The present invention generally involves a system and method for determining a flame condition in a combustor. Specifically, particular embodiments of the present invention monitor pressure in the combustor to determine the presence and/or absence of a flame in the combustor.
Combustors are known in the art for igniting fuel with air to produce combustion gases having high temperature and pressure. For example, gas turbine systems typically include multiple combustors that mix a compressed working fluid from a compressor with fuel and ignite the mixture to produce high temperature and pressure combustion gases. During initial light-off of a combustor, it is generally desirable to create and maintain a stable flame in the combustor immediately prior to or shortly after introducing fuel into the combustor to initiate and maintain combustion in the combustor. During steady-state and transient operations, the fuel-air mixture is constantly being adjusted to optimize thermodynamic efficiency and reduce undesirable emissions of nitrous oxide, carbon monoxide, and other combustion byproduct gases. The adjustments to the fuel-air mixture may create instabilities in the flame that may lead to a blowout or loss of flame condition in the combustor, thus interrupting continuity of the combustion process. In either instance, it is desirable to detect and monitor the flame condition in the combustor to ensure safe and continuous operation of the combustor.
Various systems are known in the art for detecting and/or monitoring the flame condition in the combustor. For example, optical sensors that detect light, ultraviolet, or other emissions produced by a combustion flame may be used to determine the flame condition in the combustor. Optical sensors, however, typically require some form of cooling which has a tendency to interfere with the efficiency and operation of the combustor and/or downstream components. Temperature detectors in or downstream of the combustor may also be used to detect and monitor the flame condition in the combustor. However, the response time of temperature detectors is typically too slow to provide a timely response to sudden changes in the flame condition in the combustor. As a result, an improved system and method for determining the flame condition in a combustor would be useful.
Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One embodiment of the present invention is a system for determining a flame condition in a combustor. The system includes a pressure sensor that generates a pressure signal reflective of a pressure in the combustor. A controller receives the pressure signal from the pressure sensor and generates a flame signal reflective of the flame condition in the combustor.
Another embodiment of the present invention is a system for determining a flame condition in a combustor. The system includes a pressure sensor that generates a series of time indexed pressure signals reflective of pressures in the combustor at different times. A controller receives the time indexed pressure signals from the pressure sensor and generates a flame signal reflective of the flame condition in the combustor.
Embodiments of the present invention may also provide a method for determining a flame condition in a combustor. The method includes measuring a pressure in the combustor, comparing the measured pressure in the combustor to a predetermined limit, and generating a flame signal based on the comparison of the measured pressure in the combustor to the predetermined limit, wherein the flame signal reflects the flame condition in the combustor.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Various embodiments of the present invention provide a system and method for determining a flame condition in a combustor. As used herein, the “flame condition” is defined to mean the presence, absence, and/or stability of a flame in the combustor. Specifically, embodiments of the present invention may sense and measure pressure, pressure changes, and/or the rate of pressure changes in the combustor to determine the flame condition in the combustor. As a result, embodiments of the present invention may provide a redundant, reliable, and/or replacement system and method for monitoring the flame condition in a combustor to improve the overall reliability and performance of the combustor. Although exemplary embodiments of the present invention are discussed in the context of a combustor incorporated in a gas turbine system, one of ordinary skill in the art will readily appreciate that the teachings of the present invention may be applicable to any system or method that involves the combustion of fuel, and the scope of the present invention is not limited to any particular combustor application unless specifically recited in the claims.
In the embodiment shown in
The controller 36 may be a stand alone component or a sub-component included in any computer system known in the art, such as a laptop, a personal computer, a mini computer, a mainframe computer, or industrial controllers, microcontrollers, or embedded systems. The various controller and computer systems discussed herein are not limited to any particular hardware architecture or configuration. Embodiments of the systems and methods set forth herein may be implemented by one or more general-purpose or customized controllers adapted in any suitable manner to provide the desired functionality. The controller 36 may be adapted to provide additional functionality, either complementary or unrelated to the present subject matter. For instance, one or more controllers may be adapted to provide the described functionality by accessing software instructions rendered in a computer-readable form. When software is used, any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein. However, software need not be used exclusively, or at all. For example, as will be understood by those of ordinary skill in the art without required additional detailed discussion, some systems and methods set the forth and disclosed herein may also be implemented by hard-wired logic or other circuitry, including, but not limited to, application-specific circuits. Of course, various combinations of computer-executed software and hard-wired logic or other circuitry may be suitable as well.
The pressure sensor 34 and the controller 36 may operate intermittently, continuously, and/or when directed by an operator. For example,
At block 52, the system 10 may energize an igniter 54 operatively connected to the combustor 16 to provide a spark, pilot light, laser beam, or other ignition source for the combustor 16. In addition, at block 52 the pressure sensor 34 begins measuring the pressure in the combustor 16 and generating one or more pressure signals 38 to the controller 36.
At block 56, the controller 36 compares the one or more pressure signals 38 to a predetermined limit to determine the flame condition in the combustor 16. The predetermined limit provides an indication of the presence or absence of a flame in the combustor 16 and may be established by calculations, operational experience, modeling, or other methods known in the art. For example, although the instantaneous pressure in each combustor 16 may vary substantially over relatively short time intervals, an instantaneous pressure in any combustor 16 may be reliably used to indicate the presence or absence of a flame in an individual combustor 16. To illustrate this,
The controller 36 generates the flame signal 40 reflective of the flame condition in the combustor 16 based on the comparison between the one or more pressure signals 38 and the predetermined limit. For example, if the comparison between the one or more pressure signals 38 and the predetermined limit indicates the presence of a flame in the combustor 16, then the controller 36 may send the flame signal 40 to the igniter 54 to de-energize the igniter 54 and/or de-activate the flame detection system 10, as represented by block 58. Alternately, if the comparison between the one or more pressure signals 38 and the predetermined limit indicates the absence of a flame in the combustor 16, then the flame signal 40 may cause the igniter 54 to remain energized.
As shown by block 60 in
At block 72, the pressure sensor 34 again begins measuring the pressure in the combustor 16 and generating one or more pressure signals 38 to the controller 36. In this particular embodiment, the pressure signals 38 may be time indexed to provide a continuous stream of pressure signals reflective of pressures in the combustor 16 at different times. Depending on the particular embodiment, the system 10 may also energize the igniter 54 operatively connected to the combustor 16 to provide a spark, pilot light, laser beam, or other ignition source for the combustor 16.
At block 74, the controller 36 compares the one or more pressure signals 38 to a predetermined profile, such as a profile of pressure over a time interval, to determine the flame condition in the combustor 16. The predetermined profile provides an indication of the presence or absence of conditions that may lead to or reliably serve as a precursor to a blowout or loss of flame condition in the combustor 16 during transient operations. The predetermined profile may be developed by calculations, operational experience, modeling, or other methods known in the art. For example, individual combustors may exhibit distinctive, repeatable, and observable changes in pressure over a time interval that may be used to predict or anticipate a blowout or loss of flame condition in the combustor. To illustrate this,
Returning to
It is anticipated that embodiments of the present invention provide several benefits over existing technology. For example, the system 10 and methods described with respect to
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other and examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.