System and method for detection of skin wounds and compartment syndromes

Information

  • Patent Grant
  • 8116852
  • Patent Number
    8,116,852
  • Date Filed
    Friday, September 29, 2006
    18 years ago
  • Date Issued
    Tuesday, February 14, 2012
    12 years ago
Abstract
A system configured to provide feedback regarding fluid parameters in the skin and/or compartments of an individual to facilitate early diagnosis of skin wounds and compartment syndromes.
Description
BACKGROUND

1. Field of Invention


The present invention relates generally to medical devices and, more particularly, to devices used for determining physiological parameters of a patient.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, caregivers, such as doctors and nurses, desire to discover ailments in a timely manner in order to better care for patients. The unfortunate passage of time prior to discovering an ailment may limit treatment options and, in some instances, may lead to irreversible damage. If an ailment is discovered early enough, however, a variety of remedial options and corrective actions may be initiated in order to treat the condition and prevent further damage to the health of the patient. Accordingly, healthcare professionals are continuously pursuing methods to expedite the diagnosis of a problem or to anticipate a potential problem in order to better serve their patients.


Skin wounds stem from a number of different causes and understanding the etiology of the wounds allows for appropriate treatment. Some major categories for skin wounds include pressure ulcers (a/k/a bed sores), skin tears, venous ulcers, arterial ulcers, diabetic skin ulcers, and melanoma. The localization of fluid in the dermis is a precursor in a variety of skin wounds but is often not detected until signs of edema and the breakdown of skin become visually apparent. At this point, the number of treatment options is limited and initiating treatment generally results in a very slow healing process or a worsening of the condition. Concomitantly, changes in protein content in some pathologies result in increased risk of the development and/or morbidity associated with skin wounds. Epidermal hyper-proliferation and/or dermal fibrosis result in changes in the distensibility of the collagen networks and, therefore, the water holding capability of the tissue. Early detection of skin edema could significantly improve diagnosis and treatment of these morbidities.


The various types of skin wounds can be differentiated by knowing the patient history, as well as if and where the fluid is localizing. As an example, pressure sores are often marked by the presence of hemosiderin deposits (a protein resulting from the breakdown of red blood cells) and fluid accumulation in all layers of the dermis. Venous ulcers have a dramatic increase in fluid primarily in the papillary dermis. Alternatively, skin tears exhibit little change and a net loss of water from the dermis


Commonly, pressure sores occur on individuals where pressure is applied due to patient lying down or sitting in a chair and occur most frequently on the back of the head, the shoulders and shoulder blades, the elbows, the tailbone and base of the buttocks, the hips, the knees and sides of legs, and the heel and bony parts of the feet. In severe cases, pressure sores may necessitate amputation. Bed sores, for example, are a type of pressure sore seen in patients who have remained in bed for prolonged periods. Several discrete steps have been observed to be associated with the development of bed sores. Fluid is initially forced away from pressure points and then returns to create an inflammatory response causing redness and pitting. The redness leaves and eventually the skin hardens. Finally, the skin splits and a bed sore is formed. Other types of skin wounds, such as diabetic ulcers and cancer, develop differently and may not exhibit the same characteristics.


Currently, physical examination by the clinician and patient history are primarily used in determining skin wound etiology. To date, however, little work has been done to determine the spectral changes in the skin during skin wound development. In some cases, ultrasound technology is used to determine intradermal echogenicity. However, use of ultrasound technology may have several disadvantages. For example, ultrasound technology may not be sensitive to minor or minute changes, as the ultrasound technology only indicates when macroscopic changes have occurred. Additionally, ultrasound technology is not specific, meaning it may have inter-patient variability.


In addition to the localization of fluid in the dermis, excessive accumulations of fluid can occur in a variety of body compartments. Such accumulations may occur due to injury, inflammation, or excessive fluid resuscitation. In general, these accumulations cause an increase in pressure within the compartment and cut off blood flow, potentially causing organ failure and necrosis. Treatment typically requires incisions to relieve pressure. For example, abdominal compartment syndrome causes organ ischemia and failure, and it is commonly treated by opening the abdomen. Additionally, extremity compartment syndrome may cause ischemia and gangrene, and it is commonly treated by fasciotomies.


The occurrence of extremity compartment syndrome depends primarily on the precipitating injuries. For major fractures with associated vascular injury, prevalence has been estimated at 15-30%. Chronic and acute exertional compartment syndromes are also known. Extremity compartment syndrome is diagnosed by pain, paresthesia, pressure, pallor, paralysis, and pulselessness, in descending order of frequency and includes conditions such as shin splints and gout.


The prevalence of intra-abdominal hypertension (tissue pressure greater than 12 mm of Hg) has been estimated at 2-33% in the critically ill, with about half developing abdominal compartment syndrome (greater than 20 mm of Hg). Diagnosis and treatment of abdominal compartment syndrome currently begins at an intra-abdominal pressure greater than 12 mm Hg (normal is less than 5 mm Hg). Intra-compartmental pressures less than 20 mm Hg are generally considered acceptable only if carefully monitored.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and, these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


In accordance with one aspect of the present invention there is provided a method for determining fluid parameters of living tissue. The method includes transmitting electromagnetic radiation at a tissue site using an emitter and detecting the electromagnetic radiation reflected and scattered by the tissue using a photodetector, the photodetector generating a signal corresponding to the detected electromagnetic radiation. The generated signals are processed to calculate fluid parameters of the tissue site. The method also includes correlating the calculated fluid parameters to a condition status by comparing the calculated fluid parameters with baseline fluid parameters and correlating the comparison to the condition status. The condition status is then indicated on a display.


In accordance with another aspect of the present invention there is provided a system for detecting skin wounds and compartment syndromes. The system includes a sensor comprising at least one emitter and at least one detector and a spectrophotometric unit communicatively coupled to the sensor. The spectrophotometric unit being configured to calculate fluid parameters and correlate the fluid parameters to a condition status, wherein the spectrophotometric unit compares the calculated fluid parameters to baseline fluid parameters and determines the condition status from the comparison. The system also includes a display coupled to the spectrophotometric unit configured to display the condition status.


In accordance with yet another aspect of the present invention there is provided a method for diagnosing skin wounds and compartment syndromes. The method including selecting a baseline fluid parameter of a tissue site in a spectrophotometric device and using the spectrophotometric device to calculate data indicative of a condition status. Using the spectrophotometric device comprises placing a sensor on an area of a patient's skin over the tissue site for which baseline fluid parameters were entered and taking measurements using the sensor, the spectrophotometeric device being configured to display the measurements. The method also includes making a diagnosis based on consideration of the patient's medical history and the data calculated by the spectrophotometric monitor.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain exemplary embodiments are described in the following detailed description and in reference to the drawings, in which:



FIG. 1 illustrates a block diagram of a diagnostic system in accordance with an exemplary embodiment of the present invention;



FIG. 2 illustrates a cross-sectional view of a sensor for use with the system of FIG. 1 in accordance with an exemplary embodiment of the present invention;



FIG. 3 illustrates an alternative view of the sensor in the plane indicated by lines 3-3 of FIG. 2 in accordance with an exemplary embodiment of the present invention;



FIG. 4 illustrates a sensor having multiple detectors in accordance with an alternative embodiment of the present invention;



FIG. 5 illustrates a sensor having a roller-ball in accordance with another alternative exemplary embodiment of the present invention;



FIG. 6 illustrates a sensor having a thermometer sensor in accordance with yet another alternative embodiment of the present invention;



FIG. 7 illustrates a sensor having a roller-ball, a thermometer and multiple detectors in accordance with still another alternative embodiment of the present invention;



FIG. 8 illustrates a technique for detecting skin wounds and compartment syndromes in accordance with an exemplary embodiment of the present invention; and



FIG. 9 illustrates a technique for correlating fluid parameters to a possible condition in accordance with an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


The use of spectrophotometric means for measuring and calculating fluid metrics are described in U.S. Pat. No. 6,591,122. Additionally, U.S. Pub. 2003-0220548, 2004-0230106, 2006-0084864; U.S. Ser. Nos. 11/283,506 and 11/282,947; and the patent application titled “Tissue Hydration Estimation by Spectral Absorption Bandwidth Measurement” U.S. Ser. No. 11/528,154, discuss methods for measuring and calculating fluid metrics. The techniques, methods and apparatuses disclosed in the aforementioned patents, publications and applications may be implemented in particular embodiments of the present invention. As such, each of the aforementioned patents, publications and applications are incorporated herein by reference.


The fluid metrics computed by the above mentioned references typically have correlated a local measurement to a whole body water value. Spectrophotometric means, however, may also be used in calculating a local fluid measurement. Specifically, similar measurements, such as the ratio of water-to-water and other constituents, may be taken but the data may be interpreted to indicate a local fluid metric rather than a whole body fluid metric. The local fluid measurement may then be used in the diagnosis of various skin disorders as well as compartment syndromes, as will be discussed in detail below.


Human organs have a normal water content that may be used as a baseline reference for determining if any irregularities are present The percent water component of most organs is 50-80%, whereas the percent water component of skin is approximately 70% and the water percentage of the lungs is approximately 95%. A local fluid measurement may be compared against the reference level, and deviation from the reference level may be indicative of various conditions that may be present in a particular organ or compartment. In the case of compartmental syndromes, for example, an increase of fluid above the reference level in a particular compartment may be detected by a spectrophotometric monitor. This reference level may be a predetermined patient-independent level or an earlier measurement on the same patient and site, or concurrent measurement from one or more different sites on the same patient.


The use of spectrophotometric devices provides the advantage of early detection, allowing for proper treatment and preventative measures to be taken to avoid further damage. Additionally, the spectrophotometric devices are non-invasive. FIG. 1 illustrates a block diagram implementing a spectrophotometric device in a diagnostic system 10 in accordance with an exemplary embodiment of the present invention. The diagnostic system 10 includes a sensor unit 12 having an emitter 14 configured to transmit electromagnetic radiation, such as light, into the tissue of a patient 16. The electromagnetic radiation is scattered and absorbed by the various constituents of the patient's tissues, such as water and protein. A photoelectric detector 18 in the sensor 12 is configured to detect the scattered and reflected light and to generate a corresponding electrical signal. The sensor 12 directs the detected signal from the detector 18 into a spectrophotmetric device 20.


The spectrophotometric device 20 has a microprocessor 22 which calculates fluid parameters using algorithms programmed into the spectrophotometric device 20. The microprocessor 22 is connected to other component parts of the spectrophotometric device 20, such as a ROM 26, a RAM 28, and control inputs 30. The ROM 26 holds the algorithms used to compute the fluid levels or metrics. The RAM 28 stores the values detected by the detector 18 for use in the algorithms.


Methods and algorithms for determining fluid parameters are disclosed in U.S. Pub. No. 2004-0230106, which has been incorporated herein by reference. Some fluid parameters that may be calculated include water-to-water and protein, water-to-protein, and water-to-fat. For example, in an exemplary embodiment the water fraction, fw, may be estimated based on the measurement of reflectances, R(λ), at three wavelengths (λ1=1190 nm, λ2=1170 nm and λ3=1274 nm) and the empirically chosen calibration constants c0, c1 and c2 according to the equation:

fw=c2 log [R1)/R2)]+c1 log [R2)/R3)]+c0.  (1)


In an alternative exemplary embodiment, the water fraction, fw, may be estimated based on the measurement of reflectances, R(λ), at three wavelengths (λ1=1710 nm, λ2=1730 nm and λ3=1740 nm) and the empirically chosen calibration constants c0 and c1 according to the equation:









fw
=



c
1




log


[


R


(

λ
1

)


/

R


(

λ
2

)



]



Log


[


R


(

λ
3

)


/

R


(

λ
2

)



]




+


c
0

.






(
2
)








Total tissue water accuracy better than ±0.5% can be achieved using Equation (2), with reflectances measured at the three closely spaced wavelengths. Additional numerical simulations indicate that accurate measurement of the lean tissue water content, fw1, can be accomplished using Equation (2) by combining reflectance measurements at 1125 nm, 1185 nm and 1250 nm.


In an alternative exemplary embodiment, the water content as a fraction of fat-free or lean tissue content, fw1, is measured. As discussed above, fat contains very little water so variations in the fractional fat content of the body lead directly to variations in the fractional water content of the body. When averaged across many patients, systemic variations in water content result from the variation in body fat content. In contrast, when fat is excluded from the calculation, the fractional water content in healthy subjects is consistent. Additionally, variations may be further reduced by eliminating the bone mass from the calculations. Therefore, particular embodiments may implement source detector separation (e.g. 1-5 mm), wavelengths of light, and algorithms that relate to a fat-free, bone-free water content.


In an alternative embodiment, the lean water fraction, fw1, may be determined by a linear combination of two wavelengths in the ranges of 1380-1390 nm and 1660-1680 nm:

fw1=c2 log [R2)]+c1 log [R1)]+c0.  (3)

Those skilled in the art will recognize that additional wavelengths may be incorporated into this or other calibration models in order to improve calibration accuracy.


In yet another embodiment, tissue water fraction, fw, is estimated according to the following equation, based on the measurement of reflectances, R(λ), at a plurality of wavelengths:










fw
=



[




n
=
1

N




p
n


log


{

R


(

λ
n

)


}



]

-


[




n
=
1

N



p
n


]


log


{

R


(

λ

N
+
1


)


}





[




m
=
1

M




q
m


log


{

R


(

λ
m

)


}



]

-


[




m
=
1

M



q
m


]


log


{

R


(

λ

M
+
1


)


}





,




(
4
)








where pn and qm are calibration coefficients. Equation (4) provides cancellation of scattering variances, especially when the N+1 wavelengths are chosen from within the same band (i.e. 950-1400 nm, 1500-1800 nm, or 2000-2300 nm).


Referring again to FIG. 1, control inputs 30 allow a user to interface with the spectrophotometric monitor 20. For example, if a particular spectrophotometric device 20 is configured to detect compartmental disorders as well as skin disorders, a user may input or select parameters, such as baseline fluid levels for the skin or a particular compartment of the body that is to be measured. Specifically, baseline parameters associated with various compartments or regions of the body or skin may be stored in the spectrophotometric monitor 20 and selected by a user as a reference level for determining the presence of particular condition. Additionally, patient data may be entered, such as weight, age and medical history data, including, for example, whether a patient suffers from emphysema, psoriasis, etc. This information may be used to validate the baseline measurements or to assist in the understanding of anomalous readings. For example, the skin condition psoriasis would alter the baseline reading of skin water and, therefore, would affect any determination of possible bed sores or other skin wounds.


Detected signals are passed from the sensor 12 to the spectrophotometric device 20 for processing. In the spectrophotometric device 20, the signals are amplified and filtered by amplifier 32 and filter 34, respectively, before being converted to digital signals by an analog-to-digital converter 36. The signals may then be used to determine the fluid parameters and/or stored in RAM 28.


A light drive unit 38 in the spectrophotometric device 20 controls the timing of the emitters 14. While the emitters are manufactured to operate at one or more certain wavelengths, variances in the wavelengths actually emitted may occur which may result in inaccurate readings. To help avoid inaccurate readings, an encoder 40 and decoder 42 may be used to calibrate the spectrophotometric monitor 20 to the actual wavelengths being used. The encoder 40 may be a resistor, for example, whose value corresponds to coefficients stored in the spectrophotometric device 20. The coefficients may then be used in the algorithms. Alternatively, the encoder 40 may also be a memory device, such as an EPROM, that stores information, such as the coefficients themselves. Once the coefficients are determined by the spectrophotometric device 20, they are inserted into the algorithms in order to calibrate the diagnostic system 10.


The spectrophotometric device 20 may be configured to display the calculated parameters on display 44. The display 44 may simply show the calculated fluid measurements for a particular region of tissue where the sensor has taken measurements. The fluid measurements may be represented as a ratio or a percentage of the water or other fluid present in the measured region. As the ratio or percentage may not have any particular significance to a caregiver or clinician, the spectrophotometric monitor may be programmed to correlate the ratio or percentage to a number indicative of a risk level or of a potential stage of development of a particular condition. For example, if a normal fluid ratio is measured, a “1” may be outputted on the display 44. Alternatively, if an abnormal, but not severely abnormal fluid ratio is measured, a “2” may be displayed. If a severely abnormal measurement is taken, a “3” may be displayed. A color display may also be programmed to correlate the fluid ratios with a particular color. For example, a green, yellow or red light may be shown on the display corresponding to normal, abnormal, and severely abnormal readings, respectively. The color may be used independently or in combination with the number indicator scheme. Regardless of the manner of presentation, the objective is to present the fluid metric information to a clinician in a manner that may be quickly and easily understood.


In a more complex system, the display 44 may show a graphical image illustrating the fluid measurements or fluid ratios across an area, such as a pressure point and the peripheral area about the pressure point, for example. Regions may be shaded or color coded to indicate relative fluid levels or fluid ratios. For example, normal fluid levels or fluid ratios may be indicated by presenting the region with a green hue on the display 44. Alternatively, regions that may deviate from a normal fluid level or fluid ratio may be indicated by coloring the region a reddish hue, for example. As the fluid level or fluid ratio may change across an area being measured, the differences in the fluid ratio may be shown by the shading or coloring technique. Indeed, a single graphical image may demonstrate a wide range of shades or hues corresponding to the fluid ratio of a particular region. Such an output display would be advantageous in determining exactly what the problem and/or what the etiology might be. Additionally, the graphics may aid in determining the exact location of problem areas, and the severity of the problem.


Turning to FIGS. 2 and 3, a sensor 50 is illustrated in accordance with an exemplary embodiment of the present invention. Specifically, FIG. 2 illustrates a cross-sectional view of the sensor 50. The sensor 50 may be a handheld sensor that a caregiver can move around on a patient. As can be seen in FIG. 2, the sensor 50 may have a housing 52 having a contoured upper surface to allow a user to easily hold onto the sensor 50. For example, the housing 52 may be similar in size and shape to a computer mouse. The sensor 50 may be communicatively coupled to the spectrophotometric device 20 via a cable 54. Alternative embodiments may employ wireless communication technology to transmit information back to spectrophotometric monitor 20, thus eliminating the cable 54.


An alternative view of the sensor 50, in the plane indicated by the lines 3-3 of FIG. 2, is illustrated in FIG. 3. Specifically, FIG. 3 shows a substantially flat surface of the sensor housing 52. The emitter 24 and detector 26 are located on this surface to allow them to efficiently couple to the patient's skin during use. An optical coupling gel, transparent talc, or other medium may be used to aid in achieving a proper optical coupling between the emitter and detector and the patient's skin.


The spacing between the emitter 24 and detector 26 may be determined based upon the region of skin or compartment of the body that is to be tested. Generally, for relatively shallow probing, the emitter and detector may be relatively close to one another, while for deeper probing the emitter 24 and detector 26 will be further separated. For example, when diagnosing skin wounds, the emitter 24 and detector 26 may be one to five mm apart, because the electromagnetic radiation need only penetrate into layers of skin. However, for detecting compartment syndromes, the emitter 24 and detector 26 may be placed further apart, such as five to 15 mm apart, for example, to allow the electromagnetic radiation to penetrate into deeper tissue before being reflected or scattered to the detector 26. Those skilled in the art will recognize that somewhat shorter and less strongly absorbed wavelengths may be preferred in conjunction with these longer spacings.


Turning to FIG. 4, a sensor 70 having multiple detectors in accordance with an alternative embodiment of the present invention is illustrated. The sensor 70 is capable of sensing various depths of tissue because of the multiple detectors 26a-d. Any number of detectors 26a-d may be used, and the more detectors that are used, the higher the resolution. In this example, the sensor 70 has four detectors 26a-d arranged linearly with increasing distance from the emitter 24. The detector 26a, in closest proximity to the emitter 24, is used for sensing in shallow tissue, as the light transmitted from the emitter 24 does not penetrate far into the tissue before arriving back at the detector 26a. Alternatively, the detector 26d, furthest away from the emitter 24, may be used for sensing deeper tissue because the signals from emitter 24 penetrate deeper into the tissue before arriving at detector 26d than those that arrive at detector 26a. Accordingly, this arrangement allows for the spectrophotometric device 20 to detect at multiple depths of tissue. Those skilled in the art of mechanical design will recognize that similar results may be achieved with a sensor having a single emitter and detector location with adjustable spacing between them, or a sensor having multiple emitters or emitter locations and a single detector or detector location.


In order to create a graphical representation of the area tested, a sensor may have a means for indicating a relative position. FIG. 5 illustrates a sensor 80 having a roller-ball 82 in accordance with an exemplary embodiment of the present invention. The roller-ball 82 tracks the movement of the sensor 80 as it is moved across a potential problem area of a patient. The roller-ball 82 correlates the movement of the sensor to a specific location relative to a starting point. The starting point may be determined by actuation of a button on the sensor or monitor or through voice command, for example, when the sensor 80 is initially placed in contact with the patient's skin. Alternatively, the start position may be determined by a using a relative position indicator on a bed or operating table. Measurements are taken as the sensor 80 is moved across a patient's skin. The measurements are then pieced together by correlating the measurements to the specific location relative to the starting point as determined by the roller-ball 82. A graphical representation of the area over which the sensor 80 passes can then be generated. Thus, a caregiver or patient may receive information in a graphical form. The graphical representation may be useful to a caregiver for many reasons. Particularly, the graphics may be useful in determining the exact parameters of the potential skin wound or compartment syndrome, and also in illustrating and explaining the condition to a patient. It should be understood that the roller-ball 82 is given as an example of how to correlate the detected light to a particular location. Indeed, there may be many other ways to accomplish the same or similar functionality. For example, an optical device may be used to in a similar manner to indicate relative position.


Additional features may be added to the above described sensor 80 in order to provide additional capability and to enhance performance. For example, FIG. 6 illustrates a sensor 90 having a roller-ball 82 and a temperature sensor 92 in accordance with an exemplary embodiment of the present invention. It may be desirable to measure the temperature of the patient's tissue because the radiation spectrum from the emitter 26 may change in accordance with the temperature. Specifically, as temperature increases, the water spectrum is blue-shifted. The temperature may be taken into account when calculating the various parameters by modifying coefficients used in the algorithms to account for any spectrum shifting. Additionally, the temperature measurement may help in distinguishing types of skin wounds. For example, temperature may help in distinguishing between an elevated water level due to an acute injury, which exhibits local temperature increase, and an elevated water level due to a chronic injury, which should not show an increase in temperature. Accordingly, the sensor 90 implementing the temperature sensor 92 may be more accurate and provide increased functionality than a sensor without a temperature sensor.


Another embodiment combines all of the above described features into a single sensor. FIG. 7 illustrates a sensor 94 that has multiple detectors 26a-d, a roller-ball 82, and a temperature sensor 92. The sensor 94 provides all of the advantages described earlier with respect to the embodiments illustrating the features separately. Alternative arrangements of the various features can also be envisioned, and the scope of this disclosure should not be limited to the exemplary embodiments described herein.


Turning to FIG. 8, a technique of detecting skin wounds and compartment syndromes in accordance with embodiments of the present invention is represented by a block diagram and generally designated by the reference numeral 100. Initially, data is input into a spectrophotometric device, as indicated at block 102. For example, information such as baseline fluid levels may be input, as they vary according to the particular organ or compartment of the body that is to be measured. Additionally, information such as the part of the body where measurements are to be taken may be input, as different compartments may require different sets of coefficients. For example, if the patient has been involved in an accident and the patient may be suffering from abdominal compartment syndrome, a clinician could enter data indicating that the abdominal compartment will be measured and the baseline fluid levels associated with that compartment will be used for the calculations. Alternatively, if the patient has been confined to a bed or chair and the patient may be likely to develop bed sores, a user could select baseline parameters associated with those particular pressure points, including historical parameters from the same patient, so that an appropriate correlation may be made.


After the baseline parameters have been selected or the data has been entered into the spectrophotometric device 20, readings may be taken of areas where the suspected condition may be developing, as indicated at block 104. The readings are made by placing the sensor on locations around a probable problem spot or by moving the sensor over an area of skin while taking measurements. For example, in the case of abdominal compartment syndrome, multiple points on the abdomen may be tested with the monitor. Alternatively, if the monitor is equipped to do so, an area may be continuously probed while moving the monitor across the patient's abdomen.


Once obtained, the readings are used to calculate fluid parameters using algorithms programmed into the spectrophotometric device 20, as indicated at block 106. One fluid parameter that may be determined, for example, is the water percentage of the measured tissue. The calculated fluid parameter may be correlated to a possible condition status, as indicated at block 108. As shown in FIG. 9, the correlation may include several steps, which will be discussed in greater detail below. Essentially, the correlation may include a comparison with baseline parameters to determine the presence of a condition.


A condition indicator may be displayed representing the fluid measurements or the amount of deviation from baseline values, as indicated at block 110. The condition indicator may be a decimal number or a whole number indicating the percentage of water in the tissue, for example. In an alternative embodiment, a number correlating the amount of deviation from baseline values may be displayed. In yet another embodiment, a graphical representation of the area over which a sensor has passed is displayed. The graphical representation may be coded to indicate the water percentage or amount of deviation from the baseline parameters of a particular area. Specifically, the graphical representation may be color coded, as discussed above.


The correlation of the fluid parameters to a condition status of block 108 may include several discrete steps, as set forth in the block diagram of FIG. 9. For example, the measured parameters may be compared to baseline parameters, as indicated at block 112. The baseline parameters may be entered or stored in the monitor and used to determine whether or not measured parameters indicate a deviation from a normal state. A categorization may be performed based on the comparison of the measured parameters with the baseline parameters as indicated at block 114. For example, if the measured parameters are within an acceptable range of the baseline parameters, the patient's condition may be categorized as normal. As the measured parameters move further away from the baseline parameters, however, the patient's condition may be categorized as abnormal or severely abnormal, for example. The abnormal state may indicate a particular likelihood that a condition is developing, while a severely abnormal state may indicate that a particular condition is present.


After the measured parameters have been compared to the baseline parameters and the status of the condition has been determined, a graphic may be generated to represent the status, as indicated at block 116. As discussed above, the graphic may simply consist of a number indicative of the presence and severity of a potential condition. Alternatively, a particular monitor may be configured to display a graphical representation of an area over which a sensor has taken measurements. The graphical representation may be coded, such as with color, to indicate the status in a particular area.


The data or images generated and displayed according to the technique 100 may be interpreted by a clinician. Specifically, the clinician may interpret the displayed results in light of the patient's medical history to make an informed diagnosis. The technique 100 allows for non-invasive diagnosis of skin wounds and compartment syndromes at early stages, thus allowing the opportunity to provide proper care and to take measures to prevent the occurrence of further damage.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A method for determining fluid parameters of living tissue comprising: transmitting electromagnetic radiation at a tissue site using at least one emitter;detecting the electromagnetic radiation reflected and scattered by living tissue beneath the tissue site using at least one photodetector, the photodetector generating a signal corresponding to the detected electromagnetic radiation;processing the generated signal to calculate localized fluid parameters of the living tissue beneath the tissue site;correlating the calculated fluid parameters to a condition status indicative of a localized accumulation of fluid in the living tissue and a potential skin wound by comparing the calculated fluid parameters with baseline fluid parameters specific to the living tissue and correlating the comparison to the condition status; andindicating the condition status on a display.
  • 2. The method of claim 1, wherein calculating fluid parameters comprises calculating a ratio of water-to-lean mass.
  • 3. The method of claim 1, wherein calculating fluid parameters comprises calculating a ratio of water-to-water, protein and fat.
  • 4. The method of claim 1, wherein calculating fluid parameters comprises calculating a ratio of water-to-fat.
  • 5. The method of claim 1, comprising transmitting electromagnetic radiation over an area of tissue.
  • 6. The method of claim 1, wherein indicating condition status comprises displaying discrete values, wherein a first discrete value indicates normal status, second discrete value indicates abnormal status, and a third discrete value indicates severely abnormal status.
  • 7. The method of claim 1, wherein the baseline parameters correspond to fluid parameters of layers of skin.
  • 8. The method of claim 1, comprising generating and displaying a graphical representation of the condition status.
  • 9. The method of claim 8, wherein the graphical representation is color coded to represent the condition status.
  • 10. The method of claim 1, wherein the baseline fluid parameters comprises an earlier measurement of normal fluid content from the living tissue of a patient.
  • 11. The method of claim 1, comprising processing the generated signal to calculate localized fluid parameters of a compartment beneath the tissue site, and correlating the calculated fluid parameters to a condition status indicative of a localized accumulation of fluid in the compartment and a potential compartment syndrome by comparing the calculated fluid parameters with baseline fluid parameters specific to the compartment and correlating the comparison to the condition status.
  • 12. A system for detecting compartment syndromes comprising: a sensor comprising at least one emitter and at least one detector;a spectrophotometric unit communicatively coupled to the sensor and configured to calculate localized fluid parameters and correlate the localized fluid parameters to a condition status indicative of a localized accumulation of fluid in a compartment and compartment syndrome, wherein the spectrophotometric unit compares the calculated fluid parameters to baseline fluid parameters specific to the compartment and determines the condition status from the comparison; anda display coupled to the spectrophotometric unit configured to display the condition status.
  • 13. The system of claim 12, wherein the sensor comprises a location sensor, the location sensor being configured to indicate a position of the sensor relative to a start position.
  • 14. The system of claim 13, wherein the location sensor comprises a button configured to indicate the start position of the sensor by actuation of the button.
  • 15. The system of claim 13, wherein the location sensor is configured to indicate the start position of the sensor by a voice command.
  • 16. The system of claim 13, wherein the location sensor is configured to indicate the start position of the sensor relative to a fixed point on a bed or operating table.
  • 17. The system of claim 13, wherein the location sensor comprises a roller-ball sensor.
  • 18. The system of claim 12, wherein the sensor comprises a thermometer, the thermometer configured to take temperature readings as the spectrophotometric unit calculates fluid parameters.
  • 19. The system of claim 12, wherein the sensor comprises a roller-ball and a thermometer, wherein the roller-ball is configured to indicate a position of a sensor relative to a start position, the start position being determined by actuation of a button, and wherein the thermometer is configured to take temperature readings as the spectrophotometer unit calculates fluid parameters.
  • 20. The system of claim 12, wherein the spectrophotometric unit is coupled to the sensor via a cable.
  • 21. The system of claim 12, wherein the sensor communicates with the spectrophotometric unit wirelessly.
  • 22. The system of claim 12, wherein at least one detector comprises multiple detectors positioned at varying distances from the at least one emitter.
  • 23. The system of claim 12, wherein the at least one emitter comprises multiple emitters positioned at varying distances from the at least one detector.
  • 24. The system of claim 12, wherein the baseline fluid parameters comprises an earlier measurement of normal fluid content of a patient.
  • 25. The system of claim 12, wherein the at least one detector and the at least one emitter are disposed between 1 to 5 mm apart.
  • 26. The system of claim 12, wherein the at least one detector and the at least one emitter are disposed between 5 to 15 mm apart.
  • 27. The system of claim 12, wherein the spectrophotometric unit is configured to calculate localized fluid parameters and correlate the localized fluid parameters to a condition status indicative of a localized accumulation of fluid in living tissue and a potential skin wound, wherein the spectrophotometric unit compares the calculated fluid parameters to baseline fluid parameters specific to the living tissue and determines the condition status from the comparison.
  • 28. A method for diagnosing skin wounds and compartment syndromes comprising: selecting a baseline fluid parameter specific to a living tissue or compartment beneath a tissue site in a spectrophotometric device;using the spectrophotometric device to calculate data indicative of a potential skin wound or compartment syndrome, comprising placing a sensor on an area of a patient's skin over the tissue site for which baseline fluid parameters were entered and taking localized measurements using the sensor, the spectrophotometric device being configured to display the localized measurements; andmaking a diagnosis of the potential skin wound or compartment syndrome based on consideration of the patient's medical history and the data calculated by the spectrophotometric monitor.
  • 29. The method of claim 28, wherein entering baseline fluid parameters comprises entering fluid parameters corresponding to a normal tissue fluid content of the living tissue or compartment to be measured by the spectrophotometric monitor.
  • 30. The method of claim 29, wherein said normal fluid content comprises earlier measurements from the tissue site on the patient.
  • 31. The method of claim 28, wherein using a spectrophotometric monitor comprises moving a sensor across an area of the patient's skin.
US Referenced Citations (124)
Number Name Date Kind
3998550 Konishi et al. Dec 1976 A
4066068 Nilsson et al. Jan 1978 A
4364008 Jacques Dec 1982 A
4711244 Kuzara Dec 1987 A
4723554 Oman et al. Feb 1988 A
4805623 Jobsis Feb 1989 A
4850365 Rosenthal Jul 1989 A
4860753 Amerena Aug 1989 A
4883055 Merrick Nov 1989 A
4907594 Muz Mar 1990 A
5057695 Hirao et al. Oct 1991 A
5086781 Bookspan Feb 1992 A
5111817 Clark et al. May 1992 A
5146091 Knudson Sep 1992 A
5224478 Sakai et al. Jul 1993 A
5261405 Fossel Nov 1993 A
5277181 Mendelson et al. Jan 1994 A
5279295 Martens et al. Jan 1994 A
5282467 Piantadosi et al. Feb 1994 A
5337745 Benaron Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5348004 Hollub Sep 1994 A
5355880 Thomas et al. Oct 1994 A
5377674 Kuestner Jan 1995 A
5499627 Steuer et al. Mar 1996 A
5564435 Steinberg Oct 1996 A
5615689 Kotler Apr 1997 A
5687721 Kuhls Nov 1997 A
5701902 Vari et al. Dec 1997 A
5720284 Aoyagi et al. Feb 1998 A
5735284 Tsoglin et al. Apr 1998 A
5747789 Godik May 1998 A
5755672 Arai et al. May 1998 A
5788643 Feldman Aug 1998 A
5803908 Steuer et al. Sep 1998 A
5827181 Dias et al. Oct 1998 A
5833602 Osemwota Nov 1998 A
5842981 Larsen et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5906582 Kondo et al. May 1999 A
5987351 Chance Nov 1999 A
6064898 Aldrich May 2000 A
6125297 Siconolfi Sep 2000 A
6149591 Henderson et al. Nov 2000 A
6163715 Larsen et al. Dec 2000 A
6178342 Thompson et al. Jan 2001 B1
6222189 Misner et al. Apr 2001 B1
6240306 Rohrscheib et al. May 2001 B1
6246894 Steuer et al. Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6263223 Shepherd et al. Jul 2001 B1
6280396 Clark et al. Aug 2001 B1
6336044 Ghiassi et al. Jan 2002 B1
6370426 Campbell et al. Apr 2002 B1
6400971 Finarov et al. Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6442408 Wenzel et al. Aug 2002 B1
6466807 Dobson et al. Oct 2002 B1
6488677 Bowman et al. Dec 2002 B1
6512936 Monfre et al. Jan 2003 B1
6524250 Weber et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6584403 Bunn Jun 2003 B2
6591122 Schmitt Jul 2003 B2
6592574 Shimmick et al. Jul 2003 B1
6600946 Rice Jul 2003 B1
6606509 Schmitt Aug 2003 B2
6615064 Aldrich Sep 2003 B1
6618614 Chance Sep 2003 B1
6635491 Khalil et al. Oct 2003 B1
6636759 Robinson Oct 2003 B2
6643543 Takehara et al. Nov 2003 B2
6654620 Wu et al. Nov 2003 B2
6659967 Steinberg Dec 2003 B1
6668181 Wenzel et al. Dec 2003 B2
6675029 Monfre et al. Jan 2004 B2
6687519 Steuer et al. Feb 2004 B2
6777240 Hazen et al. Aug 2004 B2
6819950 Mills Nov 2004 B2
6823211 Simpson et al. Nov 2004 B2
6849046 Eyal-Bickels Feb 2005 B1
6873865 Steuer et al. Mar 2005 B2
6950699 Manwaring et al. Sep 2005 B1
7222624 Rashad et al. May 2007 B2
7257433 Takamura et al. Aug 2007 B2
7283242 Thornton Oct 2007 B2
7343186 Lamego et al. Mar 2008 B2
7740588 Sciarra Jun 2010 B1
20010020122 Steuer et al. Sep 2001 A1
20030060693 Monfre et al. Mar 2003 A1
20040054290 Chance Mar 2004 A1
20040054303 Taylor Mar 2004 A1
20040116834 Steinberg Jun 2004 A1
20040127777 Richti et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040230106 Schmitt et al. Nov 2004 A1
20050065415 Cho et al. Mar 2005 A1
20050113721 Reed et al. May 2005 A1
20050119538 Jeon et al. Jun 2005 A1
20050177046 Mills Aug 2005 A1
20050192493 Wuori Sep 2005 A1
20050261568 Hular et al. Nov 2005 A1
20050268624 Voglewede et al. Dec 2005 A1
20060020181 Schmitt Jan 2006 A1
20060052680 Diab Mar 2006 A1
20060084864 Schmitt et al. Apr 2006 A1
20060122475 Balberg et al. Jun 2006 A1
20060167350 Monfre et al. Jul 2006 A1
20060247506 Balberg et al. Nov 2006 A1
20070032707 Coakley et al. Feb 2007 A1
20070032709 Coakley et al. Feb 2007 A1
20070032710 Raridan et al. Feb 2007 A1
20070032711 Coakley et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032713 Eghbal et al. Feb 2007 A1
20070032716 Raridan et al. Feb 2007 A1
20070073122 Hoarau Mar 2007 A1
20070073123 Raridan, Jr. Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan Mar 2007 A1
20070073128 Hoarau et al. Mar 2007 A1
20080154104 Lamego et al. Jun 2008 A1
20080198361 Kaushal et al. Aug 2008 A1
Foreign Referenced Citations (15)
Number Date Country
1184663 Mar 2002 EP
1491135 Dec 2004 EP
2710517 Apr 1995 FR
4-40940 Feb 1992 JP
05-329163 Dec 1993 JP
11-244266 Sep 1999 JP
2004 081427 Mar 2004 JP
WO 9519562 Jul 1995 WO
WO 9834097 Aug 1998 WO
WO 0071025 Nov 2000 WO
WO 9313706 Jan 2001 WO
WO 0116577 Mar 2001 WO
WO 03010510 Feb 2003 WO
WO 2005041765 May 2005 WO
2006100685 Sep 2006 WO
Related Publications (1)
Number Date Country
20080146906 A1 Jun 2008 US