The present invention relates to a system and a method for detecting the fatigue of a driver of a vehicle.
It is known that drivers of vehicles or vehicle drivers must maintain a particularly high level of sustained attentiveness (vigilance). If the level of attentiveness of the vehicle driver falls, for example because of fatigue due to lack of sleep and/or a monotonous driving situation, the risk of an accident increases, and consequently represents a risk for the vehicle driver and other road users. At the same time, drivers of vehicles can find it difficult to maintain sustained attentiveness with regard to driving the vehicle, even during daytime journeys. This applies in particular in the case of long and monotonous routes, such as for example on freeways. In the case of systems for detecting the fatigue of a driver of a vehicle, it is a challenge to detect with certainty when the driver begins to be affected by fatigue. If fatigue is falsely detected (i.e. the driver of the vehicle is being vigilant), corresponding measures are extremely uncomfortable for the vehicle driver. If, on the other hand, fatigue or a reduction in vigilance is incorrectly not detected, that represents a risk for the vehicle driver and the other road users concerned.
The object of the invention is to avoid the aforementioned disadvantages and to provide a solution that makes exact detection of the fatigue of the driver of a vehicle possible.
According to a first aspect, a system for the exact detection of fatigue of a driver of a vehicle comprises:
at least one camera for sensing the pupil diameter of the driver of the vehicle;
at least one sensor for sensing a current luminance in the vehicle; and
at least one computing module for detecting the fatigue of the driver of the vehicle by calculation, wherein the calculation is based on the sensed pupil diameter and the sensed, current luminance in the vehicle.
The vehicle may be for example a motor vehicle, a rail vehicle, an aircraft, a watercraft, etc. In the vehicle there may be arranged at least one camera, which is designed to detect the pupil diameter of the driver of the vehicle (also referred to hereinafter as the driver). In addition, the vehicle may comprise at least one sensor for detecting a current luminance. The luminance of a surface area determines with which surface luminosity the eye of the driver perceives the surface, and consequently relates directly to the visual sensory perception. The vehicle also comprises a computing module, which is designed to detect the fatigue of the driver of the vehicle by calculation. The calculation is based on the pupil diameter sensed by the at least one camera and the sensed, current luminance in the vehicle.
Preferably, the at least one camera comprises a high-resolution interior camera and/or a high-resolution infrared camera.
The at least one camera may comprise a high-resolution interior camera. A high-resolution interior camera advantageously allows the pupil diameter to be determined very exactly. In addition or as an alternative to this, the at least one camera may comprise a high-resolution infrared camera. This advantageously allows the pupil diameter still to be determined very exactly even when there are very poor light conditions in the vehicle. The high-resolution interior camera and the high-resolution infrared camera may be realized in one camera module. In another example, they may be realized in different camera modules. The at least one camera may comprise any desired and/or suitable numerical combination of interior cameras and/or infrared cameras.
Preferably, the at least one sensor for sensing the current luminance in the vehicle comprises an adaptive forward lighting sensor, AFL sensor.
The adaptive forward lighting sensor (AFL sensor) may for example sense a current luminance x. If the AFL sensor is for example designed to sense an intensity of illumination E on the surroundings of the vehicle (i.e. what luminous flux in lumens, lm, falls on a unit of area in m2 surrounding the vehicle, also known as lux, lx:
a corresponding conversion may be performed, first into the luminous intensity in cd and then into the (current) luminance x in cd/m2.
Here, the luminance x [cd/m2] is the quotient of the luminous intensity I [cd] and the visible illuminated surface area [m2]. The luminous intensity I [cd] is the product of the intensity of illumination E [lx] and the square of the distance r [m] between the illuminated surface area and the eye. The parameters A and r are decisively determined by the size of the windshield and the distance between the eye and the windshield and vary within the range A=1.5 m-2.5 m and r=0.5 m-0.9 m.
The conversion may be performed for example by the computing module or any other suitable module with a corresponding computing capacity in the vehicle. Thus, an AFL sensor already fitted in the vehicle (in addition to the adaptive forward lighting control of the vehicle) may be advantageously used for sensing the current luminance x, so that no additional sensor is needed for sensing the current luminance in the vehicle.
Preferably, the detection of the fatigue of the driver of the vehicle by the computing module comprises:
calculation of the pupil diameter with respect to the sensed, current luminance;
comparison of the sensed pupil diameter with the calculated pupil diameter with respect to the sensed luminance; and
if the sensed pupil diameter is smaller by more than a constant range [k−0.3 mm; k+1.4 mm] of a constant k=0.6 mm than the calculated pupil diameter:
detection of the fatigue of the driver of the vehicle,
wherein the detection of the fatigue of the driver of the vehicle can be corrected by a time-related correction factor with regard to the rate of reduction of the pupil diameter; and/or a light assist sensor.
The calculation of the pupil diameter Dx in [mm] with respect to the sensed, current luminance x may for example be calculated by the following formula:
Dx=100.8558−0.000401(log x+8.4)
However, this calculation only gives the pupil diameter with respect to the current luminance x (i.e. without further influencing factors).
The sensed pupil diameter Dx,y on the other hand gives the pupil diameter of the driver with respect to the current luminance x and the fatigue of the driver y and can be represented as follows:
Dx,y=100.8558−0.000401(log x+8.4)
The following then follows:
If
Dx−Dx,y>[k−0.3 mm k+1.4 mm], where k=0.6 mm;
then the driver is affected by fatigue. In order to achieve a particularly exact determination of the fatigue, and consequently to avoid a false alarm in the fatigue detection, the fatigue may preferably be determined for [k−0.1 mm; k+1.4 mm].
The calculation of the fatigue of the driver of the vehicle by the computing unit may in this case comprise appropriate correction factors. For example, a correction factor with regard to the rate of reduction of the pupil diameter of the driver may be introduced or used, in that for example a time derivative of the pupil diameter of the driver is obtained. If for example the pupil diameter of the driver reduces very quickly, this is because there is a sudden incidence of light, and fatigue is not detected by the computing module. If, on the other hand, the pupil diameter of the driver reduces slowly over time (cf.
The correction factor may for example be obtained from the following formula:
if
then the contraction of the pupil diameter is caused by fatigue
if
then the contraction of the pupil diameter is caused by incidence of light
where
D=sensed pupil diameter of the driver 120;
t=(point in) time;
that is to say the difference of the pupil diameter D2 sensed by the camera at the point in time t2 and the pupil diameter D1 sensed by the camera at the point in time t1 in relation to the distance of the point in time t2 from the point in time t1.
In a further example, the computing module may also access data concerning the pupil diameter during wakefulness and/or fatigue that are stored in advance for the driver (for example in a memory unit in the vehicle), in order to make the calculation of the fatigue of the driver even more precise. In addition or as an alternative to this, the current luminance x may be corrected or regulated by the automatic light assist sensor. For example, when driving at night-time, an oncoming vehicle with lights switched on can advantageously be detected by using the automatic light assist sensor. This allows a correction factor for influencing the pupil diameter of the driver by the light of oncoming vehicles to be taken into account. When an oncoming vehicle with lights switched on is detected by the automatic light assist sensor, the correction factor may be the suspension of the calculation of the fatigue of the driver by the computing module. Optionally, the computing module may also take into account further correction factors in the calculation of the fatigue of the driver, for example times of day and/or times of year and/or current weather conditions in conjunction with the orientation of the vehicle. The orientation of the vehicle may be determined for example by a navigation system in the vehicle, wherein data regarding the times of day and/or times of year and current weather conditions may be taken from a memory unit in the vehicle and/or from one or more (backend) servers.
Preferably, the system also comprises:
at least one control unit, wherein the control unit is designed to introduce at least one corresponding countermeasure when fatigue of the driver of the vehicle is detected.
For example, the countermeasure may be an optical countermeasure (for example via an output unit in the vehicle) and/or acoustic countermeasure (for example via a loudspeaker in the vehicle) and/or a reduction of the interior temperature, for example by a corresponding temperature control via the air-conditioning system in the vehicle.
According to a second aspect of the present invention, the underlying object is achieved by a method for the exact detection of the fatigue of a driver of a vehicle, comprising:
sensing, by at least one camera, the pupil diameter of the driver of the vehicle;
sensing, by at least one sensor, a current luminance in the vehicle; and
detecting, by calculation in a computing module, whether the driver of the vehicle is affected by fatigue, wherein the calculation is based on the sensed pupil diameter and the sensed, current luminance in the vehicle.
Preferably, the at least one camera comprises a high-resolution interior camera and/or a high-resolution infrared camera.
Preferably, the at least one sensor for sensing the current luminance in the vehicle comprises an adaptive forward lighting sensor, AFL sensor.
Preferably, the detection of the fatigue of the driver of the vehicle by the computing module comprises:
calculating the pupil diameter with respect to the sensed, current luminance;
comparing the sensed pupil diameter with the calculated pupil diameter with respect to the sensed luminance; and
if the sensed pupil diameter is smaller by more than a constant range [k−0.3 mm; k+1.4 mm] of a constant k=0.6 mm than the calculated pupil diameter:
detecting the fatigue of the driver of the vehicle;
wherein the detecting of the fatigue of the driver of the vehicle can be corrected by a time-related correction factor with regard to the rate of reduction of the pupil diameter; and/or a light assist sensor.
Preferably, the method also comprises introducing, by at least one control unit, a countermeasure when fatigue is detected.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.
The system 100 also comprises at least one sensor 116 A sensing a current luminance in the vehicle 100. The luminance (of a surface area in the vehicle 110) determines with which surface luminosity the eye of the driver 120 perceives the surface, and consequently relates directly to the visual sensory perception. The at least one sensor 116 A for sensing the current luminance in the vehicle 110 may comprise an adaptive forward lighting sensor, AFL sensor 116 A.
The adaptive forward lighting sensor (AFL sensor) 116 A may for example sense a current luminance x. If the AFL sensor 116 A is for example designed to sense an intensity of illumination on the surroundings of the vehicle (i.e. what luminous flux in lumens, lm, falls on a unit of area in m2 surrounding the vehicle, also known as lux, lx:
a corresponding conversion may be performed, first into the luminous intensity in cd and finally into the (current) luminance x in cd/m2.
Here, the luminance x [cd/m2] is the quotient of the luminous intensity l [cd] and the visible illuminated surface area [m2]. The luminous intensity l [cd] is the product of the intensity of illumination E [lx] and the square of the distance r [m] between the illuminated surface area and the eye. The parameters A and r are decisively determined by the size of the windshield and the distance between the eye and the windshield and vary within the range A=1.5 m-2.5 m and r=0.5 m-0.9 m.
The conversion may be performed for example by the computing module 114, see below, or any other suitable module (not shown) with a corresponding computing capacity in the vehicle 110. Thus, an AFL sensor 116 A already fitted in the vehicle 110 (in addition to the adaptive forward lighting control of the vehicle 110) may be advantageously used for sensing the current luminance x, so that no additional sensor is needed for sensing the current luminance in the vehicle 110.
The system 100 may also comprise at least one computing module 114 for detecting the fatigue of the driver of the vehicle 120 by calculation, wherein the calculation is based on the sensed pupil diameter and the sensed, current luminance in the vehicle 110. The computing module 114 may carry out the calculation on the basis of the pupil diameter of the driver 120, sensed by the at least one camera 112, and the current luminance in the vehicle 110, sensed by the at least one sensor 116 A. In particular, the computing module 114 may carry out the calculation of the pupil diameter Dx in [mm] with respect to the sensed, current luminance x for example with reference to the following formula:
Dx=100.8558−0.000401(log x+8.4)
However, this calculation only gives the pupil diameter with respect to the current luminance x (i.e. without further influencing factors such as the fatigue of the driver 120).
The pupil diameter Dx,y sensed by the at least one camera 112 on the other hand gives the pupil diameter of the driver 120 with respect to the current luminance x and the fatigue of the driver y and can be represented as follows:
Dx,y=100.8558−0.000401(log x+8.4)
In a next step, a comparison of the pupil diameter sensed by the at least one camera 112 with the pupil diameter calculated by the computing module 114 with respect to the sensed luminance may take place.
If the pupil diameter sensed by the at least one camera 112 is smaller by more than a range [k−0.3 mm; k+1.4 mm] of a constant k=0.6 mm than the calculated pupil diameter, i.e. if
Dx−Dx,y>[k−0.3 mm k+1.4 mm], where k=0.6 mm;
then the fatigue of the driver 120 of the vehicle 110 is detected. In order to obtain a particularly exact determination of the fatigue, and consequently to avoid a false alarm in the fatigue detection, the fatigue may preferably be determined for [k−0.1 mm; k+1.4 mm], where k=0.6 mm.
The calculation of the fatigue of the driver 120 of the vehicle 110 by the computing unit 114 may in this case comprise appropriate correction factors. For example, a correction factor with regard to the rate of reduction of the pupil diameter of the driver 120 may be introduced or used, in that for example a time derivative of the pupil diameter of the driver 120 is obtained. If for example the pupil diameter of the driver 120 reduces very quickly, this is because there is a sudden incidence of light, and fatigue is not detected by the computing module 114. If, on the other hand, the pupil diameter of the driver 120 reduces slowly over time (cf.
The correction factor may for example be obtained from the following formula:
if
then the contraction of the pupil diameter is caused by fatigue
if
then the contraction of the pupil diameter is caused by incidence of light
where
D=sensed pupil diameter of the driver 120;
t=(point in) time;
that is to say the difference of the pupil diameter D2 sensed by the camera at the point in time t2 and the pupil diameter D1 sensed by the camera at the point in time t1 in relation to the distance of the point in time t2 from the point in time t1.
In a further example, the computing module 114 may also access data concerning the pupil diameter during wakefulness and/or fatigue that are stored in advance for the driver 120 (for example in a memory unit 118 in the vehicle 110), in order to make the calculation of the fatigue of the driver 120 even more precise. In addition or as an alternative to this, the current luminance x may be corrected or regulated by the automatic light assist sensor 116 B. For example, when driving at night-time, an oncoming vehicle with lights switched on can advantageously be detected by using the automatic light assist sensor 116 B. This allows a correction factor for influencing the pupil diameter of the driver 120 by the light of oncoming vehicles to be taken into account. When an oncoming vehicle with lights switched on is detected by the automatic light assist sensor 116 B, the correction factor may be the suspension of the calculation of the fatigue of the driver 120 by the computing module 114. Optionally, the computing module 114 may also take into account further correction factors in the calculation of the fatigue of the driver 120, for example times of day and/or times of year and/or current weather conditions in conjunction with the orientation of the vehicle. The orientation of the vehicle may be determined for example by a navigation system in the vehicle, wherein data regarding the times of day and/or times of year and current weather conditions may be taken from a memory unit 118 in the vehicle 110 and/or from one or more (backend) servers 130.
The system 100 may also comprise at least one control unit 118, wherein the control unit 118 is designed to introduce at least one corresponding countermeasure when fatigue of the driver 120 of the vehicle 110 is detected. For example, the countermeasure may be an optical countermeasure (for example via an output unit in the onboard computer of the vehicle 110) and/or acoustic countermeasure (for example via a loudspeaker in the vehicle 110) and/or a reduction of the interior temperature, for example by a corresponding temperature control via the air-conditioning system in the vehicle 110, as further explained by way of example below with reference to
sensing 210, by at least one camera 112, the pupil diameter of the driver 120 of the vehicle 110, wherein the at least one camera 112 may comprise a high-resolution interior camera and/or a high-resolution infrared camera;
sensing 220, by at least one sensor 116 A, a current luminance in the vehicle 110, wherein the at least one sensor 116 A may comprise an additive forward lighting sensor, AFL sensor 116 A; and
detecting 230, by calculation in a computing module 114, whether the driver 120 of the vehicle 110 is affected by fatigue, wherein the calculation is based on the pupil diameter sensed by the at least one camera 112 and the sensed, current luminance in the vehicle 110.
The detecting 230 of the fatigue of the driver 120 of the vehicle 110 (or the driver 120) by the computing module 114 may in this case comprise:
calculating 232 the pupil diameter with respect to the current luminance sensed by the at least one sensor 116 A;
comparing 234 the pupil diameter sensed by the at least one camera 112 with the pupil diameter calculated by the computing module 114 with respect to the sensed luminance; and
if the pupil diameter sensed by the at least one camera 112 is smaller by more than a constant range [k−0.3 mm; k+1.4 mm] of a constant k=0.6 mm than the pupil diameter calculated by the computing module 114:
detecting 236 the fatigue of the driver 120 of the vehicle 122;
wherein the detecting 236 of the fatigue of the driver 120 of the vehicle 110 can be corrected by a time-related correction factor with regard to the rate of reduction of the pupil diameter; and/or a light assist sensor 116 B.
The method may also comprise introducing 240, by at least one control unit 118, a countermeasure when fatigue 236 is detected by the computing module 114, as described for example with reference to
In particular, it was possible thereby to establish that even in the case of journeys of half an hour, as represented in
It is consequently found that the pupil diameter is very well suited as an indicator of the fatigue or vigilance of drivers, as long as the light conditions are constant.
The system 100 and the method 200, as described with reference to
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 202 659 | Feb 2017 | DE | national |
This application is a continuation of PCT International Application No. PCT/EP2017/078018, filed Nov. 2, 2017, which claims priority under 35 U.S.C. § 119 from German Patent Application No. 10 2017 202 659.6, filed Feb. 20, 2017, the entire disclosures of which are herein expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6097295 | Griesinger | Aug 2000 | A |
7488294 | Torch | Feb 2009 | B2 |
7747068 | Smyth | Jun 2010 | B1 |
9751534 | Fung | Sep 2017 | B2 |
20030142041 | Barlow | Jul 2003 | A1 |
20030218719 | Abourizk | Nov 2003 | A1 |
20040170304 | Haven | Sep 2004 | A1 |
20060110008 | Vertegaal | May 2006 | A1 |
20070120691 | Braun | May 2007 | A1 |
20070291232 | Marshall | Dec 2007 | A1 |
20090018419 | Torch | Jan 2009 | A1 |
20110292668 | Schofield | Dec 2011 | A1 |
20120050516 | Tsukizawa | Mar 2012 | A1 |
20120069301 | Hirata | Mar 2012 | A1 |
20150196245 | Peake | Jul 2015 | A1 |
20160299354 | Shtukater | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2013204435 | Aug 2015 | AU |
198 03 158 | May 1999 | DE |
103 59 125 | Jul 2005 | DE |
10 2013 212 877 | Jan 2015 | DE |
Entry |
---|
German-language Search Report issued in counterpart German Application No. 10 2017 202 659.6 dated Sep. 11, 2017 with partial English translation (15 pages). |
International Search Report (PCT/ISA/210) issued in PCT Application No. PCT/EP2017/078018 dated Mar. 5, 2018 with English translation (four (4) pages). |
German-language Written Opinion (PCT/ISA/237) issued in PCT Application No. PCT/EP2017/078018 dated Mar. 5, 2018 (seven (7) pages). |
Number | Date | Country | |
---|---|---|---|
20190370582 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2017/078018 | Nov 2017 | US |
Child | 16543856 | US |