System and method for detecting use of a wireless device in a moving vehicle

Information

  • Patent Grant
  • 7876205
  • Patent Number
    7,876,205
  • Date Filed
    Tuesday, October 2, 2007
    16 years ago
  • Date Issued
    Tuesday, January 25, 2011
    13 years ago
Abstract
A system and method for detecting use of a wireless device is disclosed. In one embodiment, wireless device activity data is received from a wireless network. User account data is searched using selected parameters from the wireless device activity data to identify one or more subscribers that are or were using a wireless device. One or more subscriber vehicles or vehicle monitoring systems associated with each of the one or more subscribers are identified. Vehicle operation data from one or more vehicle monitoring systems is received. The vehicle operation data is used to determine whether any of the one or more subscriber vehicles were moving during use of an associated wireless device.
Description
TECHNICAL FIELD

The present invention relates generally to a system and method for detecting the use of wireless devices, such as mobile phones, in moving vehicles.


BACKGROUND

The use of wireless devices, such as cellular telephones or personal digital assistants (PDA), by drivers who talk on the phone or send or read text messages while driving has been shown to reduce the drivers' attention and to increase the likelihood of accidents. Some cities restrict cellular phone use while driving or require that the driver use a hands-free mode on their wireless phone to talk while driving. Other cities are considering restricting the use of text messaging applications while driving. Such legal measures may reduce the use of wireless devices, but these measures are also easily avoided, for example, by pausing the conversation and putting the phone out of sight if a police car is nearby. There is currently no automatic method or system for detecting wireless device use by drivers in a moving vehicle.


SUMMARY OF THE INVENTION

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention in which wireless device or cellular phone usage data from cellular network operators, for example, is compared to vehicle operation data from vehicle monitoring systems, for example, to determine in real-time, near real-time, or after the fact, whether a driver is or was using a wireless device while operating a vehicle.


In one embodiment, wireless device activity data is received from a wireless network. User account data is searched using selected parameters from the wireless device activity data to identify one or more subscribers that are or were using a wireless device. One or more subscriber vehicles or vehicle monitoring systems associated with each of the one or more subscribers are identified. Vehicle operation data from one or more vehicle monitoring systems is received. The vehicle operation data is used to determine whether any of the one or more subscriber vehicles were moving during use of an associated wireless device.


The wireless device activity data includes a location identifying where a wireless device was used, or a time when the wireless device was used, or both. Messages identify wireless devices that are located in or near a particular vehicle. The wireless devices that are located in or near a particular vehicle may be determined using a short-range communications system, an RFID system, or a Bluetooth system or a combination of one or more such systems. Mentoring feedback may be provided to drivers of the one or more subscriber vehicles that were moving during use of an associated wireless device. Notification may also be sent to third parties to report movement of the one or more subscriber vehicles during use of an associated wireless device. A request may be sent to the wireless network to terminate or block communications to the associated wireless device. The wireless device activity data may be real-time data, near real-time data, or historical data.


In another embodiment, a system and method for detecting wireless device use in a moving vehicle comprises receiving a first set of wireless device activity data, wherein the first set of data identifies a first location in which a particular wireless device has been used; receiving a second set of wireless device activity data, wherein the second set of data identifies a second location in which the particular wireless device has been used; and if the first location and second location are different, then notifying a third party that the particular wireless device was in use while moving and/or providing mentoring feedback to a user associated with the particular wireless device.


The method may further comprise determining a speed associated with the distance between the first and second location, and notifying the third party only if the speed is greater than a predetermined threshold. The first and second set of wireless device activity data may be from a wireless network, wireless device, or vehicle monitoring system, for example.


In another embodiment, a system and method for detecting use of a wireless device comprises a vehicle monitoring system mounted in the vehicle, the vehicle monitoring system having a processor for processing data received from vehicle systems and sensors, and wherein the processor is configured to determine when the vehicle is moving. A radio frequency (RF) sensor mounted in the vehicle and coupled to the monitoring system, wherein the RF sensor is configured to detect signals in a wireless communication frequency band and to provide data to the processor upon detection of the signals. The RF sensor may be configured to detect signals originating from a wireless device. The processor or RF sensor may be configured to identify a source or destination address for captured signals in the wireless communication frequency band.


In a further embodiment, a system and method for detecting use of a wireless device comprises capturing radio frequency (RF) signals via an RF sensor mounted in a vehicle, detecting motion of the vehicle using a vehicle monitoring system mounted in the vehicle, linking the captured radio frequency signals to a wireless device associated with the vehicle. The captured RF signals may be linked to the wireless device associated with the vehicle using source or destination address data in the RF signals. The captured RF signals may be linked to the wireless device associated with the vehicle based upon a signal strength of the captured RF signals. The captured RF signals may be linked to the wireless device associated with the vehicle based upon a message type of the captured RF signals. Mentoring messages may be provided to a driver of the vehicle when the vehicle monitoring system detects a situation in which the vehicle is moving and the wireless device associated with the vehicle is being used.


In an alternative embodiment, a system and method for evaluating driver behavior, comprises receiving data identifying when a wireless device is in use, receiving data identifying when a vehicle is in motion, correlating the wireless device to the vehicle, and providing mentoring feedback to a driver of the vehicle and/or reporting a use of the wireless device while driving to a third party. The mentoring feedback may include an audible message or tone played to the driver, or a warning light or text message displayed to the driver, or a combination of multiple audible or visual warnings. The wireless device may be correlated to the vehicle using data stored in a user account database, using a radio frequency sensor in the vehicle, or using a short-range communications system, an RFID system, or a Bluetooth system, or a combination of one or more short-range, RFID and Bluetooth systems.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a high-level block diagram of a vehicle monitoring system according to one embodiment;



FIG. 2 is a high-level block diagram of a system for detecting wireless device usage in moving vehicles;



FIG. 3 is a flowchart illustrating a method according to one embodiment described herein;



FIG. 4 is a flowchart illustrating a method according to an embodiment described herein;



FIG. 5 is a flowchart illustrating a method according to another embodiment described herein; and



FIG. 6 is a flowchart illustrating a method according to a further embodiment described herein.





DETAILED DESCRIPTION

The present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


With reference to FIG. 1, there is shown vehicle monitoring system 101 that is coupled to one or more systems in vehicle 102. Processor 103 controls the operation of monitoring system 101. Processor 103 may be a general use processing device having software designed to control system 101. Alternatively, processor 103 may be a specially designed circuit or device, such as an application specific integrate circuit (ASIC), that is particularly designed for use in system 101. Processor 103 may use firmware or software, such as an operating system, for control and operation. Firmware, software and other data may be stored in random access memory (RAM) 104, read only memory (ROM) 105, electrically erasable programmable memory (EEPROM) devices, or other storage devices, such as magnetic media.


Monitoring system 101 includes one or more vehicle system interfaces 106 that allow system 101 to interact with systems in vehicle 102, such as vehicle ignition system 107 and vehicle electrical system 108. Signals exchanged between interface 106 and vehicle ignition system 107 may allow monitoring system 101 to determine the operating status of vehicle 102 and to command the ignition system to start or shutdown the engine of vehicle 102. Signals exchanged between interface 106 and vehicle electrical system 108 may allow monitoring system 101 to determine the status of other vehicle systems and to command other systems to operate. For example, vehicle electrical system 109 may provide control of the vehicle's horn, interior and/or exterior lights, entertainment system, navigation system, heating and/or air conditioning systems, or alarm system.


Vehicle diagnostic system interface 109 provides a connection between monitoring system 101 and vehicle diagnostic system 110. Vehicle diagnostic system 111 may be an on-board diagnostic (OBD) II system or a controller area network (CAN) system in vehicle 102 that is accessed via a port or data bus. The OBD/CAN system provides access to engine performance and status data, speedometer, odometer and tachometer data, and data from other vehicle systems. Power supply 111 provides power to monitoring system 101. Power supply 111 may be a self-contained battery, for example, or it may be coupled to another power source, such as vehicle battery 112. There may be a connection between power supply 111 and vehicle battery 112 or power supply 111 may receive vehicle power via the vehicle's OBD/CAN bus, for example.


In addition to vehicle sensors and diagnostic systems, such as OBD/CAN 111, monitoring system 101 may be coupled to other original equipment and aftermarket sensors in vehicle 102. For example, monitoring system 101 may be coupled to RF transmission sensor 113, which is configured to detect transmissions such as cellular voice and data signals that originate from or are received at vehicle 102. Other sensors may include, for example, seatbelt use sensors, alcohol or ethanol vapor sensors, or cameras.


Monitoring system 101 further includes geographic position locating system 114, which provides location information for vehicle 102, such as a latitude/longitude, street address, or map coordinates, for example. In one embodiment, geographic position locating system 114 may be a global positioning system (GPS) that uses satellite signals to determine location. Other navigation or location-determining systems may also be used, such as inertial navigation systems that update a vehicle's location as it moves from a known position or terrestrial-based radio navigation systems, such as LORAN. In other embodiments, position locating system 114 may use data from cellular network 204 or cellular towers 205 or 206 to determine a geographical location.


Monitoring system 101 includes one or more systems that provide communications with other devices and systems. For example, monitoring system 101 may include cellular or mobile telephone transmitter/receiver 115 that allows system 101 to communicate with other devices and to send or receive data via a cellular or mobile network. Satellite transmitter/receiver 116 allows system 101 to communicate with other devices and to send or receive data via satellite network communications. Bluetooth transmitter/receiver 117 allows system 101 to communicate with other devices that have Bluetooth capability. Data network transmitter/receiver 118 allows system 101 to communicate via networks, such as data communication networks using WiFi, IEEE 802.11, WiMAX, or other standards or protocols, for example. Monitoring system 101 may further include one or more antennas 119 to support such communications. Antennas 119 may be internal to monitoring system 101, may be formed as an integral part of a housing for system 101, or may be externally mounted on vehicle 102. Monitoring system may also include RFID transceiver 120 coupled to antenna 121. RFID transceiver 120 may be operable to detect passive or active RFID tags in vehicle 102 or within a certain distance of vehicle 102.


Vehicle monitoring system may also be used to provide feedback to a driver and passengers in a vehicle. Processor 103 may be configured to identify alarm conditions, such as when vehicle 102 is operated outside of preselected conditions, and to provide feedback or alarms to the driver. Driver feedback system 122 may be coupled to processor 103. Feedback system may be coupled to speaker 123 and/or warning lights 124, for example. Upon detection of an alarm condition, processor 103 may command feedback system 122 to present a warning to the driver, such as an alarm horn or audible tone or message via speaker 123 or a visual warning via warning light 124. Feedback system 122 may also have the capability to provide text messages to a driver, for example, via a display screen (not shown).


Driver performance may be measured using vehicle monitoring equipment that is installed in a vehicle and collects information, such as the vehicle's speed, acceleration, and location. The system may capture data identifying where the vehicle is driven, when the vehicle is driven, and how the vehicle is driven (i.e. driver performance). One embodiment of a vehicle monitoring system is described in U.S. patent application Ser. No. 11/805,237, entitled “System and Method for Monitoring Vehicle Parameters and Driver Behavior,” filed May 22, 2007, the disclosure of which is incorporated by reference herein in its entirety. The vehicle monitoring system may receive inputs from internal and external sources and sensors such as accelerometers, geographic position locating systems, global positioning systems (GPS), vehicle on-board diagnostic systems, seatbelt sensors, wireless device, or cell phone use detectors, alcohol vapor detectors, or trans-dermal ethanol detection. The vehicle monitoring system may be used to evaluate and grade driver behavior, as described in U.S. patent application Ser. No. 11/755,556, filed on May 30, 2007, entitled “System and Method for Evaluating Driver Behavior,” the disclosure of which is hereby incorporated by reference herein in its entirety. The vehicle monitoring system may also be used to provide feedback and mentoring to the driver in order improve the driver's performance and driving behavior, such as described in U.S. patent application Ser. No. 11/768,056, filed on Jun. 25, 2007, entitled “System and Method for Monitoring and Improving Driver Behavior,” the disclosure of which is hereby incorporated by reference herein in its entirety.



FIG. 2 illustrates monitoring system 201 installed or mounted in vehicle 202. Monitoring system 201 may be mounted in any location within vehicle 202, such as in a trunk, under a seat, in a glovebox, or on a window or dashboard. Monitoring system 201 is coupled to one or more antennas 203, which may be used to communicate with one or more satellite or terrestrial communications networks. Monitoring system 201 may be capable of communicating with one or more networks or systems, such as cellular or mobile telephone network 204, having base stations or cell sites 205 and 206, wireless data network 207, such as a Bluetooth, WiFi, WiMAX or 802.11 network, or satellite 208. Monitoring system may also be in communication with or receive signals from satellites 213, which may be part of a geographical position locating system, such as a GPS system.


Monitoring system 201 is coupled to and in data communication with on board diagnostic system 209 in vehicle 202. Vehicle monitoring system 201 has access to certain vehicle operating parameters including, but not limited to, vehicle speed such as via the speedometer, engine speed or throttle position such as via the tachometer, mileage such as via the odometer reading, seat belt status, condition of various vehicle systems including anti-lock-braking (ABS), turn signal, headlight, cruise control activation and a multitude of various other diagnostic parameters such as engine temperature, brake wear, and the like. Monitoring system 201 may also be coupled to driver feedback systems, such as warning lights 223 and/or speaker 224.


Monitoring system 201 may also be coupled to RF transmission detector or sensor 210. RF sensor 210 may operate to detect radio frequency transmissions, such as transmissions in cellular frequency bands that support voice and/or data communications. RF sensor 210 may include an RF receiver circuit having a sensitivity, gain or filter that is adjustable so that only signals above a specified power level are detected. The receiver circuit may be adjusted so that the received signals at sensor 210 are likely to be transmitted from devices that are within a specified range of sensor 210, such as within a few feet or within vehicle 202. Alternatively, sensor 210 may be configured to detect transmissions originating from inside or outside of vehicle 202. For example, RF sensor 210 may be configured to detect signals at frequencies assigned to downlink or reverse-channel transmissions from wireless device 212 to cell sites 205 and 206. Any RF signals detected by sensor 210 may be provided to monitoring system 201. A processor, such as processor 103 (FIG. 1), in monitoring system 201 may be configured to extract messages or content from the RF signals and to process the messages or content to identify specific fields, such as destination or source addresses, routing data, and/or message type fields.


Vehicle driver or operator 211 may have wireless device 212, such as a cellular, mobile or satellite telephone, personal digital assistant (PDA), two-way pager, mobile messaging device, such as a Blackberry® or Treo®, or similar device. Wireless device 212 may also be capable of communicating with one or more networks, such as cellular or mobile telephone network 204, cell towers or base stations 205 and 206, wireless data network 207, or satellite network 208. Sensor 210 may be configured to detect transmissions associated with the same network used by wireless device 212.


Server 214 may be used in embodiments to identify situations in which a mobile phone is used in a moving vehicle. Server 214 may be any processor-based system that is capable of communicating with external networks and processing data associated with wireless device usage and vehicle monitoring systems. Server 214 may be coupled to multiple networks, such as cellular network 204 or wireless data network 207, via networks 215 and 216, which couple server 214 to other communication networks, may be any public or private data network, such as an Internet, intranet, extranet, or wide or local area network (WAN/LAN). Server 214 may be coupled to satellite 208 via antenna 222. In one embodiment, users may communicate with server 214 via a local or remote personal computer (PC), laptop computer, or terminal, such as devices 215 or 216. Alternatively, server 214 may communicate with users via a wireless device or a wireline connection, such as telephone 219, which may be coupled to public switched telephone network (PSTN) 220.


Memory 221 may be used to store information, such as user account data. In one embodiment, the user account data includes information such as user contact information, billing data, passwords, personal identification numbers (PIN), or other security data, vehicle identification numbers (VIN) for users' vehicles, identifiers for monitoring systems in users' vehicles, and identifiers for users' wireless telephones, such as telephone numbers, electronic serial numbers (ESN), mobile equipment identifier (MEID), international mobile equipment identifier (IMEI), Temporary Mobile Subscriber Identity (TMSI), or international mobile subscriber identity (IMSI). Server 214 may access data stored on memory 221 and may store data to memory 221. Users may access memory 221, for example, to enter, update, or edit account data, via terminals or computers 217 and 218. Memory 221 may be internal or external to server 214 and may be located near to or remote from server 214.


The systems and methods described herein determine when a wireless device, such as mobile telephone or PDA 212, is in use and when a vehicle associated with the wireless device, such as vehicle 202, is moving. The system and methods disclosed herein may further evaluate, determine or confirm if the wireless device is in the moving vehicle.


In one embodiment, real-time data provided by a cellular network service provider is used to detect when a driver may be using a wireless device while driving. For example, a service provider for cellular network 204 may provide wireless device activity data to server 214 in real-time or near real-time. This data may be an indication that wireless devices are currently in use or have recently been in use. Network 204 may provide activity data for all wireless device users on its network to server 214. Alternatively, network 204 may provide activity data only for certain, predetermined wireless devices, such as wireless devices for users with accounts stored in memory 221. The wireless device activity data may indicate that a particular wireless device is being used for a voice call, a data call, a text message or other communication.


Upon receiving the wireless device activity, server 214 may search memory 221 to identify any user accounts associated with the wireless devices that are in use. If a user account is identified, then server 214 identifies a monitoring system, such as device 201, associated with that user account. Server 214 then determines if any vehicles (201) associated with device 202 are moving. Monitoring system 201 may be configured to notify server 214 when vehicle 202 is moving, such as by sending a message when the vehicle first moves and additional message at regular or irregular intervals. Such messages may include data such as a vehicle location, vehicle operating status and/or any alarm conditions or triggers. Alternatively, server 214 may query monitoring system 201 to determine if vehicle 202 is moving. Communication between monitoring system 201 and server 214 may be via cellular network 204, data network 207 and/or communication satellite network 208 depending upon availability of each network, the urgency of the message, and/or user configuration.


If server 214 identifies a situation in which a user's wireless device is in use and the user's car is in motion, then server 214 may determine that the driver is using a wireless device while driving. Server 214 may then take action to record, report and/or mentor this behavior. For example, a user may configure server 214 to take certain action upon detecting that a wireless device 212 is being used during operation of vehicle 201. Server 214 may command monitoring system 201 to broadcast warnings, such as audible messages or tones or visual lights or text, to the driver of vehicle 202. Additionally, server 214 may report the wireless device use to the driver's parent, supervisor, fleet manager or other authority. In other embodiments, server 214 may be configured to command cellular network 204 to terminate calls to device 212 or to block all non-emergency use of wireless device 212.


For example, cellular network 204 may detect a voice or text communication from or to wireless device 212. Network 204 provides an activity message to server 214. The wireless activity message may provide a wireless device identifier, such as a telephone number, ESN, MEID, IMEI, TMSI, or IMSI. The wireless device activity message may also identify a start time and/or end time for the wireless device activity or an indication that the wireless device is currently active. Server uses the wireless device identifier to find a user account for wireless device 212 stored in memory 221. From the user account, server 214 may identify a vehicle monitoring system, such as device 201 installed in vehicle 202, that is associated with wireless device 212. Server 214 then determines if vehicle 202 is moving using recent reports from device 201 or by querying device 201 for a status report. If vehicle 202 has been moving during the wireless activity, then server 214 identifies a potentially unsafe driving event. This event may trigger any number of actions preselected by the user and/or default actions in server 214.


The user may configure server 214 to send warning feedback to vehicle 202 upon detection of a potentially unsafe driving condition, such as using a cell phone to talk or text while driving. Such messages may warn against using a wireless device while driving and/or direct the driver to discontinue use of the wireless device while driving. Server 214 may also be configured to command cellular network 204 to terminate any current communications connection for wireless device 212 and/or to prevent communications connections to device 212 for a period of time or until further notification. Server 214 may also provide a report or notification to a supervisor or authority of the potentially unsafe driving conditions, such as by calling a fleet manager or parent via telephone 219 or by sending an email or text message to the supervisor.


In other embodiments, server 214 may first detect when vehicle 202 is moving and then determine if an associated wireless device 212 is in use. For example, upon receiving a notification from device 201 that vehicle 202 is moving, server 214 searches the user account associated with vehicle 202 to identify corresponding wireless devices. Upon identifying a wireless device 212, server 214 may query, command or request usage activity reports from network 204. For example, server 214 may query network 204 one or more times regarding the current status of device 212, or server 214 may command or request network 204 to identify any future wireless activity for device 212, either for a set period of time or for indefinitely. Upon receiving a notification of wireless communications using device 212 while vehicle 202 is moving, server 214 may take further action, as described above, to warn or mentor the driver, notify a supervisor, or otherwise document the event.


It will be understood that users may have multiple wireless devices and/or multiple vehicles. Additionally, individual wireless devices and vehicles may be used by multiple parties. A user account may include identifiers for one or more wireless devices, and identifiers for one or more vehicles (or for monitoring equipment 201 in vehicles). Accordingly, when server 214 receives notification that a particular wireless device is in use, two or more vehicles may be associated with that wireless device. If one of the vehicles is moving and one is not moving, server 214 may require additional information to determine if the wireless device is in the moving vehicle. For example, information that indicates the proximity of a wireless device (212) to a particular vehicle (202) may assist server 214 to determine if the wireless device is being used in a moving vehicle.


In an embodiment, wireless device 212 is equipped with an RFID tag or other RFID transponder or device. The user account data may include RFID tag or transponder information for the users' wireless devices. Monitoring system 201 may include an RFID sensor or transceiver, such as RFID system 120 (FIG. 1), that allows device 201 to interrogate RFID tags or transponders within or near vehicle 202. Monitoring system 201 may periodically, at regular or irregular intervals, query, detect or scan for RFID tags or transponders. For example, when vehicle 202 is started, when vehicle 202 is moved, or at other intervals, monitor 201 may search of RFID tags. If any RFID tags are detected by monitor 201, the identifier for those tags may be used to determine if the RFID tags are associated with a wireless device. The RFID tag identifier may be sent to server 214 by monitor 201. Server 214 may then process user account data to determine if the RFID tag is linked to a wireless device that is associated with vehicle 202. If the RFID tag identifier is linked to wireless device 212, then server 214 may determine that the user's own phone is present in the vehicle. If the RFID tag identifier is unknown or associated with another users' wireless device, and the RFID tag for wireless device 212 is not reported by monitor 201, then server 214 will know that the user's wireless device is not present in the vehicle. Accordingly, when wireless device 212 is in use and vehicle 202 is in motion, server 214 may not identify a potentially unsafe situation if wireless device 212 has not been currently linked to vehicle 202 using RFID detection. On the other hand, if an RFID tag for wireless device 212 has been detected near vehicle 202, and vehicle 202 is moving, then server 214 may identify a potentially unsafe condition if wireless device 212 is then used. Accordingly, RFID may be used to reduce or eliminate false detections of unsafe driving behavior.


Similarly, other technologies may be used to determine if a wireless device is in or near an associated vehicle. For example, wireless device 212 may be equipped with a Bluetooth transceiver, which would allow wireless device 212 to communicate via Bluetooth with monitoring device 201, if device 201 is also Bluetooth equipped, such as with circuit 117 (FIG. 1). Wireless device 212 and monitoring system 201 may communicate with each other via a Bluetooth connection. Because Bluetooth has a limited distance capability, it can be assumed that wireless device is in or near vehicle 202 if a Bluetooth connection is established between wireless device 212 and monitoring system 201. It will be understood that the transmit power, receive sensitivity and other transmission characteristics of Bluetooth circuit 117 and wireless device 212 may be adjusted to limit the range Bluetooth communications associated with monitoring system 201. For example, the range of the Bluetooth connections may be reduced to a distance that increases the likelihood that a wireless device must be in vehicle 202 in order to establish such a connection. The Bluetooth connection may be established merely to register wireless device 212 with monitoring system 201, or to exchange other messages or data, such as to provide a hands-free operation for wireless device 212 using equipment in vehicle 202. As discussed above with respect to identification of RFID tags, monitoring system 201 may also report to server 214 when Bluetooth connections have been established with wireless devices.


When monitoring system 201 reports vehicle movement to server 214, the message from monitoring system 201 may include a list of any wireless devices detected in or near vehicle 202 using Bluetooth, RFID or other short-range communication technologies. In the case of Bluetooth, if the Bluetooth identifier is unknown or associated with another users' wireless device, and the Bluetooth identifier for wireless device 212 is not reported by monitor 201, then server 214 will know that the user's wireless device is likely not present in the vehicle. Accordingly, when wireless device 212 is in use and vehicle 202 is in motion, server 214 may not identify a potentially unsafe situation if wireless device 212 has not been currently linked to vehicle 202 using Bluetooth identifier. On the other hand, if a Bluetooth identifier for wireless device 212 has been detected near vehicle 202, and vehicle 202 is moving, then server 214 may identify a potentially unsafe condition if wireless device 212 is then used. Accordingly, Bluetooth or other short-range communication technologies may also be used to reduce or eliminate false detections of unsafe driving behavior.


In another embodiment, server 214 may detect wireless device usage in a moving vehicle without requiring or using data from an in-vehicle monitoring system. Cellular network may report wireless device activity to server 214 for a particular device 212. The activity report may include, for example, a time of use and a location of use. The location may identify a specific cell site, such as cells 205 and 206, that is or was in communication with wireless device 212. The wireless activity report from network 204 to server 214 may be made at regular or irregular intervals or upon the occurrence of some event, such as handover from one cell to another. If server 214 identifies a situation in which network 204 reports use activity for wireless device 212 in cell 205 in one message and then reports use activity for wireless device 212 in cell 206, then server 214 may identify a situation in which wireless device is being used while moving. If server 214 does not also have movement reports for vehicle 202 and/or monitoring system 201, then it will be unclear if the user is driving his car while talking on device 212. Accordingly, server 214 may only report a potentially unsafe situation to the user or a supervisor, but may not initiate feedback to vehicle 202 and may not direct network 204 to terminate the call.


In other embodiments, monitoring system may detect wireless device usage using on-board sensors. For example, RF sensor 210 may detect when an RF device, such as wireless device 212, is being used in or near vehicle 202. RF sensor 210 may be configured to capture or detect RF transmissions in a frequency band used by wireless device 212, such as messages in a cellular frequency band. RF sensor 210 may simply detect the presence of RF transmissions, and provide those messages or a notification of such transmissions to monitoring system 201. Based upon the strength of the transmissions, RF sensor 210 and/or monitoring system 201 may determined that the transmissions are likely to have originated within or near vehicle 202. RF sensor 210 and/or monitoring system 201 may be further capable of processing captured transmissions and to extract data from the transmissions, such as an origination or destination address or a message type.


Monitoring system 201 may use message origination data to determine if the transmissions were sent by a known wireless device. For example, monitoring system may include data for one or more wireless devices that are associated with vehicle 202, such as identifier information for wireless device 212. If monitoring system 201 determines that the origination or destination address of captured messages are associated with wireless device 212, then monitoring system 201 may further determine that wireless device is being used. Additional message data, such as message type and the number of transmissions observed or captured by RF sensor 210 may provide further information to assist monitoring system 201 to evaluate if wireless device 212 is actually being used for communication or wireless device is merely registered with network 204, but not in use.


Monitoring system 201 is capable of determining when vehicle 202 is in motion, such as a change in GPS or other positioning location or a detection of velocity from the vehicle's speedometer via OBD 209. If monitoring system 201 detects both motion of vehicle 202 and RF transmissions associated with wireless device 212, then monitoring system 201 may determine that a driver is using wireless device 212 while driving vehicle 202. As noted above, monitoring system 201 may provide mentoring feedback or warnings to the driver upon detection of a potentially unsafe driving condition. Monitoring system 201 may also send a message to server 214 upon detection of cell phone usage via sensor 210. Server 214 may provide additional reports or notification to the user's supervisor regarding a potentially unsafe condition. Server 214 and/or monitoring system 201 may be further configured to command network 204 to terminate or prevent calls to wireless device 212 upon detection of potentially unsafe wireless device usage while driving.


In other embodiments, wireless device 212 may include a position locating system, such as a GPS location circuit, chip or component. Wireless device 212 may also be capable of determining its location using other methods, such as by using cellular network location data. Using its location capability, wireless device 212 may be further capable of detecting movement, such as when a geographical location changes over time or from one measurement to the next. Wireless device 212 may use such location-change information to calculate a speed or velocity. Wireless device 212 may be configured to notify network 204 and/or server 214, or some other entity, when its speed or velocity exceeds a specific rate. For example, if the speed of wireless device 212 exceeds 10 MPH, device 212 may be programmed to notify server 214 or network 204. Server 214 may compare such location notification data with wireless communication activity reports from server 204, for example, to determine if wireless device 212 is being used in a potentially unsafe manner. Server 214 may provide mentoring feedback, warnings or third party notifications, as discussed above, in such situations.


Wireless device 212 is also aware of when it transmits or receives data on a voice or data call or when text message data is being sent or received. If wireless device 212 detects motion and is communicating with network 204 or another network, wireless device 212 may terminate the communication, provide mentoring feedback to the user, and/or provide reports or notifications to third party entities, such as a supervisor or parent. Wireless device 212 may be configured to automatically end communications when it (212) detects movement in excess of a preset minimum. Upon detection of the motion threshold, wireless device 212 may terminate any current communications and/or prevent any further communications.


Upon termination of communication with wireless device 212 due to motion, such as when the user may be driving a vehicle while talking on a cell phone, wireless network 204 may be configured to queue messages until communication is reestablished with wireless device 212. For example, if server 214, monitoring system 201 or device 212 instructs network 204 to terminate or block communications with wireless device 212, network 204 may queue or store any text, email or other messages until notified that wireless device 212 has stopped moving. Network 204 may further queue or store notifications of voicemail and other services in order to minimize distraction to the user while driving. Upon detection or notification that wireless device 212 is no longer moving, network 204 may forward the stored email, text messages, and other data to wireless device 212 since the user does not appear to be still operating a vehicle.


In another embodiment, server 214 may be used to detect wireless device usage after the fact. Network 204 may provide wireless activity data at intervals after the wireless use has been completed. For example, network 204 may provide billing information to server 214 for past wireless activity. Sever 214 may use the past activity data obtained from the billing data to determine when a user's wireless device was in use. After determining when the wireless device was in use, server 214 may obtain stored vehicle movement data, such as from memory 221. Server 214 then may compare the time of wireless device usage to vehicle movement records to determine if the user was using the wireless device at the same time that the user's vehicle was in motion. If it appears that such a situation occurred, server 214 may provide a report or other notification to the user, a supervisor or other authority.


Monitoring system 201 and server 214 may collect vehicle operation data for use in evaluating and/or grading the performance of a driver. For example, such as system is described in U.S. patent application Ser. No. 11/768,056, filed on Jun. 25, 2007, entitled “System and Method for Monitoring and Improving Driver Behavior,” the disclosure of which is hereby incorporated by reference herein in its entirety. It will be understood that data associated with identifying that or when a driver used a wireless device while driving may be used to monitor and/or improve a driver's behavior.


In another embodiment, monitoring system 201 and/or vehicle 202 may include a device that selectively prevents devices from connecting to a wireless network. For example, a jammer that broadcasts noise or interference on cellular frequency bands, or a device that blocks or interferes with call set-up messages, may be used to prevent a wireless device from operating while a vehicle is in motion. Such a system may be installed in vehicle 202 under the control of monitoring system 201 so that, upon detection of vehicle motion, monitoring system 201 may command the jammer or interference circuit to prevent wireless device usage within the vehicle.



FIG. 3 illustrates a flowchart for an exemplary embodiment of a method for detecting use of a wireless device in a moving vehicle. The method illustrated in FIG. 3 may be implemented, for example, using server 214 (FIG. 2), but is not intended to be limited to such a configuration. Moreover, it will be understood that the steps of the methods illustrated in FIGS. 3-6 may be performed in the order indicated, or in any other order, or simultaneously, or in conjunction with other steps or methods. In step 301, a wireless device activity data is received from a wireless network. In step 302, user account data is searched using selected parameters from the wireless device activity data to identify one or more subscribers that are or were using a wireless device. In step 303, one or more subscriber vehicles or vehicle monitoring systems associated with each of the one or more subscribers are identified. In step 304, vehicle operation data from one or more vehicle monitoring systems is received. In step 305, it is determined, using the vehicle operation data, whether any of the one or more subscriber vehicles were moving during use of an associated wireless device.


In step 306, a message identifying wireless devices that are located in or near a particular vehicle is received. The wireless devices that are located in or near a particular vehicle may be determined using a short-range communications system, an RFID system, or a Bluetooth system or a combination of one or more of such systems. In step 307, mentoring feedback may be provided to drivers of the one or more subscriber vehicles that were moving during use of an associated wireless device. The mentoring feedback may be in the form of audible and/or visual warnings, messages, text or tones that are played in the vehicle to the driver. In step 308, the use of a wireless device during movement of the one or more subscriber vehicles is reported to a third party, such as a fleet manager, parent, supervisor, or other authority. The report may be made immediately or after a period of time, such as in a periodic report. The report may be via a telephone call, text message, email message, postal mail, or in any other form. In step 309, a request or command is sent to the wireless network to terminate or block communications to the associated wireless device. The communications with the associated wireless device may be blocked or terminated for a specific period of time or indefinitely.



FIG. 4 illustrates a flowchart for an exemplary embodiment of a method for detecting use of a wireless device in a moving vehicle. The method illustrated in FIG. 4 may be implemented, for example, in a device such as server 214, monitoring system 201, or wireless device 212 (FIG. 2), but is not intended to be limited to such configurations. In step 401, a first set of wireless device activity data is received. The first set of data identifies a first location in which a particular wireless device has been used. In step 402, a second set of wireless device activity data is received. The second set of data identifies a second location in which the particular wireless device has been used. The wireless device activity data in steps 401 and 402 may be received from a wireless device, wireless network, or from a vehicle monitoring system.


In step 403, the first location and second location are compared or otherwise analyzed to determine if they are different locations. If the locations are different, then it can be determined or assumed that the wireless device has been moving while in use. In step 404, a third party is notified that the particular wireless device was in use while moving. The third party may be, for example, a parent of a teen driver, a vehicle owner, or a supervisor or fleet manager of a commercial, public, or municipal vehicle. In step 405, mentoring feedback is provided to a user associated with the particular wireless device. For example, the user may be a driver of a vehicle who receives a warning or instructions to terminate use of the wireless device. In one embodiment, the third party notification of step 404 may be delayed until it is determined if the user terminates the user of the wireless device following the mentoring feedback provided in step 405.



FIG. 5 illustrates a flowchart for an exemplary embodiment of a method for detecting use of a wireless device. The method illustrated in FIG. 5 may be implemented, for example, in a device such as monitoring system 201 (FIG. 2), but is not intended to be limited to such configurations. In step 501, radio frequency (RF) signals are captured via an RF sensor mounted in a vehicle. In step 502, motion of the vehicle is detected using a vehicle monitoring system mounted in the vehicle. The motion of the vehicle may be detected by sensing inertia of the vehicle, detecting a change in vehicle location, or detecting a vehicle speed from an on-board diagnostic system, speedometer or tachometer, for example. In step 503, the captured radio frequency signals are linked to a wireless device associated with the vehicle. The captured RF signals may be linked to a wireless device using source or destination address data in the RF signals, such as by detecting messages being sent to or from a particular device. The captured RF signals may also be linked to the wireless device based upon a signal strength of the captured RF signals, such as by detecting transmissions from within the vehicle. The captured RF signals may be linked to the wireless device based upon a message type of the captured RF signals, such as a call set-up message initiated from near the vehicle.



FIG. 6 illustrates a flowchart for an exemplary embodiment of a method for detecting use of a wireless device. The method illustrated in FIG. 6 may be implemented, for example, in a device such as server 214, monitoring system 201, or wireless device 212 (FIG. 2), but is not intended to be limited to such configurations. In step 601, data identifying when a wireless device is in use is received. In step 602, data identifying when a vehicle is in motion is received. In step 603, the wireless device is correlated to the vehicle. In step 604, mentoring feedback is provided to a driver of the vehicle. In step 605, use of the wireless device while driving is reported to a third party. It will be understood, that step 605 may or may not be dependent upon the driver's response to step 604. For example, if the driver stops using the wireless device within a predetermined time limit of when the mentoring feedback is provided, then the third party notification may not occur.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A method for detecting use of a wireless device in a moving vehicle, comprising: receiving data indicative of use of a wireless device on a wireless network;identifying user account data corresponding to the received data indicative of use of the wireless device;identifying one or more vehicle monitoring systems associated with the user account data, each of the vehicle monitoring systems mounted in a vehicle and configured to monitor operation of the vehicle;receiving vehicle operation data from the one or more vehicle monitoring systems; anddetecting use of the wireless device in a moving vehicle based on the received vehicle operation data.
  • 2. The method of claim 1, wherein the data indicative of use of a wireless device includes a location identifying where a wireless device was used, or a time when the wireless device was used, or both.
  • 3. The method of claim 1, further comprising: receiving data identifying wireless devices that are located in or near a particular vehicle.
  • 4. The method of claim 1, further comprising: providing mentoring feedback to a driver upon detection of use of the wireless device in the moving vehicle.
  • 5. The method of claim 4, wherein the wireless devices that are located in or near a particular vehicle are determined using a short-range communications system, an RFID system, or a Bluetooth system or a combination of one or more short-range, RFID and Bluetooth systems.
  • 6. The method of claim 1, further comprising: sending a request to the wireless network to terminate or block communications to the associated wireless device.
  • 7. The method of claim 1, wherein the data indicative of use of the wireless device is real-time data, near real-time data, or historical data.
US Referenced Citations (435)
Number Name Date Kind
3975708 Lusk Aug 1976 A
4369427 Drebinger et al. Jan 1983 A
4395624 Wartski Jul 1983 A
4419654 Funk Dec 1983 A
4458535 Juergens Jul 1984 A
4785280 Fubini Nov 1988 A
4926417 Futami May 1990 A
4939652 Steiner Jul 1990 A
5032821 Domanico Jul 1991 A
5119504 Durboraw, III Jun 1992 A
5223844 Mansell et al. Jun 1993 A
5225842 Brown et al. Jul 1993 A
5266922 Smith et al. Nov 1993 A
5305214 Komatsu Apr 1994 A
5309139 Austin May 1994 A
5311197 Sorden et al. May 1994 A
5325082 Rodriguez Jun 1994 A
5347260 Ginzel Sep 1994 A
5359528 Haendel Oct 1994 A
5365114 Tsurushima Nov 1994 A
5365451 Wang et al. Nov 1994 A
5394136 Lammers Feb 1995 A
5400018 Scholl Mar 1995 A
5414432 Penny, Jr. et al. May 1995 A
5422624 Smith Jun 1995 A
5424584 Matsuda Jun 1995 A
5430432 Camhi Jul 1995 A
5436612 Aduddell Jul 1995 A
5436837 Gerstung Jul 1995 A
5446659 Yamawaki Aug 1995 A
5453939 Hoffman Sep 1995 A
5457439 Kuhn Oct 1995 A
5475597 Buck Dec 1995 A
5485161 Vaughn Jan 1996 A
5499182 Ousborne Mar 1996 A
5521579 Bernhard May 1996 A
5521580 Kaneko May 1996 A
5525960 McCall Jun 1996 A
5548273 Nicol Aug 1996 A
5581464 Woll Dec 1996 A
5586130 Doyle Dec 1996 A
5600558 Mearek Feb 1997 A
5612875 Haendel Mar 1997 A
5625337 Medawar Apr 1997 A
5638077 Martin Jun 1997 A
5642284 Parupalli Jun 1997 A
5648755 Yagihashi Jul 1997 A
5659289 Zonkoski Aug 1997 A
5689067 Klein Nov 1997 A
5708417 Tallman Jan 1998 A
5717374 Smith Feb 1998 A
5719771 Buck Feb 1998 A
5723768 Ammon Mar 1998 A
5740548 Hudgens Apr 1998 A
5742915 Stafford Apr 1998 A
5751245 Janky et al. May 1998 A
5764139 Nojima Jun 1998 A
5767767 Lima Jun 1998 A
5777580 Janky et al. Jul 1998 A
5795997 Gittins Aug 1998 A
5797134 McMillan Aug 1998 A
5801618 Jenkins Sep 1998 A
5801948 Wood Sep 1998 A
5815071 Doyle Sep 1998 A
5825283 Camhi Oct 1998 A
5825284 Dunwoody Oct 1998 A
5844475 Horie Dec 1998 A
5847271 Poublon Dec 1998 A
5862500 Goodwin Jan 1999 A
5867093 Dodd Feb 1999 A
5877678 Donoho Mar 1999 A
5880674 Ufkes Mar 1999 A
5880958 Helms et al. Mar 1999 A
5883594 Lau Mar 1999 A
5892434 Carlson Apr 1999 A
5907277 Tokunaga May 1999 A
5914654 Smith Jun 1999 A
5918180 Dimino Jun 1999 A
5926087 Busch Jul 1999 A
5928291 Jenkins et al. Jul 1999 A
5945919 Trask Aug 1999 A
5949330 Hoffman Sep 1999 A
5949331 Schofield Sep 1999 A
5954781 Slepian Sep 1999 A
5955942 Slifkin Sep 1999 A
5957986 Coverdill Sep 1999 A
5964816 Kincaid Oct 1999 A
5969600 Tanguay Oct 1999 A
5974356 Doyle et al. Oct 1999 A
5978737 Pawlowski Nov 1999 A
5982278 Cuvelier Nov 1999 A
5987976 Sarangapani Nov 1999 A
5999125 Kurby Dec 1999 A
6002327 Boesch Dec 1999 A
6008724 Thompson Dec 1999 A
6018293 Smith Jan 2000 A
6026292 Coppinger et al. Feb 2000 A
6028508 Mason Feb 2000 A
6028510 Tamam Feb 2000 A
6037861 Ying Mar 2000 A
6037862 Ying Mar 2000 A
6038496 Dobler Mar 2000 A
6044315 Honeck Mar 2000 A
6059066 Lary May 2000 A
6064928 Wilson May 2000 A
6064970 McMillan May 2000 A
6067008 Smith May 2000 A
6067009 Hozuka May 2000 A
6072388 Kyrtsos Jun 2000 A
6073007 Doyle Jun 2000 A
6075458 Ladner et al. Jun 2000 A
6078853 Ebner Jun 2000 A
6081188 Kutlucinar Jun 2000 A
6084870 Wooten et al. Jul 2000 A
6094149 Wilson Jul 2000 A
6098048 Dashefsky Aug 2000 A
6100792 Ogino Aug 2000 A
6104282 Fragoso Aug 2000 A
6108591 Segal et al. Aug 2000 A
6121922 Mohan Sep 2000 A
6124810 Segal et al. Sep 2000 A
6130608 McKeown Oct 2000 A
6131067 Girerd et al. Oct 2000 A
6133827 Alvey Oct 2000 A
6141610 Rothert Oct 2000 A
6147598 Murphy Nov 2000 A
6172602 Hasfjord Jan 2001 B1
6184784 Shibuya Feb 2001 B1
6185501 Smith Feb 2001 B1
6188315 Herbert et al. Feb 2001 B1
6198995 Settles Mar 2001 B1
6204756 Senyk Mar 2001 B1
6204757 Evans Mar 2001 B1
6208240 Ledesma Mar 2001 B1
6212455 Weaver Apr 2001 B1
6216066 Goebel Apr 2001 B1
6222458 Harris Apr 2001 B1
6225898 Kamiya May 2001 B1
6227862 Harkness May 2001 B1
6229438 Kutlucinar May 2001 B1
6232873 Dilz May 2001 B1
6246933 Bague Jun 2001 B1
6247360 Anderson Jun 2001 B1
6249219 Perez Jun 2001 B1
6253129 Jenkins et al. Jun 2001 B1
6255892 Gartner Jul 2001 B1
6255939 Roth Jul 2001 B1
6256558 Sugiura et al. Jul 2001 B1
6262658 O'Connor Jul 2001 B1
6265989 Taylor Jul 2001 B1
6266588 McClellan Jul 2001 B1
6278361 Magiawala Aug 2001 B1
6285931 Hattori Sep 2001 B1
6289332 Menig Sep 2001 B2
6294988 Shomura Sep 2001 B1
6294989 Schofield Sep 2001 B1
6295492 Lang Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6301533 Markow Oct 2001 B1
6308120 Good Oct 2001 B1
6308134 Croyle et al. Oct 2001 B1
6313742 Larson Nov 2001 B1
6320497 Fukumoto Nov 2001 B1
6331825 Ladner et al. Dec 2001 B1
6333686 Waltzer Dec 2001 B1
6337653 Bchler Jan 2002 B1
6339739 Folke Jan 2002 B1
6344805 Yasui Feb 2002 B1
6351211 Bussard Feb 2002 B1
6353778 Brown Mar 2002 B1
6356188 Meyers Mar 2002 B1
6356822 Diaz Mar 2002 B1
6356833 Jeon Mar 2002 B2
6359554 Skibinski Mar 2002 B1
6362730 Razavi Mar 2002 B2
6362734 McQuade Mar 2002 B1
6366199 Osborn Apr 2002 B1
6378959 Lesesky Apr 2002 B2
6389340 Rayner May 2002 B1
6393348 Ziegler May 2002 B1
6404329 Hsu Jun 2002 B1
6405112 Rayner Jun 2002 B1
6424268 Isonaga Jul 2002 B1
6427687 Kirk Aug 2002 B1
6430488 Goldman Aug 2002 B1
6433681 Foo Aug 2002 B1
6441732 Laitsaari Aug 2002 B1
6449540 Rayner Sep 2002 B1
6459367 Green Oct 2002 B1
6459369 Wang Oct 2002 B1
6459961 Obradovich Oct 2002 B1
6459969 Bates Oct 2002 B1
6462675 Humphrey Oct 2002 B1
6472979 Schofield Oct 2002 B2
6476763 Allen, Jr. Nov 2002 B2
6480106 Crombez Nov 2002 B1
6484035 Allen, Jr. Nov 2002 B2
6484091 Shibata Nov 2002 B2
6493650 Rodgers Dec 2002 B1
6512969 Wang Jan 2003 B1
6515596 Awada Feb 2003 B2
6519512 Haas Feb 2003 B1
6525672 Chainer Feb 2003 B2
6526341 Bird et al. Feb 2003 B1
6529159 Fan et al. Mar 2003 B1
6535116 Zhou Mar 2003 B1
6542074 Tharman Apr 2003 B1
6542794 Obradovich Apr 2003 B2
6549834 McClellan Apr 2003 B2
6552682 Fan Apr 2003 B1
6556905 Mittelsteadt Apr 2003 B1
6559769 Anthony May 2003 B2
6564126 Lin May 2003 B1
6567000 Slifkin May 2003 B2
6571168 Murphy May 2003 B1
6577946 Myr Jun 2003 B2
6587759 Obradovich Jul 2003 B2
6594579 Lowrey Jul 2003 B1
6599243 Woltermann Jul 2003 B2
6600985 Weaver Jul 2003 B2
6604033 Banet Aug 2003 B1
6611740 Lowrey Aug 2003 B2
6611755 Coffee Aug 2003 B1
6629029 Giles Sep 2003 B1
6630884 Shanmugham Oct 2003 B1
6636790 Lightner Oct 2003 B1
6639512 Lee Oct 2003 B1
6643578 Levine Nov 2003 B2
6651001 Apsell Nov 2003 B2
6654682 Kane et al. Nov 2003 B2
6657540 Knapp Dec 2003 B2
6662013 Takiguchi et al. Dec 2003 B2
6664922 Fan Dec 2003 B1
6665613 Duvall Dec 2003 B2
6674362 Yoshioka Jan 2004 B2
6675085 Straub Jan 2004 B2
6677854 Dix Jan 2004 B2
6678612 Khawam Jan 2004 B1
6696932 Skibinski Feb 2004 B2
6703925 Steffel Mar 2004 B2
6710738 Allen, Jr. Mar 2004 B2
6718235 Borugian Apr 2004 B1
6718239 Rayner Apr 2004 B2
6727809 Smith Apr 2004 B1
6728605 Lash Apr 2004 B2
6732031 Lowrey May 2004 B1
6732032 Banet May 2004 B1
6737962 Mayor May 2004 B2
6741169 Magiawala May 2004 B2
6741170 Alrabady May 2004 B2
6745153 White Jun 2004 B2
6748322 Fernandez Jun 2004 B1
6750761 Newman Jun 2004 B1
6750762 Porter Jun 2004 B1
6756916 Yanai Jun 2004 B2
6759952 Dunbridge Jul 2004 B2
6768448 Farmer Jul 2004 B2
6775602 Gordon Aug 2004 B2
6778068 Wolfe Aug 2004 B2
6778885 Agashe et al. Aug 2004 B2
6784793 Gagnon Aug 2004 B2
6784832 Knockeart et al. Aug 2004 B2
6788196 Ueda Sep 2004 B2
6788207 Wilkerson Sep 2004 B2
6792339 Basson Sep 2004 B2
6795017 Puranik et al. Sep 2004 B1
6798354 Schuessler Sep 2004 B2
6803854 Adams et al. Oct 2004 B1
6807481 Gastelum Oct 2004 B1
6810321 Cook Oct 2004 B1
6813549 Good Nov 2004 B2
6819236 Kawai Nov 2004 B2
6832141 Skeen et al. Dec 2004 B2
6845314 Fosseen Jan 2005 B2
6845317 Craine Jan 2005 B2
6847872 Bodin Jan 2005 B2
6847873 Li Jan 2005 B1
6859039 Horie Feb 2005 B2
6859695 Klausner Feb 2005 B2
6865457 Mittelsteadt Mar 2005 B1
6867733 Sandhu et al. Mar 2005 B2
6868386 Henderson Mar 2005 B1
6870469 Ueda Mar 2005 B2
6873253 Veziris Mar 2005 B2
6873261 Anthony Mar 2005 B2
6879894 Lightner Apr 2005 B1
6885293 Okumura Apr 2005 B2
6892131 Coffee May 2005 B2
6895332 King May 2005 B2
6909398 Knockeart et al. Jun 2005 B2
6914523 Munch Jul 2005 B2
6922133 Wolfe Jul 2005 B2
6922571 Kinoshita Jul 2005 B1
6922616 Obradovich Jul 2005 B2
6922622 Dulin Jul 2005 B2
6925425 Remboski Aug 2005 B2
6928348 Lightner Aug 2005 B1
6937162 Tokitsu Aug 2005 B2
6950013 Scaman Sep 2005 B2
6954140 Holler Oct 2005 B2
6958976 Kikkawa Oct 2005 B2
6968311 Knockeart et al. Nov 2005 B2
6970075 Cherouny Nov 2005 B2
6970783 Knockeart et al. Nov 2005 B2
6972669 Saito Dec 2005 B2
6980131 Taylor Dec 2005 B1
6981565 Gleacher Jan 2006 B2
6982636 Bennie Jan 2006 B1
6983200 Bodin Jan 2006 B2
6988033 Lowrey Jan 2006 B1
6989739 Li Jan 2006 B2
7002454 Gustafson Feb 2006 B1
7002579 Olson Feb 2006 B2
7005975 Lehner Feb 2006 B2
7006820 Parker et al. Feb 2006 B1
7019641 Lakshmanan Mar 2006 B1
7023321 Brillon et al. Apr 2006 B2
7023332 Saito Apr 2006 B2
7024318 Fischer Apr 2006 B2
7027808 Wesby Apr 2006 B2
7034705 Yoshioka Apr 2006 B2
7038578 Will May 2006 B2
7042347 Cherouny May 2006 B2
7047114 Rogers May 2006 B1
7049941 Rivera-Cintron May 2006 B2
7059689 Lesesky Jun 2006 B2
7065349 Nath et al. Jun 2006 B2
7069126 Bernard Jun 2006 B2
7069134 Williams Jun 2006 B2
7072753 Eberle Jul 2006 B2
7081811 Johnston Jul 2006 B2
7084755 Nord Aug 2006 B1
7088225 Yoshioka Aug 2006 B2
7089116 Smith Aug 2006 B2
7091880 Sorensen Aug 2006 B2
7098812 Hirota Aug 2006 B2
7099750 Miyazawa Aug 2006 B2
7099774 King Aug 2006 B2
7102496 Ernst Sep 2006 B1
7109853 Mattson Sep 2006 B1
7113081 Reichow Sep 2006 B1
7113107 Taylor Sep 2006 B2
7117075 Larschan et al. Oct 2006 B1
7119696 Borugian Oct 2006 B2
7124027 Ernst Oct 2006 B1
7124088 Bauer et al. Oct 2006 B2
7129825 Weber Oct 2006 B2
7132934 Allison Nov 2006 B2
7132937 Lu Nov 2006 B2
7132938 Suzuki Nov 2006 B2
7133755 Salman Nov 2006 B2
7135983 Filippov Nov 2006 B2
7138916 Schwartz Nov 2006 B2
7139661 Holze Nov 2006 B2
7145442 Wai Dec 2006 B1
7149206 Pruzan Dec 2006 B2
7161473 Hoshal Jan 2007 B2
7164986 Humphries Jan 2007 B2
7170390 Quiñones Jan 2007 B2
7170400 Cowelchuk Jan 2007 B2
7174243 Lightner Feb 2007 B1
7180407 Guo Feb 2007 B1
7180409 Brey Feb 2007 B2
7187271 Nagata Mar 2007 B2
7196629 Ruoss Mar 2007 B2
7216035 Hörtner May 2007 B2
7218211 Ho May 2007 B2
7222009 Hijikata May 2007 B2
7225065 Hunt May 2007 B1
7228211 Lowrey Jun 2007 B1
7233235 Pavlish Jun 2007 B2
7236862 Kanno Jun 2007 B2
7239948 Nimmo Jul 2007 B2
7256686 Koutsky Aug 2007 B2
7256700 Ruocco Aug 2007 B1
7256702 Isaacs Aug 2007 B2
7260497 Watabe Aug 2007 B2
RE39845 Hasfjord Sep 2007 E
7269530 Lin Sep 2007 B1
7271716 Nou Sep 2007 B2
7273172 Olsen Sep 2007 B2
7280046 Berg Oct 2007 B2
7283904 Benjamin Oct 2007 B2
7286917 Hawkins Oct 2007 B2
7286929 Staton Oct 2007 B2
7289024 Sumcad Oct 2007 B2
7289035 Nathan Oct 2007 B2
7292152 Torkkola Nov 2007 B2
7292159 Culpepper Nov 2007 B2
7298248 Finley Nov 2007 B2
7298249 Avery Nov 2007 B2
7301445 Moughler Nov 2007 B2
7308247 Thompson et al. Dec 2007 B2
7317383 Ihara Jan 2008 B2
7317392 DuRocher Jan 2008 B2
7317927 Staton Jan 2008 B2
7319848 Obradovich Jan 2008 B2
7321294 Mizumaki Jan 2008 B2
7321825 Ranalli Jan 2008 B2
7323972 Nobusawa Jan 2008 B2
7323974 Schmid Jan 2008 B2
7323982 Staton Jan 2008 B2
7327239 Gallant Feb 2008 B2
7327258 Fast Feb 2008 B2
7333883 Geborek Feb 2008 B2
7339460 Lane Mar 2008 B2
7349782 Churchill Mar 2008 B2
7352081 Taurasi Apr 2008 B2
7355508 Mian Apr 2008 B2
7365639 Yuhara Apr 2008 B2
7366551 Hartley Apr 2008 B1
7375624 Hines May 2008 B2
7376499 Salman May 2008 B2
7378946 Lahr May 2008 B2
7378949 Chen May 2008 B2
7386394 Shulman Jun 2008 B2
20030055555 Knockeart et al. Mar 2003 A1
20040039504 Coffee et al. Feb 2004 A1
20040066330 Knockeart et al. Apr 2004 A1
20040077339 Martens Apr 2004 A1
20040083041 Skeen et al. Apr 2004 A1
20040142672 Stankewitz Jul 2004 A1
20050064835 Gusler Mar 2005 A1
20050091018 Craft Apr 2005 A1
20050096809 Skeen et al. May 2005 A1
20050119002 Bauchot et al. Jun 2005 A1
20050119030 Bauchot et al. Jun 2005 A1
20050137757 Phelan et al. Jun 2005 A1
20060154687 McDowell Jul 2006 A1
20060234711 McArdle Oct 2006 A1
20070186923 Poutiatine et al. Aug 2007 A1
20070229234 Smith Oct 2007 A1
20070293206 Lund Dec 2007 A1
20080064413 Breed Mar 2008 A1
20080255888 Berkobin Oct 2008 A1
Foreign Referenced Citations (4)
Number Date Country
2071931 Dec 1993 CA
2007235530 Sep 2007 JP
WO2005109369 Nov 2005 WO
WO2008109477 Sep 2008 WO
Related Publications (1)
Number Date Country
20090085728 A1 Apr 2009 US