System and method for detecting repetitive cybersecurity attacks constituting an email campaign

Information

  • Patent Grant
  • 11882140
  • Patent Number
    11,882,140
  • Date Filed
    Monday, July 26, 2021
    3 years ago
  • Date Issued
    Tuesday, January 23, 2024
    10 months ago
Abstract
According to one embodiment, a system for detecting an email campaign includes feature extraction logic, pre-processing logic, campaign analysis logic and a reporting engine. The feature extraction logic obtains features from each of a plurality of malicious email messages received for analysis while the pre-processing logic generates a plurality of email representations that are arranged in an ordered sequence and correspond to the plurality of malicious email message. The campaign analysis logic determines the presence of an email campaign in response to a prescribed number of successive email representations being correlated to each other, where the results of the email campaign detection are provided to a security administrator via the reporting engine.
Description
FIELD

Embodiments of the disclosure relate to the field of cybersecurity. More specifically, one embodiment of the disclosure relates to a cybersecurity system that detects repetitive cybersecurity attacks such as malicious electronic mail (email) campaigns.


GENERAL BACKGROUND

Cybersecurity attacks have become a pervasive problem for organizations as many networked devices and other resources have been subjected to attack and compromised. A cyber-attack constitutes a threat to security which may involve the infiltration of any type of content, such as software for example, onto a network device with the intent to perpetrate malicious or criminal activity or even a nation-state attack (e.g., “malware”). Besides infiltration of malware, a threat to security (hereinafter, “cybersecurity threat”) may arise from a phishing attack, a forced loading of an unwanted application, or receipt of one or more malicious electronic mail (email) messages. A malicious email contains malware or otherwise is intended for malicious purposes, constituting or being part of a cyber-attack.


Recently, threat detection has undertaken many approaches involving network-based, cybersecurity threat protection services. One conventional approach involves placement of threat detection devices at the periphery of and throughout an enterprise network. This approach is adapted to (i) analyze information, such as email messages propagating over or being sent to a protected network device within the network, for example, to determine whether any of these email messages is suspicious and (ii) conduct a further analysis of at least the email messages deemed suspicious to determine whether any of the suspicious email messages constitute a cybersecurity attack. The result of the analyses is reported back to a network or enterprise administrator through one or more alert messages.


For many enterprises, given increasing numbers of detected cybersecurity threats identified in numerous alert messages, administrators are experiencing challenges in detecting large-scale cybersecurity attacks, especially detecting and identifying malicious email messages that are part of the same cybersecurity attack against the same target or many targets. The ability to detect the large-scale cybersecurity attack, referred to as an “email campaign,” is important for helping customers efficiently triage malicious email messages. Furthermore, conventional reliance on visual analysis of the relatedness between temporally proximate email messages by a human analyst, in efforts to detect a campaign, is prone to inefficiencies, error and the inherent limitations of even the most expert of analysts.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of an exemplary embodiment of a cybersecurity system including an electronic mail (email) campaign detection engine.



FIG. 2 is an exemplary embodiment of a network device deploying the cybersecurity system of FIG. 1.



FIG. 3A is a first exemplary embodiment of a logical representation of the email campaign detection engine of FIG. 1.



FIG. 3B is a first exemplary embodiment of a logical representation of the email campaign detection engine of FIG. 1.



FIG. 4A-4B are an exemplary embodiment of the operations of the cybersecurity system of FIG. 1.



FIG. 5 is an exemplary block diagram of a network including a global campaign detection system for consolidation of campaign detections from multiple network devices.





DETAILED DESCRIPTION

Embodiments of the present disclosure generally relate to a cybersecurity system and method that automatically detects, without the need for human interaction, repetitive cybersecurity attacks such as malicious email campaigns for example. An email campaign is a targeted and deliberate cyberattack based on repetitious transmission of email messages, often sent from different sources, in an attempt to infiltrate or disrupt operations of a targeted network device and/or exfiltrate data therefrom, or gain access via that targeted network device into a network and/or other information technology infrastructure. The email campaign may be directed to a particular network device or a particular victim (e.g., person, group of persons, or company) and the email campaign may target a specific industry, geography, or even a particular computing environment (e.g., operating system, etc.) installed on network devices maintained by the particular victim.


I. Detailed Overview


An email campaign detection engine may be implemented within a cybersecurity system, operating in concert with a threat detection engine to detect a malicious email campaign. The email campaign detection engine is configured to enable customers to better triage incoming email messages that are classified by the threat detection engine as malicious. The threat detection engine may classify an email message as “malicious” or “benign. An email message is classified as “malicious” when the threat detection engine determines that the likelihood (e.g., probability, etc.) of the email message being associated with a cybersecurity attack exceeds a particular threshold.


According to one embodiment of the disclosure, each email message determined to be malicious may be temporarily stored, where a time-stamp is applied to each malicious email message and/or its corresponding email representation described below. Each of these malicious email messages is stored and, for purposes of email campaign determination, is part of a set (e.g., two or more) of malicious email messages (sometimes referred to as “the malicious email set”) at least until the malicious email message has been determined to be part of an email campaign or a prescribed storage duration for the malicious email message has elapsed. Alternatively, the malicious email messages (and corresponding representations) may be stored and deleted in accordance with a first-in, first-out (FIFO) storage protocol when an email data store exceeds a capacity threshold.


According to one embodiment of the disclosure, the email campaign detection engine includes feature extraction logic, pre-processing logic, and campaign analytic logic. Herein, the feature extraction logic of the email campaign detection engine receives content associated with malicious email messages, which are intercepted and processed by the threat detection engine, and extracts a plurality of features from each of the malicious email messages under analysis. Each feature may include a character string (e.g., a combination of two or more letters, numbers, and/or symbols) extracted from a header of a malicious email message and/or a body of that malicious email message. As an illustrative example, the plurality of features may include (i) characters from a “Subject line” of the malicious email message, (ii) characters from the “From” address field, and/or (iii) characters associated with the name of an attachment to the malicious email message. Other features may be included with or substituted for the features listed above.


Thereafter, the email campaign detection engine performs pre-processing operations on the extracted features for each malicious email message to generate an email representation for that malicious email message. More specifically, the pre-processing logic includes (i) filtering logic and (ii) ordering logic. The filtering logic is configured to remove (or substitute) certain characters (e.g., special characters, spaces, etc.) from each character pattern that is formed from characters associated with the extracted features. The removed (or substituted) characters may have been added to obfuscate the actual message and/or its source. The ordering logic may be configured to (i) generate an email representation by either (a) performing no further operations on the filtered character patterns or (b) rearranging portions of the filtered character pattern to produce a restructured character pattern, and (ii) reorder the email representations associated with the malicious email messages. The reordering of the email representations may be conducted in order to group together email representations with common characteristics, such as reordering alphanumerically and/or reordering chronologically for example.


Afterwards, the campaign analytic logic of the email campaign detection engine is configured to determine whether each email representation is associated with an email campaign or not. First, the campaign analytic logic determines a level of correlation (e.g., a degree of similarity) between a first email representation of the ordered arrangement of email representations and any character patterns associated with known email campaigns. If the correlation between the first email representation and a particular character pattern associated with a known email campaign is equal to or exceeds a first threshold, the email message associated with the first email representation is identified as part of the known email campaign. The correlation may be based on a particular edit distance (e.g., Levenshtein distance), although other metrics may be used such as Overlap coefficient.


Upon failing to determine that the first email representation is part of a known email campaign, the campaign analytic logic determines the correlation between the first email representation and a neighboring (e.g., second) email representation in the ordered sequence of email representations. If the correlation between the first email representation and the second email representation is equal to or exceeds a second threshold, which may be the same or different from the first threshold, the email message associated with the first email representation is identified as being a potential “border” email message for an email campaign. The count logic, reset to a predetermined number (e.g., “0”) upon commencing an email campaign analysis for the malicious email set, is incremented or decremented to produce a count value. The first and second email messages are “clustered” based on a detected correlation exceeding the second threshold. A cluster exceeding a prescribed number (N) of email messages (e.g., N≥10) represents a strong indicator of a malicious email campaign.


The above-described operations by the campaign analytic logic continue for each email representation of the ordered arrangement of email representations. In the event that the prescribed number (N) of email representations are not associated with any known campaigns, but each email representation is correlated with its neighboring email representation (i.e. each correlation exceeds the second threshold), the malicious email messages corresponding to the “N” email representations are classified as part of an email campaign. An ID assignment logic within the email campaign detection engine assigns a campaign identifier (ID) to each malicious email message identified as part of an email campaign, which is then represented by the assigned campaign ID. The above-described operations by the campaign analytic logic continue for each successive email representation of the ordered sequence of email representations until the correlation between that email representation under analysis and its neighboring email representation falls below the second threshold. This identifies the email message corresponding to the email representation under analysis as being the last email message within the email campaign.


Thereafter, an alert message may be issued to a security administrator initiated by the reporting engine of the cybersecurity system as shown (or logic operating similar to the reporting engine being deployed the email campaign detection engine). In some embodiments, however, the email campaign detection engine may utilize a graphical user interface to identify malicious or benign labeled email messages as determined by the threat detection engine, and whether any of the labeled malicious email messages is associated with an email campaign. In some embodiments where an email campaign is identified that corresponds to a known email campaign, further stored information regarding the known email campaign can be obtained and provided to enrich the alert or report.


As described herein, the threat detection engine, communicatively coupled to the email campaign detection engine, may be configured to conduct a static analysis and/or a dynamic analysis on content of the email message and/or an attachment or embedded link (e.g., uniform resource locator “URL”) in the email message to determine whether the email message is malicious or benign. The threat detection engine classifies an incoming email message is “malicious” in response to determining the likelihood of maliciousness exceeds a particular threshold. When the email campaign detection engine later determines the same email message is part of an email campaign, and the security administrator receives the alert message, the security administrator can take remedial action with higher confidence that a serious cyber-attack is underway. The malicious email message are stored in the email data store for subsequent access by the email campaign detection engine, as further described herein.


II. Terminology


In the following description, certain terminology is used to describe aspects of the invention. In certain situations, each of the terms “logic,” “system,” “component,” or “engine” is representative of hardware, firmware, and/or software that is configured to perform one or more functions. As hardware, the logic (or system/component/engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Alternatively, or in combination with the hardware circuitry described above, the logic (or system/component/engine) may be software in the form of one or more software modules. The software modules may include an executable application, a daemon application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, a shared library/dynamic load library, or one or more instructions. The software module(s) may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, a hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code may be stored in persistent storage.


A “network device” generally refers to either a physical electronic device featuring data processing and/or network connection functionality or a virtual electronic device being software that virtualizes certain functionality of the physical network device. Examples of a network device may include, but are not limited or restricted to, a server, a mobile phone, a computer, a set-top box, a standalone cybersecurity appliance, a network adapter, a video game console, an intermediary communication device (e.g., router, firewall, etc.), a virtual machine, or any other virtualized resource.


The term “message” generally refers to signaling (wired or wireless) as either information placed in a prescribed format and transmitted in accordance with a suitable delivery protocol or information made accessible through a logical data structure such as an API. Examples of the delivery protocol include, but are not limited or restricted to HTTP (Hypertext Transfer Protocol); HTTPS (HTTP Secure); Simple Mail Transfer Protocol (SMTP); File Transfer Protocol (FTP); iMESSAGE; Instant Message Access Protocol (IMAP); or the like. Hence, each message may be in the form of one or more packets, frame, or any other series of bits having the prescribed, structured format.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. In certain instances, the terms “compare,” comparing,” “comparison,” or other tenses thereof generally mean determining if a match (e.g., identical or a prescribed level of correlation) is achieved.


The term “transmission medium” generally refers to a physical or logical communication link (or path) between two or more network devices. For instance, as a physical communication path, wired interconnects in the form of electrical wiring, optical fiber, cable, or bus trace may be used. For a wireless interconnect, wireless transmitter/receiver logic supporting infrared or radio frequency (RF) transmissions may be used.


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. As an example, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


III. Cybersecurity System


Referring to FIG. 1, an exemplary block diagram of a first embodiment of a cybersecurity system 100 is shown, where the cybersecurity system 100 is deployed within one or more network devices (e.g., network device 110). The cybersecurity system 100 is configured to analyze incoming electronic mail (email) messages and determine whether a set of email messages constitutes an email campaign cyberattack. For this embodiment of the disclosure, the cybersecurity system 100 includes a threat detection engine 120, an email data store 130, and an email campaign detection engine 140. The threat detection engine 120 classifies each incoming email message as “malicious” (e.g., likelihood of the email message being malicious exceeds a particular threshold) or “benign” (e.g., likelihood of the email message being malicious falls below the particular threshold). For this embodiment, a set of malicious email messages are maintained within the email data store 130 for subsequent analysis by the email campaign detection engine 140, which analyzes whether each malicious email message is part of a known email campaign or a subset of the malicious email messages constitute a new email campaign.


It is noted, however, that the email campaign detection engine 140 may be utilized to determine if further analysis for maliciousness is needed. In particular, for an email messages 150 classified as suspicious (or even inconclusive), e.g., by static analysis as described below, the determination of an email campaign may be used to identify those email messages for further analysis. For example, the determination of an email campaign for the suspicious (not malicious) email message 150 may prompt dynamic analysis or more in-depth forensic analysis of the email message 150. Also, such in-depth analysis may be conducted with respect to only representative email messages(s) of each cluster or sequence found to be part of an email campaign.


More specifically, the threat detection engine 120 receives the email message 150 from an external source (not shown), which may be copied or intercepted during transit over a network (e.g., enterprise network or a public network). The external source may include a network device remotely located from the network device 110 including the cybersecurity system 100. Alternatively, the external source may include a data capturing device. The data capturing device may be adapted as a “network tap” or a Switch Port Analyzer (SPAN) port (e.g., a mirror port), which is configured to intercept email messages being transmitted to a destination.


The threat detection engine 120 is configured to perform a static analysis on the content of the email message 150 and/or perform a dynamic analysis by supplying the email message 150 (or contents of the email message 150) to a virtual machine (or other isolated execution environment), performing operations on the email message 150 within the virtual machine, and analyzing behaviors of the email message 150 and/or the virtual machine to determine whether the email message 150 is malicious or benign. Examples of a “static” analysis may include, but are not limited or restricted to anti-virus scanning, anti-spam scanning, pattern matching, heuristics, and exploit or vulnerability signature matching. Examples of a run-time, “dynamic” analysis may include, but are not limited or restricted to opening and execution of the email message 150, and extraction, loading and execution of any attachment (e.g., document), with monitoring of the behaviors observed within an isolated execution environment such as a virtual machine equipped with an email application and operating system to replicate or mimic a typical email destination, or the like.


Upon determining that the email message 150 is malicious, the malicious email message 150 may be provided to the email data store 130. The email data store 130 is configured to store the contents of the malicious email message 150. The malicious email message 150 may be stored in accordance with a first-in, first-out (FIFO) storage protocol where the malicious email message 150 is removed from the email data store 130 when the email data store 130 exceeds a capacity threshold. Alternatively, according to one embodiment of the disclosure, each of the malicious email messages, including the malicious email message 150, may be time stamped and retained in the email data store 130 for a prescribed period of time from the timestamp (a prescribed number of hours, a prescribed number of days, etc.). Once the prescribed period of time has elapsed, the addressed storage location(s) for the malicious email message 150 is available to be overwritten.


Utilizing a push or pull email retrieval scheme, the email campaign detection engine 140 receives content for each malicious email message associated with a set of malicious email messages (sometimes referred to as “malicious email set”) 160 stored within the email data store 130. The content may be from the email message 150 or a copy of the email message 150. The email campaign detection engine 140 extracts features from the received content, where each feature may be represented by a character string (e.g., one or more characters being letters, numbers, and/or symbols). The character strings may be aggregated to produce a character pattern. The character pattern is filtered to remove one or more characters (e.g., special characters, spaces, etc.) that may be used in an attempt to distinguish, and thereby obfuscate, the detected content from content/sources of prior malicious email messages.


As described below in greater detail, the email campaign detection engine 140 is configured to rearrange portions of the filtered character pattern to produce a restructured character pattern (hereinafter, “email representation”). Thereafter, the email campaign detection engine 140 rearranges the email representations, corresponding to the malicious email messages of the malicious email set 160, into an ordered sequence of email representations. For example, the email campaign detection engine 140 may rearrange the email representations currently maintained in a first ordered sequence into a second ordered sequence. The second ordered sequence may differ in ordering from the first ordered sequence.


After the email representations are rearranged into the second ordered sequence, the email campaign detection engine 140 analyzes each email representation in an iterative manner and in an order provided by the second ordered sequence. More specifically, for each email representation from the second ordered sequence, the email campaign detection engine 140 initially compares the email representation under analysis to character patterns associated with known email campaigns. If a prescribed level of correlation is not detected between that email representation and the character patterns associated with known email campaigns, where available, the email campaign detection engine 140 compares the email representation under analysis to its neighboring (next) email representation within the second ordered sequence. Hence, the email campaign detection engine 140 determines whether the email representation under analysis is correlated to the neighboring email representation. Based on such findings, the email representation may be a “border” (start/end) message of an email campaign, as described below in FIGS. 3A-3B. Otherwise, another iteration of the analysis is performed if email representations associated with email messages within the malicious email set 160 have not been analyzed.


Thereafter, for the next iteration, the neighboring email representation within the second ordered sequence becomes the email representation under analysis and the above-described analysis is repeated until all email representations corresponding to the malicious email messages of the malicious email set 160 have been evaluated. Upon detecting at least a predetermined number of malicious email representations being correlated, which correspond to a prescribed subset of malicious email messages within the malicious email set 160, the email campaign detection engine 140 generates and assigns a campaign ID to each malicious email message within the subset of malicious email messages as part of an identified email campaign.


According to one embodiment of the disclosure, the email campaign detection engine 140 returns results 170 of its analysis to the email data store 130. The results 170 may identify one or more of the set of malicious email messages 160 being part of a known email campaign or a subset of malicious email set 160 being part of a newly detected email campaign. Also, the email campaign detection engine 140 notifies reporting engine 180 of a detected email campaign, which may cause the reporting engine 180 to access to email data store 130 and transmit one or more alert messages to administrators of a network deploying the cybersecurity system 100.


Additionally, the email campaign detection engine 140 notifies a campaign consolidation engine 190 in response to a newly detected email campaign. The campaign consolidation engine 190 may extract a malicious email representation from the newly detected email campaign and compare this email representation to pre-stored email representations associated with known email campaigns. If the malicious email representation is correlated to a selected email representation for a pre-stored email campaign, the malicious email messages for the newly detected email campaign are reassigned the campaign ID for the pre-stored email campaign. The campaign consolidation engine 190 is responsible for detecting the subset of malicious email messages that are part of a former email campaign, but were mistakenly determined as a new email campaign. The campaign consolidation engine 190 operates to aggregate correlated email campaigns into a single email campaign data structure.


Although not shown, it is noted that a second embodiment of the cybersecurity system 100 may be directed to detection of an email campaign based on analysis of other types of objects besides email messages. For example, the threat detection engine 120 may be configured to extract attachments from the email message 150, where the attachments may be automatically be stored in the email data store and analyzed in a similar manner as described for malicious email messages 150. In particular, one or more features from the attachment, such as the name of the attachment, source, and/or properties from the attachment (e.g., author, creation date, etc.) for example, may be filtered and used as a representation similar to the email representation described below. Hence, correlation between the attachments (not the email messages) is conducted in the same manner as described below to detect an email campaign. The attachment may be a document (e.g., Portable Document Format “PDF”, Microsoft® WORD® document, etc.) or may be an embedded URL.


Referring now to FIG. 2, an exemplary embodiment of the network device 110 deploying the cybersecurity system 100 of FIG. 1 is shown. Herein, the network device 110 features a plurality of components, including one or more processors (processor) 210, a memory 220, and a network interface 230. The network device 110 may further include optional interfaces for reporting of alerts, such as graphical user interface (GUI) 240 and an I/O interface 250 as represented by dashed lines. As shown, when deployed as a physical network device 110, the components are at least partially encased within a housing 200 made entirely or partially of rigid material (e.g., hardened plastic, metal, glass, composite, or any combination thereof). The housing 200 protects these components from environmental conditions. As a virtual device, however, the cybersecurity system 100 is directed to some or all of the logic within the memory 220 as described below.


The processor 210 is a multi-purpose, processing component that is configured to execute logic 260 maintained within non-transitory storage medium operating as the memory device 220. One example of processor 210 includes an Intel® (x86) central processing unit (CPU) with an instruction set architecture. Alternatively, the processor 210 may include another type of CPU, a digital signal processor (DSP), an application for specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or the like.


As shown in FIG. 2, the processor 210 is communicatively coupled to the memory 220 via a transmission medium 265. According to one embodiment of the disclosure, the memory 220 is adaptive to store (i) the threat detection engine 120, (ii) the email campaign detection engine 140, (iii) the reporting engine 180, and (iv) the campaign consolidation engine 190 of FIG. 1. It is contemplated that the memory 220 may store the email data store 130 as well, although the email data store 130 is shown as a separate component. Herein the threat detection engine 120 includes static analysis logic 270, dynamic analysis logic 272 and threat assessment logic 274. Additionally, the email campaign detection engine 140 includes a feature extraction logic 280, pre-programming logic 282, and campaign analytic logic 284.


In one embodiment of the disclosure, the static analysis logic 270 may perform light-weight examination of the email message 150 to determine whether the email message 150 is suspicious and/or malicious. The static analysis logic 270 may perform any of a variety of known analyzes to the email message, such as an anti-virus scan, a spam scan, and/or employ statistical analysis techniques, including the use of heuristics, to perform non-behavioral analysis in order to detect anomalous characteristics (i.e., suspiciousness and/or malicious) without processing of the email message 150 (e.g., remove/execution of attached executable, reply/forward operation, etc.). For example, the static analysis logic 270 may employ signatures (referred to as vulnerability or exploit “indicators”) to match content (e.g., bit patterns) of the content of the email message 150 with patterns of indicators of known threats in order to gather information that may be indicative of suspiciousness and/or malware. The static analysis engine 270 may apply rules and/or policies to detect anomalous characteristics, such as deviations in communication protocols for the email message 150 and/or deviations in standards for documents (e.g., Portable Document Format) attached to the email message 150, in order to identify whether email message 150 is suspect and deserving of further analysis or whether it is non-suspect (i.e., benign) without need of further analysis.


The dynamic analysis logic 272 for maliciousness detection is configured to observe behaviors of the email message 150 during run-time. In one embodiment, the dynamic analysis logic 272 may not generally wait for results from the static analysis, and thus, the analyses are performed concurrently (e.g., at least partially overlapping in time). However, in another embodiment, results of previously performed static analysis may determine whether the dynamic analysis is performed. In one embodiment, additional analysis is performed even on email messages deemed benign by the static analysis logic 270. The behaviors of the email message 150 (or executed attachment) may be observed (e.g., captured) by monitors having access to the run-time environment (e.g., virtual machine), and provided to a threat assessment logic 274, including correlation logic 276 and classification logic 278.


The static analysis results and dynamic analysis results may be provided to the correlation logic 276, which may provide correlation information to the classification logic 278. The correlation logic 276 may be configured to operate in accordance with correlation rules that define, among other things, patterns (such as, e.g., sequences) of known malicious behaviors (if-then statements with respect to, e.g., attempts by a process activities, e.g., with respect to memory accesses) that may collectively correlate to denote a malicious email message. In some embodiments, the correlation rules may define patterns of known benign behaviors that may collectively correlate to denote a benign (non-malicious) email message. The correlation rules may be updated based on the previous dynamic analysis results, as well as static analysis results. Based on the correlation rules, the correlation logic 276 generates correlation information pertaining to, e.g., a level of risk or a numerical score used to arrive at a decision of (deduce) maliciousness from the static analysis results and/or the dynamic analysis results.


The findings of the correlation logic 276 may be provided as input to the classification logic 278. The classification logic 278 is configured to use the correlation information provided by correlation logic 276 to render a decision as to whether the email message 150 is malicious. Illustratively, the classification logic 278 may be configured to classify the correlation information, including monitored behaviors (expected and unexpected/anomalous), of the email message 150 relative to those of known attacks and benign content. In some embodiments, the correlation logic 276 and the classification logic 278 may be combined into a single logic module that produces a classification as its output.


Upon determining that the email message 150 is malicious, the threat detection engine 120 stores content of the email message 150 in the email data store 130 of FIG. 1. Otherwise, the email message 150 is ignored and is not analyzed by the email campaign detection engine 140. Subsequently, the malicious email set 160 is received by the email campaign detection engine 140 for analysis. A malicious email set may be received periodically (e.g., after a threshold period of time has elapsed) or received aperiodically (e.g., after a prescribed number of malicious email messages are retained in the email data store 130 for analysis). The malicious email set may include any malicious email messages that have been stored in the email data store 130 for less than the threshold time period and are not associated with any previously determined email campaigns.


The email campaign detection engine 140 includes feature extraction logic 280, which is responsible for extracting features from each malicious email messages that is part of the malicious email set for determination as to whether any of these malicious email messages are associated with an email campaign. For each malicious email message (e.g., email message 150), these features may include (i) content within the subject line of a header of the malicious email message 150, (ii) a source of the malicious email message 150 extracted from a “From” field, and/or (iii) the name (e.g., character string) for each attachment within a body of the malicious email message 150. It is contemplated that other features may be utilized for further analysis.


Upon extracting selective features by the feature extraction logic 280, the pre-processing logic 282 is responsible for generating character patterns representative of each malicious email message by at least aggregating the characters associated with the features and conducting a filtering operation to remove (or substitute) certain characters (e.g., special characters, spaces, etc.) from the aggregate to produce a filtered character pattern. After the filtering operations, the filtered character patterns corresponding to the malicious email messages forming the malicious email set 160 are arranged in a first ordered sequence. The filtered character patterns may correspond to the email representations described herein unless the pre-processing logic 282 is configured to rearrange portions of the filtered character patterns to produce restructured, filtered character patterns operating as the email representations. The pre-processing logic 282 may be further responsible for reordering the first ordered sequence of email representations into a second ordered sequence of email representations. This reordering may be performed to group together email representations with common characteristics (e.g., character matching, temporal proximity, etc.).


After starting the filtering and ordering operations by the pre-processing logic 282, the campaign analytic logic 284 is responsible for determining, from the second ordered sequence of email representations, whether a subset of the malicious email set 160 are part of a new email campaign. Prior to or concurrently with such a determination, however, the correlation logic 282 may analyze each email representation to determine that the email representation is not associated with a known email campaign.


Upon detecting which malicious email messages, if any, are associated with a known email campaign or a new email campaign, the reporting engine 180 generates one or more alert messages directed to an administrator via the GUI interface 240 and/or I/O interface 250 to provide a visual representation of the findings by the cybersecurity system 100. Additionally, or in the alternative, the alert messages may be generated and transmitted via the network interface 230 to an external resource or external network device accessible to the network administrator to analyze the findings by the email campaign detection engine 140. In some embodiments where an email campaign is identified that corresponds to a known email campaign, further information regarding the email campaign can be obtained and provided to enrich the alert or report, e.g., by access an email campaign intelligence repository 135 in the email data store 130 or global data store 550 (FIG. 5). Such additional information may include, for example, a previously established name for the email campaign (if any), its intent (end goal or Object, such as, for example, data exfiltration, modification, destruction or lock-up), origin (e.g., attacker or attack group), scope, severity, potential impact and attack chain.


IV. Email Campaign Detection Engine


Referring to FIG. 3A, a first exemplary embodiment of a logical representation of the email campaign detection engine 140 of FIGS. 1-2 and its operations for detecting an email campaign is shown. Herein, the email campaign detection engine 140 comprises the feature extraction logic 280, the pre-processing logic 282, and the campaign analytic logic 284. The email campaign detection engine 140 performs analytic operations on each malicious email message from the malicious email set 160 stored in the email data store 130. However, for clarity sake, some of the operations conducted by the email campaign detection engine 140 will be discussed in relation to the content of the malicious email message 150. These operations would apply to other malicious email messages of the malicious email set 160.


As shown, the feature extraction logic 280 receives content 300 associated with the malicious email message 150 (operation 1) and extracts a plurality of features from such content (operation 2). As described above, each feature may be represented as a character string that is extracted from a portion of the header or body of a malicious email message 150. As described above, the plurality of features may include (i) characters from a “subject line” of the malicious email message 150, (ii) characters contained within the “from” address field of the malicious email message 150, and/or (iii) characters associated with a name of each attachment and/or embedded URL link included in the body of the malicious email message 150. The character strings for each feature extracted from the malicious email message 150 are aggregated to produce a character pattern 310, which is provided to the pre-processing logic 282 (operation 3).


The pre-processing logic 282 includes filtering logic 320 to alter the character pattern 310 to produce a filtered character pattern 330. For one embodiment, the filtering logic 320 may remove characters from the character pattern 310 that are positioned to potentially obfuscate the actual subject, the source and/or the attachment (or URL) name (operation 4). For example, the filtering logic 320 may alter character pattern 310 (#¶fil§ nam«e) to the filtered character pattern 330 (filename). The pre-processing logic 282 further includes ordering logic 340, which may be configured to rearrange portions of the filtered character pattern 330 to produce a restructured character pattern (email representation) 350, which are illustrated by dashed lines and distinguished from other email representatives illustrated by other types of symbols for illustrative purposes. The email representation 350 is part of a first ordered sequence 360 of email representations including email representations associated with malicious email messages from the malicious email set other than the malicious email message 150 (hereinafter, “first ordered sequence 360”). The ordering logic 340 further reorders the first ordered sequence 360 to produce a second ordered sequence 365 (operation 5). The second ordered sequence 365 is a reordering of the first ordered sequence 360 in order to group together email representations with common characteristics. Such grouping may occur through character matching such as alphanumeric ordering, temporal proximity through chronological ordering, or the like.


As an operational feature, the email representation 350 (and other email representations) may be reported back to the email data store 130 for storage. The email representation 350 may be associated with its corresponding malicious email message and other email representations may be associated with their corresponding malicious email message (operation 6). The email representations may be retained and used for subsequent analyses while the corresponding malicious email messages are part of the malicious email set 160.


As further shown in FIG. 3A, the campaign analytic logic 284 is configured to determine whether each email representation, including the email representation 350, is associated with an email campaign. Herein, correlation logic 370 of the campaign analytic logic 284 analyzes each email representation, in an order identified by the second ordered sequence 365, to determine whether that email representation is associated with a known email campaign or part of a newly detected email campaign.


As an illustrative embodiment, the correlation logic 370 is configured to determine a level of correlation between the email representation 350 and any character patterns associated with known email campaigns received from the email data store 130 (operation 7), where the same filtering rules and techniques applied in forming the email representation 350 are applied to the known campaigns. If the level of correlation between the email representation 350 and a particular character pattern associated with a known email campaign is equal to or exceeds a first threshold, the malicious email message 150 associated with that email representation 350 is identified as part of the known email campaign. The level of correlation may be based on an edit distance (e.g., Levenshtein distance) although other metrics may be used such as Overlap coefficient, which are known to those of ordinary skill in the art.


Where the level of correlation between the email representation 350 and character patterns associated with known email campaigns fails to meet the first threshold, the correlation logic 370 analyzes the correlation between that email representation 350 and a neighboring email representation 355, namely the next email representation in the second ordered sequence 365 (operation 8). If the correlation between the email representation 350 and the neighboring email representation 355 is equal to or exceeds a second threshold (e.g., being the same or different than the first threshold), the malicious email message 150 is identified as being a potential “border” email message for an email campaign. A count logic 375, reset to a prescribed number (e.g., “0”) after the start of each campaign analysis, may be incremented or decremented to produce a count value. The count value is used maintain the number of malicious email messages that are correlated to each other, where a prescribed number (N) of successive, correlated email representations is needed before the malicious email messages are identified as part of an email campaign. Hence, while the email representation 350 and the neighboring email representations 355 identify that their corresponding malicious email messages are similar (correlate), these messages are not currently considered to be an email campaign until a correlation is determined between “N” successive email representations.


Stated differently, the above-described operations by the correlation logic 370 continue for each email representation in the second ordered sequence 365. Where the email representation 350 and the neighboring email representation 355 are correlated, the above-described operations further continue for each successive email representation in the second ordered sequence 365 until the level of correlation between an email representation under analysis and its neighboring email representation falls below the second threshold. Where the number of successive, correlated email representations exceeds the prescribed number (N), as maintained by the count logic 375, the subset of malicious email messages corresponding to these successive email representations constitutes an email campaign. Furthermore, the malicious email message associated with the email representation under analysis is identified as the last email message of an email campaign.


In some embodiments, the N successive, correlated email representations must form an uninterrupted sequence, that is, a sequence of correlated email representations having no intervening non-correlating email representations. In other embodiments, the N successive correlated email representations may have a limited number of intervening non-correlating email representations. For those latter embodiments, this would facilitate detection of an email campaign even where the attacker attempts to cloak the campaign by inserting dissimilar intervening email(s) in the middle of the campaign or where two or more different email campaigns may be launched concurrently (at least partially overlapping in time) against a victim. For the latter embodiments, the correlation logic 370 continues to examine a prescribed number of neighboring email representations within the sequence after encountering a non-correlating email representation. It should be understand that selection of the common characteristics shared by email representations within the ordered sequence(s) may also permit detection of such a campaign or campaigns.


An ID assignment logic 380 within the campaign analytic logic 284 is configured to assign a campaign identifier (ID) to each malicious email message forming the newly detected email campaign. The campaign ID is used to identify the email campaign and the subset of malicious email messages within the second ordered sequence 365 that are part of the email campaign (operation 9). It is noted that the ID assignment logic 380 associates email messages with a campaign ID. Email messages assigned to a previously identified campaign may be actually part of a newly identified campaign. As such, as new campaigns are detected, the ID assignment logic 380 may be configured to re-analyze the assignment of email message that were previously analyzed to assess whether their representations indicate they should be made part of the newly identified email campaign.


Additionally, besides assignment of a campaign ID, the ID assignment logic 380 may be further configured to create and assign identifiers associated with a sub-campaign that may be used to provide additional granularity to the identified email campaign. For example, where a threat group attacks an industry, the ID assignment logic 380 may be configured to customize attacks by type (e.g., phishing attacks, spam attacks, etc.) to each target within that industry. Hence, the industry level attack would be assigned the campaign ID while the customized attacks for each target would be sub-clustered and assigned a sub-campaign ID such as phishing attacks being assigned sub-campaign ID “1”, spam attacks would be assigned sub-campaign ID “2,” and the like. Each of the sub-campaign IDs would be associated with a campaign ID. Alternatively, the sub-campaigns may be used to identify targeted geographic regions for attacks, sources by geography, industry where the email campaign ID is merely directed to an email campaign without industry specifics, time ranges to assist in identifying when current campaigns are occurring to encourage heightened email review during such periods, or the like.


After detection of a new email campaign (or detection of another email message associated with a known email campaign), an alert may be issued to a security administrator by the cybersecurity system 100 such as the email campaign detection engine 140 (operation 10). In some embodiments, however, the reporting engine 180 may generate an alert message for sending via a graphical user interface (GUI) for the security administrator that identifies, by labels triggered by a presence of a campaign ID, whether the email message is associated with an email campaign. Via the GUI, the security administrator may be provided with the ability to selectively adjust the content of the email campaign to add or remove email representations that were mischaracterized as part of an email campaign or not part of the email campaign.


Additionally, once an alert is generated and issued, the campaign analytic logic 284 may be further configured with remediation logic (not shown) that performs a review of previously received email messages within the email data store 130 as well as past email messages within email mailbox storage of the network device (not shown) to detect email messages correlated to email messages within the email campaign and appropriately remediate (e.g., delete or quarantine) these uncovered email messages.


Referring now to FIG. 3B, a second exemplary embodiment of a logical representation of the email campaign detection engine 140 of FIGS. 1-2 and its operations for detecting an email campaign is shown. Herein, the email campaign detection engine 140 comprises the feature extraction logic 280, the pre-processing logic 282 and the campaign analytic logic 284. As shown, the feature extraction logic 280 of the email campaign detection engine 140 receives content 300 associated with the malicious email message 150 (operation 1) and extracts the plurality of features from such content (operation 2). The character strings for each feature extracted from the malicious email message 150 may be aggregated to produce the character pattern 310, which is provided to the pre-processing logic 282 (operation 3).


The filtering logic 320 of the pre-processing logic 282 alters the character pattern 310 (e.g., pattern “#¶12&3 fil§ en am«e) to produce the filtered character pattern 330 (123filename). As described above, the filtering logic 320 may remove characters from the character pattern 310 (operation 4). These characters may be special characters, symbols, blank spaces, or whatever type of characters being used in the current threat landscape to obfuscate the actual pattern (content). Additionally, the ordering logic 340 of the pre-processing logic 282 may be configured to rearrange portions of the filtered character pattern 330 to produce the restructured character pattern operating as an “email representation” 350. The email representation 350 is part of the first ordered sequence 360, which includes the email representations associated with the malicious email messages within the malicious email set including the malicious email message 150. The ordering logic 340 further reorders the first ordered sequence 360 to produce the second ordered sequence 365 (operation 5). However, unlike FIG. 3A, the second ordered sequence 365 is reported back to the email data store 130 in order to associate the email representations to their corresponding malicious email messages. However, the order of the email representations as identified by the second ordered sequence 365 is retained to control subsequent retrieval of the email representations by the campaign analytic logic 284 (operation 6).


As further shown in FIG. 3B, the campaign analytic logic 284 is configured to determine whether each email representation, including the email representation 350, is associated with an email campaign. Herein, correlation logic 370 of the campaign analytic logic 284 retrieves each email representation, in the order identified by the second ordered sequence 365, to determine whether that email representation is associated with a known email campaign or part of a newly detected email campaign.


For example, the correlation logic 370 is configured to determine a level of correlation between the email representation 350 and any character patterns associated with known email campaigns received from the email data store 130 (operation 7). If the level of correlation between the email representation 350 and a particular character pattern associated with a known email campaign is equal to or exceeds the first threshold, the malicious email message 150 associated with that email representation 350 is identified as part of the known email campaign (operation 8).


However, where the level of correlation between the email representation 350 and character patterns associated with known email campaigns fails to meet the first threshold level, the correlation logic 370 analyzes the correlation between that email representation 350 and the neighboring email representation 355 in the second ordered sequence 365 as described above (operation 9). If the correlation between the email representation 350 and the neighboring email representation 355 is equal to or exceeds the second threshold and the above-described operations further continue for at least N-1 successive email representations in the second ordered sequence 365, these successive email representations corresponding to a subset of malicious email messages in the malicious email set 160 constitutes an email campaign. The ID assignment logic 380 within the campaign analytic logic 284 is configured to assign the campaign identifier (ID) to each malicious email message of the subset of malicious email messages (operation 10).


After detection of a new email campaign (or detection of another email message associated with a known email campaign), an alert may be issued by a reporting engine 180 to a security administrator by the cybersecurity system 100 (operation 11). In some embodiments, the reporting engine 180 may generate an alert message for sending via a graphical user interface for the security administrator that identifies, by labels triggered by an association of a campaign ID to various malicious email messages, whether the email message is associated with an email campaign.


V. Cybersecurity System Operability


Referring now to FIG. 4A, an exemplary embodiment of the operations of the cybersecurity system of FIG. 1 that is configured to detect email campaigns is shown. Herein, email messages are received by the cybersecurity system (operation 400). For each email message, a threat detection system analyzes the content of the email message to determine whether the email message is malicious, namely the likelihood (e.g., probability, etc.) of the email message being associated with a cybersecurity attack exceeds a prescribed threshold (operations 405 and 410). If the email message is benign, no further operations for email campaign detection are performed on the email message (operation 415). Otherwise, the email campaign detection engine receives each of the malicious email messages for analysis.


As shown in FIG. 4A, a plurality of features is extracted from each malicious email message and pre-processing operations are performed on the plurality of features to produce an email representation for each malicious email message (operations 420 and 425). The plurality of features may include information extracted from the header and/or body of the malicious email message while the pre-processing operations are directed to the arrangement of the information for analysis. For instance, during pre-processing operations, the information may be aggregated, filtered, and portions of the filtered, aggregated information are reordered to produce the email representation. Thereafter, the email representations for a set of malicious email messages (e.g., malicious email messages not assigned to an email campaign and detected within a prescribed period of time from the current analysis) are reordered into an ordered sequence of email representations for email campaign analysis (operation 430). The reordering of the email representations may be conducted in accordance with a grouping scheme that successively orders email representations with common characteristics together, where the ordering may be based on time stamp or window (e.g., email arrival time), alphabetically, transmission source (“from” field of the header), or the like. The email campaign detection analysis is conducted successively, in order, for each email representation included in the ordered arrangement of email representations.


As still shown in FIG. 4A, an email representation (e.g., first email representation) is compared to character patterns associated with known email campaigns (operation 435). In the event that the email representation is correlated to a known email campaign, the email message associated with the email representation is assigned a campaign identifier associated with the known email campaign (operations 440 and 445). Otherwise, a neighboring email representation (e.g., second email representation) is obtained and a determination is made whether the email representation is correlated to the neighboring email representation (operations 450 and 455).


When the email representation is not correlated to the neighboring email representation, provided the email representation is not the final email representation for the ordered arrangement of email representations, the process repeats where the neighboring email representation is now the email representation under analysis (operations 460 and 465) and operations 435-440 are repeated. Otherwise, when the email representation is correlated with the neighboring email representation, the email representation may constitute a “border” (starting) email message of an email campaign attack. As a result, as shown in FIG. 4B, a count is incremented and an email campaign is detected when a prescribed number (N) of neighboring email representations are correlated (blocks 470, 475, 480 and 485).


Where the number of correlated, neighboring email representations is at least “N” email representations, an email campaign is detected. An identifier for the email campaign (campaign ID) is generated and assigned to all of the email messages associated with the correlated neighboring email representations (blocks 480 and 485). Where the number of correlated, neighboring email representations is at least “N” email representations, an email campaign has not been detected yet. Hence, the current grouping of the email representations is maintained and the process repeats where the neighboring email representation is now the email representation under analysis (operations 490 and 465).


VI. Email Campaign Consolidation and Global Analysis


Referring now to FIG. 5, an exemplary block diagram of a network 500 including a global campaign detection system 510 for consolidation of campaign detections from multiple network devices. As shown, the global campaign detection system 510 is communicatively coupled to one or more network devices 5201-520M (M≥1), each including an email campaign detection engine 140 described above. The global campaign detection system 510 includes a communication interface 530, a global campaign analytics engine 540, and/or a global data store 550.


Each of the network devices 5201-520M is configured to advise the global campaign detection system 510 of (i) a plurality of email messages that are detected to be part of a new email campaign and/or (ii) one or more email messages that are detected to be part of a known email campaign. As a result, each network devices (e.g., network device 5201) may be configured to issue an email campaign consolidation message 560 in response to detecting a new email campaign at a network device (e.g., network device 5201). Additionally, each network device may be configured to issue an email campaign update message 565 in response to detecting an email message associated with a known email campaign.


Herein, the email campaign consolidation message 560 may include information that enables the global campaign detection system 510 to (i) determine whether two or more different network devices have detected the same email campaign and (ii) retrieve additional information associated with the new email campaign from each of the network devices such as metadata associated with the new email campaign (e.g., number of email messages, originating source address, etc.) or content associated with the malicious email addresses for analysis by the global campaign detection system 510. The consolidated email campaign data may be used for more robust reporting (e.g., number of email messages sent during the email campaign, targeted destinations (e.g., networks, particular devices, geography, industry, etc.), source (e.g., device, geography, etc.).


More specifically, the email campaign consolidation message 560 may include the campaign identifier (campaign ID) 561 assigned to the newly detected email campaign along with a selected email representation 562 for that email campaign. The selected email representation 562 may correspond to a first (border) email message associated with a newly detected email campaign, although the selected email representation 562 may correspond to an email representation associated with an email message that is part of the email campaign other than a border email message. The selected email representation 562 may be used by the global campaign analytics engine 540 to determine a correlation between email campaigns detected by email campaign detection engines within different network devices (e.g., network device 5201 and network device 520M). Thereafter, upon detection of a correlation between email campaigns submitted from different network devices (e.g., network device 5201 and network device 520M), the global campaign analytics engine 540 may communicate with the network device 5201 and network device 520M to retrieve the additional information as described above.


The email campaign update message 565 may include information that enables the global campaign detection system 510 to update a known email campaign, which is stored within the global data store 550. The message 565 may include content associated with the malicious email message 566 and the campaign ID 567 indicating the email campaign to which the malicious email address was assigned. From the content within the malicious email message, the global campaign detection system 510 may provide a more robust or thorough reporting of a detected email campaign (e.g., size of the email campaign based on the number of email messages; targeted destinations based on device, geography, and/or industry; same/different source, etc.).


The network devices 5201-520M may be configured to send email campaign consolidation messages 560 and/or email campaign update messages 565 periodically (e.g., each hour, each day, after a prescribed number of days, each week, etc.) or aperiodically (e.g., after detection of a new email campaign or addition to a known email campaign). As further shown, the global campaign detection system 510 may be configured to receive cybersecurity intelligence directed to email campaigns uncovered or analyzed by sources 570 other than the network devices 5201-520M, such as incident investigation/response systems, forensic analysis systems, third-party systems, or the like.


Responsive to consolidating email campaigns detected at different network device 5201-520M, the global campaign analytics engine 540 may generate an alert message 580 to one or more administrators (of networks to which the network device 5201 and network device 520M belong) of the enlarged email campaign. The alert message 580 is provided to enable action to be taken, by the administrator to remediate, interdict or neutralize the email campaign attack and/or halt its spread. This remediation may involve a review of email storage of the network devices 5201-520M and email in-boxes at email servers or other network devices to delete or quarantine email messages


Additionally, the global data store 550 may be accessed by an administrator via a network device 590, permitting and controlling external access to the global campaign detection system 510. In particular, the administrative access permits modification of rules (e.g., modify, delete, add rules) and allow an administrator to run queries to receive and organize cybersecurity intelligence from the global data store 550 for display. The cybersecurity intelligence may be used, for example, in enhanced detection, remediation, investigation and reporting.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method for detecting a cyberattack, comprising: generating a plurality of email representations corresponding to a plurality of email messages under analysis, the plurality of email representations being a modified character pattern;determining a first email message of the plurality of email messages is part of the cyberattack when (i) a level of correlation between a first email representation of the plurality of email representations and a character pattern associated with a known cyberattack is determined to exceed a first threshold and (ii) the level of correlation fails to exceed the first threshold and levels of correlation between a prescribed number of successive email representations of the plurality of email representations are equal to or exceed a second threshold; andgenerating one or more alert messages via a graphic user interface or an input/output interface to provide a visual representation of results produced in determining the cyberattack.
  • 2. The computerized method of claim 1, wherein the cyberattack constitutes an email campaign being a targeted and deliberate cyberattack based on repetitious transmission of the plurality of email messages in an attempt to gain access to or disrupt operations of a targeted network device or a network to which the targeted network device is in communication.
  • 3. The computerized method of claim 1, wherein the generating of the plurality of email representations comprises removing one or more characters from each character pattern corresponding to an email message of the plurality of email messages to produce the plurality of email representations.
  • 4. The computerized method of claim 1, wherein generating of the plurality of email representations comprises (i) removing one or more characters from each character pattern corresponding to an email message of the plurality of email messages to produce a plurality of filtered character patterns and (ii) rearranging portions of each of the plurality of filtered character patterns to produce the plurality of email representations.
  • 5. The computerized method of claim 1, wherein the second threshold represents a lower correlation value than the first threshold.
  • 6. The computerized method of claim 1, wherein the determining of the levels of correlation between the prescribed number of successive email representations are equal to or exceed the second threshold includes at least (i) determining whether a first level of correlation between a first neighboring pair of email representations including the first email representation of the plurality of email representations and a second email representation of the plurality of email representations satisfies the second threshold, (ii) determining whether a second level of correlation between a second neighboring pair of email representations including the second email representation and a third email representation of the plurality of email representations satisfies the second threshold, and (iii) continuing to determine levels of correlation between successive neighboring pairs of email representations from the plurality of email representations satisfy the second threshold until the prescribed number of email representations of the plurality of email representations are determined to be correlated.
  • 7. The computerized method of claim 1, wherein the prescribed number of successive email representations with the levels of correlation satisfying the second threshold form an uninterrupted sequence being a sequence of correlated email representations having no intervening non-correlating email representation.
  • 8. The computerized method of claim 1, wherein the generating of the plurality of email representations comprises arranging an ordered sequence of the plurality of email representations chronologically.
  • 9. The computerized method of claim 1, wherein the levels of correlation between the prescribed number of successive email representations are equal to or exceeds the second threshold are determined based on a particular edit distance.
  • 10. The computerized method of claim 1, wherein the prescribed number of successive email representations is greater than ten successive email representations.
  • 11. A non-transitory computer readable medium including software that, when executed by one or more processors, performs operations to detect a cyberattack, comprising: generating a plurality of email representations corresponding to a plurality of email messages under analysis, the plurality of email representations being a modified character pattern;determining a first email message of the plurality of email messages is part of the cyberattack (i) when a level of correlation between a first email representation of the plurality of email representations and a character pattern associated with a known cyberattack is determined to exceed a first threshold as well as (ii) when the level of correlation fails to exceed the first threshold and levels of correlation between a prescribed number of successive email representations of the plurality of email representations are equal to or exceed a second threshold; andgenerating a notification in response to determining that the first email message of the plurality of email messages is part of the cyberattack.
  • 12. The non-transitory computer readable medium of claim 11, wherein the cyberattack constitutes an email campaign being a targeted and deliberate cyberattack based on repetitious transmission of the plurality of email messages in an attempt to gain access to or disrupt operations of a targeted network device or a network to which the targeted network device is in communication.
  • 13. The non-transitory computer readable medium of claim 11, wherein the generating of the plurality of email representations comprises removing one or more characters from each character pattern corresponding to an email message of the plurality of email messages to produce the plurality of email representations.
  • 14. The non-transitory computer readable medium of claim 11, wherein generating of the plurality of email representations comprises (i) removing one or more characters from each character pattern corresponding to an email message of the plurality of email messages to produce a plurality of filtered character patterns and (ii) rearranging portions of each of the plurality of filtered character patterns to produce the plurality of email representations.
  • 15. The non-transitory computer readable medium of claim 11, wherein the second threshold represents a lower correlation value than the first threshold.
  • 16. The non-transitory computer readable medium of claim 11, wherein the determining of the levels of correlation between the prescribed number of successive email representations are equal to or exceed the second threshold includes at least (i) determining whether a first level of correlation between a first neighboring pair of email representations including the first email representation of the plurality of email representations and a second email representation of the plurality of email representations satisfies the second threshold, (ii) determining whether a second level of correlation between a second neighboring pair of email representations including the second email representation and a third email representation of the plurality of email representations satisfies the second threshold, and (iii) continuing to determine levels of correlation between successive neighboring pairs of email representations from the plurality of email representations satisfy the second threshold until the prescribed number of email representations of the plurality of email representations are determined to be correlated.
  • 17. The non-transitory computer readable medium of claim 16, wherein the prescribed number of successive email representations with the levels of correlation satisfying the second threshold form an uninterrupted sequence being a sequence of correlated email representations having no intervening non-correlating email representation.
  • 18. The non-transitory computer readable medium of claim 11, wherein the prescribed number of successive email representations is greater than ten successive email representations.
  • 19. A system for detecting a cyberattack, comprising: a processor; anda non-transitory storage medium including logic accessible by the processor, the non-transitory storage medium comprises pre-processing logic that, when executed by the processor, generates a plurality of email representations corresponding to a plurality of email messages under analysis, the plurality of email representations being a character pattern,analysis logic that, when executed by the processor, determines a first email message of the plurality of email messages is part of the cyberattack (i) when a level of correlation between a first email representation of the plurality of email representations and a character pattern associated with a known cyberattack is determined to exceed a first threshold as well as (ii) when the level of correlation fails to exceed the first threshold and levels of correlation between a prescribed number of successive email representations of the plurality of email representations are equal to or exceed a second threshold, andreporting engine that, when executed by the processor, generates one or more alert messages to provide a visual representation of results produced from the analytic logic.
  • 20. The system of claim 19 further comprising: feature extraction logic that, when executed by the processor, extracts features from each of a plurality of email messages previously determined to be malicious and received for analysis, wherein each feature extracted by the feature extraction logic includes a character string and the features collectively forming the character pattern associated with the known cyberattack.
  • 21. The system of claim 19, wherein the pre-processing logic includes (i) a filtering logic to remove one or more characters from each character pattern corresponding to an email message of the plurality of email messages to produce a plurality of filtered character patterns and (ii) an ordering logic to rearrange portions of each of the plurality of filtered character patterns to produce the plurality of email representations.
  • 22. The system of claim 19, wherein the second threshold represents a lower correlation value than the first threshold.
  • 23. The system of claim 19, wherein the prescribed number of successive email representations is greater than ten successive email representations.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/020,896 filed Jun. 27, 2018, now U.S. Pat. No. 11,075,930 issued Jul. 27, 2021, the entire contents of which are incorporated by reference herein.

US Referenced Citations (790)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
5987498 Athing Nov 1999 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831758 Toda Dec 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7089241 Alspector et al. Aug 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7225466 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7627670 Haverkos Dec 2009 B2
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7716297 Wittel et al. May 2010 B1
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7756929 Pettigrew Jul 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8041769 Shraim Oct 2011 B2
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
18045458 Alperovitch et al. Oct 2011
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8392357 Zou Mar 2013 B1
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8554847 Shue Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8577968 Shinde Nov 2013 B2
8582760 Rosati Nov 2013 B2
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8601064 Liao Dec 2013 B1
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8667069 Connelly Mar 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806590 Salada Aug 2014 B2
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8903920 Hodgson Dec 2014 B1
8935284 Cooley Jan 2015 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9026507 Shraim May 2015 B2
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9083556 Choi Jul 2015 B2
9092802 Akella Jul 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9152952 Smith Oct 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
19197664 Aziz et al. Nov 2015
9203648 Shraim Dec 2015 B2
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9338026 Bandini et al. May 2016 B2
9344447 Cohen et al. May 2016 B2
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9596264 Sandke et al. Mar 2017 B2
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9686308 Srivastava Jun 2017 B1
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9710759 Dasgupta Jul 2017 B2
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787700 Amin et al. Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9876753 Hawthorn Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael et al. Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912694 Hagar et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954880 Mason Apr 2018 B2
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Smael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Slam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10127212 Kim Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10242185 Goradia Mar 2019 B1
10261784 Rogers Apr 2019 B1
10313378 Makavy Jun 2019 B2
10362057 Wu Jul 2019 B1
10425444 Elworthy Sep 2019 B2
10657182 Barber et al. May 2020 B2
10666676 Hsu May 2020 B1
10855635 Parthasarathy Dec 2020 B2
11075930 Xavier et al. Jul 2021 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030167202 Marks Sep 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040103161 Matsumoto May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040177120 Kirsch Sep 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050060643 Glass Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050182684 Dawson Aug 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060047769 Davis Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060085254 Grim, III Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070136808 Xiong Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005316 Feaver Jan 2008 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080183541 Wenger Jul 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077182 Banjara et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089376 Pisupati Apr 2009 A1
20090089877 Bolinger Apr 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090182552 Fyke Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 Ståhlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145922 Wood Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110179487 Lee Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014018 Miner Jan 2013 A1
20130014259 Gribble et al. Jan 2013 A1
20130018906 Nigam Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130152158 Yoshihama Jun 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20130325991 Chambers et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140082726 Dreller et al. Mar 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140215571 Shuster Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160012223 Srivastava Jan 2016 A1
20160044000 Cunningham Feb 2016 A1
20160112445 Abramowitz Apr 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
20170213298 Nash Jul 2017 A1
20170223046 Singh Aug 2017 A1
20170251010 Irimie Aug 2017 A1
20180013770 Ismael Jan 2018 A1
20180026926 Nigam Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180081991 Barber Mar 2018 A1
20180091454 Brahmanapalli Mar 2018 A1
20180121316 Ismael et al. May 2018 A1
20180211223 Jacobson Jul 2018 A1
20180219892 Makavy Aug 2018 A1
20180276459 Kojima Sep 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
20180295137 Zager Oct 2018 A1
20190007426 Bergström Jan 2019 A1
20190020687 Noon et al. Jan 2019 A1
20190087428 Crudele Mar 2019 A1
20190095805 Tristan Mar 2019 A1
20190372998 Nishikawa Dec 2019 A1
20190385043 Choudhary Dec 2019 A1
20190387017 Martynenko Dec 2019 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (60)
Entry
U.S. Appl. No. 16/020,896, filed Jun. 27, 2018 Final Office Action dated Aug. 27, 2020.
U.S. Appl. No. 16/020,896, filed Jun. 27, 2018 Non-Final Office Action dated Mar. 20, 2020.
U.S. Appl. No. 16/020,896, filed Jun. 27, 2018 Notice of Allowance dated Mar. 18, 2021.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: a cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: an Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cohen, M.I. , “PyFlag—an advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Distler, “Malware Analysis: an Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al., Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Lastline Labs, the Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: a Statistical Viewpoint”, (“Marchette”), (2001).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Thomas H. Placek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
Continuations (1)
Number Date Country
Parent 16020896 Jun 2018 US
Child 17385835 US