or dynamic analysis, which may generate a second score (e.g., a dynamic detection score) according to a second scoring scheme or algorithm. The first and second scores may be combined, according to a predetermined algorithm, to derive a final score indicating the probability that a malicious content suspect is indeed malicious.
Furthermore, detection systems 850 and 892-894 may deployed in a variety of distribution ways. For example, detection system 850 may be deployed as a detection appliance at a client site to detect any suspicious content, for example, at a local area network (LAN) of the client. In addition, any of MCDS 892 and MCDS 894 may also be deployed as dedicated data analysis systems. Systems 850 and 892-894 may be configured and managed by a management system 896 over network 890, which may be a LAN, a wide area network (WAN) such as the Internet, or a combination of both. Management system 896 may be implemented as a Web server having a Web interface to allow an administrator of a client (e.g., corporation entity) to log in to manage detection systems 850 and 892-894. For example, an administrator may able to activate or deactivate certain functionalities of malicious content detection systems 850 and 892-894 or alternatively, to distribute software updates such as malicious content definition files (e.g., malicious signatures or patterns) or rules, etc. Furthermore, a user can submit via a Web interface suspicious content to be analyzed, for example, by dedicated data analysis systems 892-894. As described above, malicious content detection includes static detection and dynamic detection. Such static and dynamic detections can be distributed amongst different systems over a network. For example, static detection may be performed by detection system 850 at a client site, while dynamic detection of the same content can be offloaded to the cloud, for example, by any of detection systems 892-894. Other configurations may exist.
Referring to
Peripheral interface 902 may include memory control hub (MCH) and input output control hub (ICH). Peripheral interface 902 may include a memory controller (not shown) that communicates with a memory 903. Peripheral interface 902 may also include a graphics interface that communicates with graphics subsystem 904, which may include a display controller and/or a display device. Peripheral interface 902 may communicate with graphics device 904 via an accelerated graphics port (AGP), a peripheral component interconnect (PCI) express bus, or other types of interconnects.
An MCH is sometimes referred to as a Northbridge and an ICH is sometimes referred to as a Southbridge. As used herein, the terms MCH, ICH, Northbridge and Southbridge are intended to be interpreted broadly to cover various chips who functions include passing interrupt signals toward a processor. In some embodiments, the MCH may be integrated with processor 901. In such a configuration, peripheral interface 902 operates as an interface chip performing some functions of the MCH and ICH. Furthermore, a graphics accelerator may be integrated within the MCH or processor 901.
Memory 903 may include one or more volatile storage (or memory) devices such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices. Memory 903 may store information including sequences of instructions that are executed by processor 901, or any other device. For example, executable code and/or data of a variety of operating systems, device drivers, firmware (e.g., input output basic system or BIOS), and/or applications can be loaded in memory 903 and executed by processor 901. An operating system can be any kind of operating systems, such as, for example, Windows® operating system from Microsoft®, Mac OS®/iOS® from Apple, Android® from Google®, Linux®, Unix®, or other real-time or embedded operating systems such as VxWorks.
Peripheral interface 902 may provide an interface to 10 devices such as devices 905-908, including wireless transceiver(s) 905, input device(s) 906, audio 10 device(s) 907, and other 10 devices 908. Wireless transceiver 905 may be a WiFi transceiver, an infrared transceiver, a Bluetooth transceiver, a WiMax transceiver, a wireless cellular telephony transceiver, a satellite transceiver (e.g., a global positioning system (GPS) transceiver) or a combination thereof. Input device(s) 906 may include a mouse, a touch pad, a touch sensitive screen (which may be integrated with display device 904), a pointer device such as a stylus, and/or a keyboard (e.g., physical keyboard or a virtual keyboard displayed as part of a touch sensitive screen). For example, input device 906 may include a touch screen controller coupled to a touch screen. The touch screen and touch screen controller can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen.
Audio IO 907 may include a speaker and/or a microphone to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and/or telephony functions. Other optional devices 908 may include a storage device (e.g., a hard drive, a flash memory device), universal serial bus (USB) port(s), parallel port(s), serial port(s), a printer, a network interface, a bus bridge (e.g., a PCI-PCI bridge), sensor(s) (e.g., a motion sensor, a light sensor, a proximity sensor, etc.), or a combination thereof. Optional devices 908 may further include an imaging processing subsystem (e.g., a camera), which may include an optical sensor, such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.
Note that while
Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as those set forth in the claims below, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The techniques shown in the figures can be implemented using code and data stored and executed on one or more electronic devices. Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer-readable media, such as non-transitory computer-readable storage medium (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer-readable transmission medium (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals).
The processes or methods depicted in the preceding figures may be performed by processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware, software (e.g., embodied on a non-transitory computer readable medium), or a combination of both. Although the processes or methods are described above in terms of some sequential operations, it should be appreciated that some of the operations described may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.
In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5657473 | Killean et al. | Aug 1997 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5978917 | Chi | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7100201 | Izatt | Aug 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937761 | Benett | May 2011 | B1 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8365286 | Poston | Jan 2013 | B2 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516593 | Aziz | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020144156 | Copeland, III | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | Van Der Made | Nov 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050157662 | Bingham et al. | Jun 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | Stahlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120216046 | McDougal | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140215617 | Smith | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
WO-0206928 | Jan 2002 | WO |
WO-0223805 | Mar 2002 | WO |
WO-2007-117636 | Oct 2007 | WO |
WO-2008041950 | Apr 2008 | WO |
WO-2011084431 | Jul 2011 | WO |
WO-2012145066 | Oct 2012 | WO |
Entry |
---|
Chrysanthou Yiannis (Modern Password Cracking: A hands-on approach to creating an optimised and versatile attack. Technical Report RHUL—MA—2013—7, May 1, 2013, 65 pages). |
Aufwind (Finding words after keyword in python, stackoverflow.com, Jul. 9, 2011, 2 pages). |
Middus et al. (function that highlight a word and extract the text near it, Stack Overflow, 2 pages, Oct. 26, 2011). |
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . , (Accessed on Aug. 28, 2009). |
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 3, 2009). |
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”),(1992-2003). |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security.(“Kaeo”), (2005). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/section1.html, (Jan. 6, 2014). |
“Network Security: NetDetector˜Network Intrusion Forensic System (NIFS) Whitepaper”, “NetDetector Whitepaper”), (2003). |
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page. |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=990073, (Dec. 7, 2014). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots2003/q2319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “”Optimal Positioning of Active and Passive Monitoring Devices, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996). |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (In)Secure, Issue 18, (Oct. 2008), pp. 1-100. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”). |
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003). |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Natvig, Kurt , “SandboxII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Peter M. Chen, and Brian D. Noble , “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |