The invention relates generally to a rail break/vehicle detection system and, more specifically, to a long-block rail break/vehicle detection system, and a method for detecting rail break/vehicle using such a system.
A conventional railway system employs a track as a part of a signal transmission path to detect existence of either a train or a rail break in a block section. In such a method, the track is electrically divided into a plurality of sections, each having a predetermined length. Each section forms a part of an electric circuit, and is referred to as a track circuit. A transmitter device and a receiver device are arranged respectively at either end of the track circuit. The transmitter device transmits a signal for detecting a train or rail break continuously or at variable intervals and the receiver device receives the transmitted signal.
If a train or rail break is not present in the section formed by the track circuit, the receiver receives the signal transmitted by the transmitter. If a train or rail break is present, the receiver receives a modified signal transmitted by the transmitter, because of the change in the electrical circuit formed by the track and break, or track and train. In general, train presence modifies the track circuit through the addition of a shunt resistance from rail to rail. Break presence modifies the circuit through the addition of an increased resistance in the rail. Break or train detection is generally accomplished through a comparison of the signal received with a threshold value.
Conventional track circuits are generally applied to blocks of about 2.5 miles in length for detecting a train. In such a block, a train should exhibit a train shunt resistance of 0.06 ohms or less, and the ballast resistance or the resistance between the independent rails will generally be greater than 3 ohms/1000 feet. As the block length becomes longer, the overall resistance of a track circuit decreases due to the parallel addition of ballast resistance between the rails. Through this addition of parallel current paths, additional current flows through the ballast and ties and proportionally less through the receiver. Thus, the signal to noise ratio of the track circuits with train presence becomes low.
In one example, fiber optic-based track circuits may be employed for longer blocks (for example, greater than 3 miles) for detecting trains and rail breaks. However, cost for implementing the fiber optic based track circuit is relatively higher and durability may be lower. In yet another example, ballast resistance is increased and block length of the track circuit may be increased accordingly. However, maintenance cost for maintaining a relatively high ballast resistance is undesirably high.
An improved long block rail break/vehicle detection system and method is desirable.
In accordance with one embodiment of the present invention, a method for detecting a rail break or rail vehicle presence includes delivering a current to an isolated block of a rail track. Voltage generated across the isolated block of the rail track is measured. A shunt current flowing through a shunt coupled to the isolated block is measured via a current sensor. The method further includes monitoring a signal proportional to the shunt current with respect to the voltage to detect the rail break or rail vehicle presence.
In accordance with another embodiment of the present invention, a method for detecting a rail break or rail vehicle presence includes delivering a current to an isolated block of a rail track. Voltage generated across the isolated block of the rail track is measured. A shunt current flowing through a shunt coupled to the isolated block is measured via a current sensor. The method further includes comparing a signal proportional to the shunt current and the voltage with respect to a shunt current threshold value and a voltage threshold value to detect the rail break or rail vehicle presence.
In accordance with still another embodiment of the present invention, a system for detecting a rail break or rail vehicle presence includes a current source adapted to deliver a current to an isolated block of a rail track. A voltage sensor is coupled to the isolated block and configured to detect voltage across the isolated block. A shunt device is coupled to the isolated block and configured to receive a shunt current from the current delivered by the current source. A shunt current sensor is coupled to the shunt device and adapted to detect the shunt current flowing through the shunt device. A control unit is adapted to receive input from the voltage sensor and the shunt current sensor and to monitor a variation of the shunt current with respect to the voltage to detect the rail break or rail vehicle presence.
In accordance with yet another embodiment of the present invention, a system for detecting a rail break or rail vehicle presence includes a current source adapted to deliver a current to an isolated block of a rail track. A voltage sensor is coupled to the isolated block and configured to detect voltage across the isolated block. A shunt device is coupled to the isolated block and configured to receive a shunt current from the current delivered by the current source. A shunt current sensor is coupled to the shunt device and adapted to detect the shunt current flowing through the shunt device. A control unit is adapted to receive input from the voltage sensor and the shunt current sensor and to compare the shunt current and the voltage with respect to a shunt current threshold value and a voltage threshold value to detect the rail break or rail vehicle presence.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Referring generally to
Two DC current sources 20 and 22 are communicatively coupled respectively to first and second ends 24 and 26 of an isolated block section 28 formed between two insulated joints 30, 32 of the railway track 12, via a plurality of wires 21. In the illustrated example, the isolated block section 28 of the railway track 12 has a length of about 10 miles. Those of ordinary skill in the art, however, will appreciate that the specific length of the isolated block section 28 is not an essential feature of the present invention. In the illustrated embodiment, the current sources 20, 22 are configured to supply conditioned electric power to the isolated block section 28 of the railway track 12. Two voltage sensors 34, 36 are also coupled respectively to first and second ends 24, 26 of the isolated block section 28 of the railway track 12, via a plurality of wires 31. The sensors 34, 36 are configured to detect the voltage generated across the rails 14, 16.
A receiver unit 38 is coupled to the isolated block section 28 via a plurality of wires 40. In the illustrated example, the receiver unit 38 may be located mid-way through (i.e., about 5 miles from the ends 24, 26 ) the railway track 12. The receiver unit 38 includes a shunt device 42 (for example, a shunt resistor) and a shunt current sensor 44 communicatively coupled across the shunt device 42. The shunt device 42 is configured to receive a shunt current from the current delivered by the current sources 20, 22. The shunt current sensor 44 is configured to detect the shunt current flowing through the shunt device 42. A control unit 46 is communicatively coupled to the receiving unit 38, the current sources 20, 22, and the voltage sensors 34, 36. In one embodiment, the control unit 46 is adapted to receive input from the voltage sensors 34, 36 and the shunt current sensor 44 and monitor variation of the shunt current with respect to the voltage to detect rail break or presence of a rail vehicle on the isolated block section 28 of the railway track 12.
When the block section 28 of the railway track 12 is unoccupied by the rail vehicle or a rail break is not detected, voltage across the block section 28, which is related to the shunt current flowing through the shunt device 42, is constant, provided there are no changes in the environment conditions. When the block section 28 of the railway track 12 is occupied by wheels of a rail vehicle or a rail break is detected, the voltage across the block section 28 varies compared to the condition in which the block section of the track is not occupied by wheels of a rail vehicle or a rail break is not detected. The change in voltage across the block section 28 or the change in shunt current flowing through the shunt device 42 may be monitored to identify the presence of a rail break or a rail vehicle. Neural networks, classification algorithms or the like may be used to differentiate between a rail break or a presence of a rail vehicle on the isolated block section 28 of the railway track 12.
In another embodiment, the control unit 46 is adapted to receive input from the voltage sensors 20, 22, and the shunt current sensor 44 and compare the shunt current and the voltage with respect to a shunt current threshold value and a voltage threshold value to detect rail break or presence of a rail vehicle on the isolated block section 28 of the railway track 12. In one example, if the variation of the shunt current and the voltage with respect to the shunt current threshold value and the voltage threshold value is greater than a predetermined threshold value, presence of a rail break/vehicle is indicated. It should be noted that, as used herein, the term “predetermined threshold value” may assume a plurality of values within predetermined threshold limits. The predetermined threshold value is determined as function of the shunt current threshold value and the voltage threshold value. The rate of change of the shunt current and the voltage with respect to the shunt current threshold value and the voltage threshold value may be used to distinguish train presence and/or rail break from ballast resistance changes or other normal operating condition variations, or to provide information related to train speed, position of the train, or the like. The above-mentioned embodiments are explained in greater detail with respect to subsequent figures.
The control unit 46 includes a processor 48 having hardware, circuitry and/or software that facilitates the processing of signals from the voltage sensors 34, 36 and the shunt current sensor 44. As will be appreciated by those skilled in the art, the processor 48 may comprise a microprocessor, a programmable logic controller, a logic module or the like. The control unit 46 is further adapted to control the current sources 20, 22 to deliver current pulses alternately from the first and second ends 24, 26 of the isolated block section 28 railway track 12. The control unit 46 is also adapted to switch the polarity of the current sources 20, 22 to reverse current flow through the isolated block section 28 of the railway track 12. The measurements of the voltage sensors 34, 36 and the shunt current sensor 44 may be averaged to mitigate systematic and galvanic errors.
In certain embodiments, the control unit 46 may further include a database, and an algorithm implemented as a computer program executed by the control unit computer or the processor 48. The database may be configured to store predefined information about the rail break/vehicle detection system 10 and rail vehicles. The database may also include instruction sets, maps, lookup tables, variables or the like. Such maps, lookup tables, and instruction sets, are operative to correlate characteristics of shunt current and the voltage to detect rail break or presence of a rail vehicle. The database may also be configured to store actual sensed/detected information pertaining to the shunt current, voltage across the isolated block section 28, rail vehicle, and so forth. The algorithm may facilitate the processing of sensed information pertaining to the shunt current, voltage, and rail vehicle. Any of the above mentioned parameters may be selectively and/or dynamically adapted or altered relative to time. In one example, the control unit 46 is configured to update the shunt current threshold value and the voltage threshold value based on a ballast resistance value, since the ballast resistance value varies due to changes in environmental conditions, such as humidity, precipitations, or the like. The processor 48 transmits indication signals to an output unit 50 via a wired connection port or a short range wireless link such as infrared protocol, bluetooth protocol, I.E.E.E 802.11 wireless local area network or the like. In general, the indication signal may provide a simple status output, or may be used to activate or set a flag, such as an alert based on the detected shunt current and voltage. In certain embodiments, a single current source and a receiver unit may be used in accordance with embodiments of the present invention, to detect rail break or presence of rail vehicle on the isolated block section 28 of the railway track 12.
Referring to
Referring again to
V≧V1+IARbreak (1)
where V1is the original no break/no train voltage threshold value, IA is the current applied by the current source, Rbreak is the resistance due to rail break at the current source. In
Referring now to
Shunt current (I) is determined is determined in accordance with the relation:
where V1 is the voltage threshold value, Rtrain is the resistance due to presence of train at the current source, and IA is the current applied by the current source. In the illustrated example, when the train presence is detected at the current source, the shunt current and applied voltage are reduced.
Referring now to
Track rail resistance (Rt) is determined in accordance with the relation:
where V1 is the voltage threshold value, I1 is the no break/no train shunt current threshold value, Rshunt is the shunt device resistance, and IA is the current applied by the current source.
Referring now to
Shunt current (I) is determined is determined in accordance with the relation:
where V1 is the voltage value, I1 is the no break/no train shunt current threshold value, Rb is the break resistance, Rs is the shunt resistance, and IA is the current applied by the current source. In the illustrated example, when the rail break presence is detected proximate the shunt device of the isolated block section, the applied voltage remains approximately constant, but the shunt current is reduced.
Shunt current (I) is determined is determined in accordance with the relation:
where V1 is the voltage threshold value, I1 is the no break/no train shunt current threshold value, Rtrain is the train shunt resistance, Rs is the shunt device resistance, and IA is the current applied by the current source. In the illustrated example, when the train presence is detected proximate the shunt device located at the center of the isolated block section, the shunt current is reduced, but the applied remains constant.
Referring now to
Referring to
The control unit 46 may receive input from the voltage sensors 34, 36 and the shunt current sensor 44 and monitor variation of the shunt current with respect to the voltage, as represented by step 80. The variation of shunt current with respect to the voltage is monitored to detect rail break or presence of a rail vehicle on the isolated block section 28 of the railway track 12 as represented by 82.
In the illustrated embodiment, the control unit 46 receives input from the voltage sensors 34, 36, and the shunt current sensor 44 and compares the shunt current and the voltage with respect to a shunt current threshold value and a voltage threshold value as represented by step 90. The comparison result is used to detect rail break or presence of a rail vehicle on the isolated block section 28 of the railway track 12, as represented by step 92. For example, if the variation of the shunt current and the voltage with respect to the shunt current threshold value and the voltage threshold value is greater than a predetermined threshold value, presence of a rail break/vehicle is indicated. The predetermined threshold value is determined as function of the shunt current threshold value and the voltage threshold value. The control unit 46 further updates the shunt current threshold value and the voltage threshold value based on a ballast resistance value, since the ballast resistance value varies due to changes in environmental conditions, such as humidity, precipitation, or the like. The above-mentioned techniques in accordance with the exemplary embodiments of the present invention facilitates decisioning between rail break and train presence over a wide variation of rail and ballast resistances.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. it is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.