System and method for determining a subscriber's zone information

Information

  • Patent Grant
  • 10419875
  • Patent Number
    10,419,875
  • Date Filed
    Wednesday, June 14, 2017
    7 years ago
  • Date Issued
    Tuesday, September 17, 2019
    5 years ago
Abstract
Systems and methods for delivering customized content to wireless service subscribers are disclosed. According to the disclosed embodiments, wireless access points can be grouped into various zones. Some of all of these zones can be further associated with predefined service types or other customized attributes. When a wireless subscriber connects to an access point in a given zone, the subscriber can be provided with content and/or services based on the zone to which he is connected.
Description
BACKGROUND

In this digital age, modern telecommunication service providers and device manufacturers are increasingly relying on public and/or private IP networks, including the Internet, as a core part of their technology. For example, many telecommunications service providers now offer a suite of Voice over IP (“VoIP”) services, as well as various data services, that utilize IP networks and/or IP-based wireless access networks (e.g., access networks based on IEEE 802.16 (“WiMAX”), IEEE 802.20 Mobile Broadband Wireless Access (MBWA), Ultra Wideband (UWB), 802.11 wireless fidelity (“Wi-Fi”), Bluetooth, and similar standards) for at least part of their infrastructure. Likewise, device manufacturers are producing the next generation of mobile devices (e.g. wireless handhelds, wireless handsets, mobile phones, personal digital assistances, notebook computers, and similar devices) that are enabled to send and receive information utilizing IP-based telecommunications services. In fact, many of today's modern mobile devices are able to function as “dual-mode devices” that take advantage of both cellular network technologies and IP-based technologies.


Unlicensed Mobile Access (UMA) technology has developed as part of this trend to incorporate IP solutions into mobile device telecommunication systems. UMA technology has recently been accepted into Release 6 of the 3rd Generation Partnership Project (3GPP) and is also referred to as Generic Access Network (GAN) technology. In various implementation schemes, UMA allows wireless service providers to merge cellular networks (such as Global System for Mobile Communications (GSM)) networks and IP-based wireless networks into one seamless service (with one mobile device, one user interface, and a common set of network services for both voice and data). One goal of UMA is to allow subscribers to move transparently between cellular networks and IP-based wireless networks with seamless voice and data session continuity, much like they can transparently move between cells within the cellular network. Seamless in-call handover between the IP-based wireless network and the cellular network ensures that the user's location and mobility do not affect the services delivered to the user.


At an operational level, UMA technology effectively creates a parallel radio access network, the UMA network, which interfaces to the mobile core network using standard mobility-enabled interfaces. For example, UMA can replace a system's GSM radio technology on the lower protocol layers with a wireless LAN, or similar technology. A call or other communication may be tunneled to the Mobile Switching Center (MSC) of a mobile service provider via an access point (e.g., a WiFi access point connected to a modem via the Internet) and gateway (e.g., a UMA network controller). In many cases, the mobile core network remains unchanged, making it much easier to maintain full service and operational transparency and allowing other aspects of the service infrastructure to remain in place. For example, in many systems that utilize UMA, the existing service provider's business support systems (BSS), service delivery systems, content services, regulatory compliance systems, and operation support systems (OSS) can support the UMA network without change. Likewise, service enhancements and technology evolution of the mobile core network apply transparently to both cellular access and UMA.


As the incorporation of IP solutions, such as UMA, into mobile device telecommunication systems expands, wireless service providers and wireless users have the opportunity to provide additional customized services. For example, a WiFi access point to which IP-based wireless telecommunications subscribers are connected may be interesting to a service provider because certain assumptions can be made about the subscribers using that access point. If a service provider could effectively and efficiently take action based assumptions derived from on how or where an IP-based wireless telecommunications subscriber was connected, the wireless user experience could be enhanced measurably.


The need exists for a system that overcomes the above problems, as well as one that provides additional benefits. Overall, the examples herein of some prior or related systems and their associated limitations are intended to be illustrative and not exclusive. Other limitations of existing or prior systems will become apparent to those of skill in the art upon reading the following Detailed Description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates aspects of a sample network system that allows VoIP-based communications in conjunction with a public switched telephone network (PSTN).



FIG. 2 illustrates an example converged wireless network system that combines a cellular network with an IP-based wireless telecommunications network.



FIG. 3 illustrates an example mapping from service zones, to service types, to subscribers.



FIG. 4 illustrates an example CGI and IP-based wireless telecommunications service zone selection process.





DETAILED DESCRIPTION

The following description provides specific details for a thorough understanding of, and enabling description for, various embodiments of the technology. One skilled in the art will understand that the technology may be practiced without these details. In some instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. It is intended that the terminology used in the description presented below be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain embodiments of the technology. Although certain terms may be emphasized below, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section. Additional details of the systems and methods described below are provided in co-pending PCT Application No. PCT/US2006/41225, filed on Oct. 20, 2006, titled “SYSTEM AND METHOD FOR RATING AN IP-BASED WIRELESS TELECOMMUNICATION BASED ON ACCESS POINT,” hereby incorporated by reference.


Sample Network Configurations


FIGS. 1 and 2 show sample network system configurations in which aspects of an access point management facility can be implemented in accordance with various embodiments. In general, one purpose of the access point management facility is to manage groups of WiFi access points, and the service types and subscribers associated with those access points.



FIG. 1 illustrates aspects of a sample network system 100 that allows VoIP-based communications in conjunction with a public switched telephone network (PSTN) 102. The system 100 includes at least one wireless access point 104. The access point 104 may be public or private, and may be located, for example, in a subscriber's residence (e.g., home, apartment or other residence), in a public location (e.g., coffee shops, retail stores, libraries, or schools) or in corporate or other private locations. In the sample system of FIG. 1, the access point 104 can accept communications 106 from at least one suitably configured telecommunications device 108 (e.g., a VoIP device). Various examples of network technology that may be involved in communicating between the telecommunications device 108 and the access point 104 include the IEEE 802.16 (WiMAX), IEEE 802.20 Mobile Broadband Wireless Access (MBWA), Ultra Wideband (UWB), 802.11 wireless fidelity (Wi-Fi), Bluetooth standards, or other similar standards. The access point 104 includes a wireless router 110 and a broadband modem 112 that enable connection to an Internet Protocol (IP) network 114. The IP network 114 may comprise one or more public networks, private networks, or combination of public and private networks.


In a communication or set of communications 106, the access point 104 receives IP packets from the telecommunications device 108. These IP packets are then transported through the IP network 114 to a signaling gateway 116, which in the example of FIG. 1, is operated by a telecommunications service provider. At the signaling gateway 116, the IP packets are converted to a traditional phone service signal. The phone service signal is then conveyed to a recipient via the PSTN 102.


The network system 100 of FIG. 1 also includes a call controller 118 that provides call logic and call control functions for communications sent through the system and an application server 120 that provides logic and execution of one or more applications or services offered by the telecommunications service provider, such as applications that implement various access and security rules. In some embodiments, aspects of the zone information may be determined with the mapping and processes, as described in more detail below with respect to FIGS. 3-4. In this example, a telecommunication service provider manages both the call controller 118 and the application server 120.



FIG. 2 illustrates a sample network system 200 in which aspects of the access point access point management facility can be implemented within a cellular telephone-type network. In general, with respect to the network system described in FIG. 2, because the same cellular protocols are used in communications involving IP access points as with traditional radio towers, the cellular service provider maintains a large degree of system compatibility even though using an IP-based network. For example, the various systems of the cellular service provider that deliver content and handle mobility may not even need to be aware that a subscriber's mobile device is on an IP-based wireless telecommunications network. Instead, the various systems of the cellular service provider assume the mobile device is on its native cellular network. The IP network is, therefore, abstracted with respect to the cellular network, regardless of whether the mobile device connects to the cellular network via a base station (e.g., for licensed spectrum access) or a wireless access point (e.g., for licensed, semilicensed and/or unlicensed spectrum access—such as spectrums for IP-based wireless telecommunications). Likewise, at a protocol level, because the same cellular protocols are used in communications involving the IP access points as with traditional radio towers, the cellular service provider maintains a large degree of system compatibility even though using an IP-based network.


Referring to FIG. 2, a sample network system 200 combines a cellular telephone network 202 (such as a GSM network) and an IP network 204 in a UMA-type configuration that provides service to the user of a mobile device 206. Such service may include voice services, and also supplementary services such as call forwarding and call waiting, text messaging services (e.g., SMS), and data-based services like ring tone downloads, game downloads, picture messaging, email and web browsing. Further, since the mobile device 206 is connected to an IP network, all manner of data services available over such networks may be provided to the mobile device 206.


In general, the described network system 200 accepts registration requests and communication connections from the mobile device 206. The accepted registration requests can be requests to either the cellular telephone network 202 or to the IP-based network 204. Accordingly, to handle requests to the cellular telephone network 202, the cellular telephone network 202 includes one or more cell towers 208 that are configured to accept cellular communications 210 from the mobile device 206. The cell towers 208 are connected to a base station controller 212 (such as a base station controller/radio network controller (BSC/RNC)) via a private network 214. The private network 214 can include a variety of connections (not shown) such as T1 lines, a wide area network (WAN), a local area network (LAN), various network switches, and other similar components.


The base station controller 212 controls communication traffic to a carrier core network 216, where all communications are managed (including both cellular and IP-based). Components of the carrier core network 216 in this example include a switch (e.g., a mobile switching center or MSC) 218, which is configured to control data/call flows and perform load balancing, as well as other functions. The carrier core network 216 may also include a variety of system databases such as an operation support subsystem (OSS) database 220, a business support system (BSS) database 222, and home location register (HLR) 224 or other central subscriber database that contains details of a carrier's subscribers for billing, call logging, etc.


The sample network system 200 of FIG. 2 further includes one or more access points 226 that can accept IP-based communications 228 from the mobile device 206. For example, each access point 226 can be configured as part of a wireless network in one or more locations such as a public network 230, a home network 232, or a private business network 234. Each access point 226 is coupled to the IP network 204 through, for example, a broadband connection (not shown) such as a DSL (Digital Subscriber Line) modem, a cable modem, a satellite modem, or any other broadband device.


When the mobile device 206 attempts to access the IP network 204 (i.e., to initiate an IP-based communication), information (e.g., data, voice, SMS, etc.) is initially formatted in the cellular system's 202 native protocol and then encapsulated into Internet Protocol (IP) packets, which are transmitted to the access point 226 and routed through the IP network 204 to a security gateway 236. In contrast to non-IP communication requests, such transmissions bypass the cellular telephone system's 202 existing network of radio towers. The security gateway 236 controls access to a network controller 238, which communicates with a data store 240 for logging and accessing communications data. Thus, one function of the network controller 238 is to manage access to the carrier network 216 when dealing with an IP-based communication (in a similar manner to that performed by the base station controller 212 for a non-IP-based communication).


In one example, authentication of a request for access by the mobile device 206 over the IP network 204 is handled by the security gateway 236, which communicates with an authentication, access and authorization (AAA) module 240 that is most likely associated with the carrier network 216. Challenges and responses to requests for access by the mobile device 206 are communicated between the HLR 224 and the AAA module 242. When authorization is granted, the security gateway 236 communicates the assignment of an IP address to the mobile device 206 that requested access. Once the security gateway 236 passes the IP address to the mobile device 206, the public IP address assigned to the mobile device 206 is passed to the network controller 238.


In another authorization example, upon receiving an identifier from the mobile device 206, the network controller 238 may query the data store 242 to determine if the mobile device 206 is authorized for accessing the IP network 204. Sample identifiers that may be utilized to determine access include a media access control (MAC) address associated with an access point, a mobile device or subscriber identifier (such as an International Mobile Subscriber Identifier (IMSI)), an Internet Protocol (IP) address (or “Public IP address”) associated with the access point, a fully qualified domain name (FQDN), or other similar types of information. The data store 242 may be a single database, table, or list, or a combination of databases, tables, or lists, such as one for IP addresses 244, one of MAC addresses 246, and one for FQDNs 248. The data store 242 may include “blocked” identifiers as well as “authorized” identifiers. Authorized accesses to the IP-based wireless telecommunications network may be maintained by the network controller 238 in an authorized session table or similar data construct.


In some cases, the signaling portion of a communication (e.g., the portion of the communication that governs various overhead aspects of the communication such as, for example, when the call starts, when the call stops, initiating a telephone ring, etc.) is routed through the network controller 238 to the switch 218, while the voice bearer portion of the communication (e.g., the portion of the communication that contains the actual content (either data or voice information) of the communication) is routed through the network controller 238 to a media gateway 250. In other words, the media gateway 250 controls the content flow between the service provider and the mobile device 206, while the switch 218 controls the signaling flow (or controls overhead-related flow) between the service provider and the mobile device 216.


Service Zones Overview

The system and methods described herein can be used to translate WiFi access points and broadband Internet networks into arbitrary aggregations, or zones, and then provide associated functions or services, such as corresponding customized services to subscribers. Service zones can be used in a wide variety of ways to customize a subscriber's experience. These features can be used to, for example, indicate the availability of free calls to a subscriber, or to indicate location specific information to the subscriber such as “Happy Holidays from your favorite department store” when the subscriber is in that store. In UMA embodiments, the UMA protocol or specification includes a “UMA Service Zone” (USZ) field. The appropriate USZ information can be found from a database using any combination of parameters. These parameters can include, as non-limiting examples, Service Zone, Service Type, date, week day, and time of day.


Service zones could be aggregations, clusters or sets of access points, typically identified by the MAC address or IP address of the associated WiFi access point, or another designator in converged cellular-IP embodiments, such as a proximate cellsite global indicator (CGI). For example, a single zone could include thousands of WiFi access points around the world, such as access points located in worldwide retail locations of a particular business. In UMA embodiments, the USZ field can be used to specify particular service zones that could be associated with specific service types. As non-limiting examples, services that can be provided may be favorable billing rates, free services (e.g., free downloadable songs or other digital content), location-based services associated with that zone (e.g., cafeteria menu associated with a cafeteria within that zone), and so forth. Zones may also be mapped to individual subscribers, so that employees within a given zone would receive certain benefits or content, whereas visitors would not.


These zones can be implemented by use of a database in the network that associates a zone designator to one or more access points or regions. Further, the database may associate particular subscribers to particular services for that zone. Subscribers may be identified uniquely by any of a variety of designators, such as mobile station or subscriber ID (such as an international mobile subscriber identifier, or IMSI), or other identifier. The database can also link to specific content or services, as well as associated rules for providing that content/service.


Implementation Description

In UMA implementations, the UMA specification supports a UMA Service Zone (USZ) field for “UMA Service Zone Information.” This field is returned to the mobile device by the UMA Network Controller (UNC) during registration. A purpose of the UMZ Service Zone Information element is to provide the mobile station with UMA Service Zone information applicable to the current location of the user. It can include at least two fields: UMA Service Zone Name string can be used by the UNC to indicate textual information related to the location, and UMA Service Zone Icon Indicator can be used by the UNC to turn on various indicators in the mobile station.


The USZ can depend on any combination of mobile device location and subscriber identity. Using the systems and methods disclosed herein, the subscriber's WiFi location can be mapped into Service Zones in the UNC, a subscriber's Service Type can be provisioned from Customer Care/Billing Systems to the UNC, and the appropriate USZ information can be found from a database using a combination of Service Zone, Service Type, date, week day, and time of day as keys. Thus, WiFi service zone information can be used in conjunction with other data such as subscriber Service Type, date, day of week, time of day as keys into a database that stores the possible UMS Service Zone information. When the subscriber registers with the network, the appropriate USZ is determined from this database. Thus, USZ could depend on both location and subscriber. Some or all of the mappings described herein can be performed through the use of one or more databases.


The systems and methods described herein could be implemented in the following manner, as illustrated in FIG. 3:


1. Map WiFi location to WiFi zone (301). In this step or block, physical access points and broadband networks can be mapped to Service Zones (clusters). As non-limiting examples, a service zone can be defined in any of three ways: (1) by access point MAC address or collection of access point MAC addresses, (2) by IP address or range of IP addresses, or (3) by fully qualified domain name (FQDN) or partial FQDN matches. In some embodiments, service zones can be associated with a CellID. The CellID is reported through to the billing system so that the subscriber's call is rated correctly. In some embodiments, the mapping of WiFI locations to WiFi zones can be performed in the UNC. Additionally, the subscriber's WiFi location can be mapped into a Service Zone in the UNC.


The Service Zones may be defined in a database associated with the network, such as the data store 242, or customer care or billing system databases (not shown). As noted below, a table or other data structure associates a number or other zone identifier with one or more IP address, MAC addresses, FQDNs, etc. Other Internet Protocol or non-Internet Protocol schemes could be used. In some embodiments, one or more CellIDs may be used. The zone need not be contiguous or overlapping APs, but could be scattered throughout a region, state, country, etc.


2. Map WiFi zone to service type (302). In this step or block, the subscriber's Service Type is provisioned to or by the system. An example of a service type might be “Microsoft location specific campus plan for Redmond.” Another might be “non-location specific regular plan.” A subscriber's Service Type can be provisioned from the Customer Care and Billing System to the UNC. Thus, a subscriber on the Microsoft campus might receive a preferential billing plan. Or, customized content could be pushed to the phone based on this information, such as a menu of a nearby restaurant.


Again, service types may be defined in a database associated with the network, such as the data store 242. As noted herein, one or more service types may be defined in a table or other data structure, where one or more service types may be associated with each service zone defined in step (301). Indeed, a given service zone may have multiple service types, which may include specific billing rates, delivery of certain content (e.g. content geographically related to the zone), advertisements, and/or rules. As one example, rules may relate to filtering, screening, or security for providing data/communications to/from mobile stations in the zone. Further, other data may assist in defining an appropriate service type, such as time of day, day of week, etc.


3. Map subscriber to service type (303). In this step or block, when the subscriber registers with the network, an appropriate USZ is fetched from a database by using mapped service zone information and the user Service Type. Also, in some embodiments, different time specific qualifiers can be used to determine the USZ to use. Examples of such qualifiers could be the current date, day of week and/or time of day. For example, a USZ textual message such as “Happy Holidays,” or “Good Morning” could be sent to the subscriber.


Again, subscribers may be previously associated with service types and defined in a database associated with the network, such as the data store 242. As noted herein, one or more subscribers may be identified by any known subscriber or handset identifier, such as IMEI, IMSI, SIM Number, SSN, mobile phone number, etc. A subscriber identified in the database may be associated with one or more zones/service types in a table or other data structure. Thus, in one example, employees may be identified and associated with an employer in the database so that those employees received certain services when within the employer's service zone.


While the three steps or blocks described above are illustrated in a certain sequential order, they could be performed in any sequence or order, and of course other steps or block may be included. By execution of these mapping steps, access points can be flexibly mapped or grouped. As discussed above, they can be grouped by MAC address, IP address, or FQDN, into WiFi locations zones which can then be used in conjunction with the subscriber's Service Type to determine an appropriate USZ to return to the subscriber.


UMA Zones Database

As illustrated in the table below, the UMA Zones database can store groups of access points, IP addresses, and/or fully qualified domain names (FQDN). The database can be keyed to a unique integer field called a Zone Number. Records in the database can store at least one type of information, such as access point MAC address(es), IP address(es) or FQDN(s). For example, a database could be used to indicate that a certain retail establishment name is associated with certain MAC addresses. It is possible to store individual values, ranges of values, or use wild card values in any of the records. For example, a record may include a single URI such as wabod01s01.t-mobile.com, or it could be stored in a form that captures subdomains, such as *.t-mobile.com. In the case of an IP address, it is possible to store the addresses with a subnet mask to indicate multiple IP addresses, for example, 24.16.43.0/16 or similar. It is possible to include records with duplicate or partially duplicated IP/MAC/FQDN entries with different CGIz values. Entries in the UMA Zones database can be used to indicate some or all IP addresses, some or all domains (FQDNs), some or all access points associated with a particular manufacturer or service provider, such as all T-Mobile sold access points, and some or all MAC addresses that are to be used in default zones. In some embodiments, a user-friendly interface can be provided for modifying the UMA zones database.














Field Name
Data Type
Notes







Zone Number
Unique integer
This is the database base key


Zone
<IP address range> or
This defines the zone. It can



<MAC address
be an individual address or



range> or <FQDN
domain or a range.



range>



CGIz
Text
This is the value sent to the




MSC to include in call detail




records (CDRs) to indicate




rating in this Zone.


[UMZ Service
Text
This is the string and numeric


Zone Text and

indicator for a handset icon to


icon indicator]

be sent to the mobile to be dis-




played on screen.









The UMA Service Type Database

As illustrated in the table below, the UMA system can also provide a UMA service type database. This database can store the rating relationship between service types and UMA zones in the UMA Zone database. Each record in the UMA Service Type database can refer and/or be linked to multiple records in the UMA Zones database.














Field Name
Data Type
Notes







Service Type
Unique integer
This is the database base key


[Zone Number(s)]
Zone Number (foreign
There may be a single or mul-



key) from UMA Zones
tiple UMA zones associated



database
with a single service type




record.









UMA Subscriber Database

The subscriber database can include an API for external systems such as billing, IVRs, and customer care to read and write subscriber data. As illustrated in the table below, the subscriber database can be used to store subscriber profiles keyed to the IMSI. The UNC can be configured to determine the appropriate IMSI based on the IMSI that is found in the URR discovery, URR register, and URR Register Update messages received from a mobile device.


The subscriber database can store at least three enumerated fields keyed by IMSI: UMA Barring (barred/not barred), UMA service type, and UMA roaming (allowed/barred). The subscriber database can have a field for a serving UNC for a given IMSI. The subscriber database can be configured to keep MAC address/CGI pairs to enable subscriber billing on a per access point basis. The first MAC address/CGI pair is referred to as MACH1 and CGIH1 respectively. Subsequent pairs are referred to as MACH2 and CGIH2, etc. In some embodiments, the CGI values can include a single default value for all subscribers.


The subscriber database can include a field for storing the MSISDN associated with the IMSI. The subscriber database can store the subscriber's address, including address, city, state, and zip code. The subscriber database can also store the maximum number of MAC/CGI pairs allowed for a subscriber. In some embodiments, the subscriber database can reference an audio file. This audio file can be associated with one or more service zones and can be played back for a user when the user is in the associated service zone. The audio file can be stored either on the subscriber's mobile unit or on a network data store remote from the phone. In some embodiments, the audio can be a lossless or relatively lossless format, such as a Windows WAV file, in other embodiments the audio file can be compressed using a scheme such as MP3. The user may provide names for audio files or the files themselves, the network may provide them, or both.


A sample table illustrating the data that can be stored in the UMA subscriber database is provided below.














Field Name
Data Type
Notes







IMSI
Unique value
This is the database base key


MSISDN
Numeric
MSIISDN will be used by the




IVR that provisions MAC ad-




dress in the subscriber database


UMA Barring
Boolean, Default
Indicates whether subscriber is



Value is allowed
allowed UMA service (home




or roaming)


UMA Roaming
Boolean, Default
Indicates whether or not sub-



Value is not allowed
scriber is allowed UMA roam-




ing


Service Type
Integer. Default value
Indicates which service type



is 1
(from the UMA Service Type




Database) that the subscriber




subscribes to


Serving UNC
IP address or FQDN
Indicates the service UNC




preferred for the subscriber


[MACH1, CGIH1,
MAC address
Indicates a MAC address/CGI


UMA Service
(hexadecimal value),
pair and the UMA Service


Zone text and
CGI values, UMA
Zone text to send to the


icon indicator,
Service Zone (text),
mobile


Descriptor,
Descriptor (text),



Audio file
Audio file (binary or




base64 encoded)



Default LAC
Integer
Indicates the time zone that a




call occurred in to the billing




system. The Default LAC value




indicates the default value to be




included in the billing CDR for




a subscriber if the time zone




can't be determined by other




means


[Primary Place

For location purposes


of Use Address]




Max Number of
Numeric
The maximum number of


Access Points

MAC/CGI entries allowed in




the subscriber database. In




some embodiments,




Default = 0









An example method for implementing customized service types based on service zones is illustrated in the steps of FIG. 4. In step 401, the process begins when the subscriber is in the midst of registering and has successfully authenticated. In step 402, the system checks for a match between the reported MAC address and the MAC entries in the Subscriber Database. In step 403, it is determined whether there is a MAC match in the Subscriber Database. If there is a match, in step 404, the system stores the corresponding CGI value from the Subscriber Database in the UNC. The CGI value and the UMA Service Zone can be sent to the mobile device. In step 405, registration continues. If it is determined that there is no match in step 403, then, in step 406, the Service Type is determined from the Subscriber Database. In step 407, the UMA Zone is determined from the UMA Zone database.


In step 408, it is determined whether there is a Service Type to UMA Zone match in the Service Type database. If there is a match, then, in step 409, the corresponding CGIz value from the UMA Service Type database is stored in the UNC. The UMA Service Zone can be sent to the mobile device. In step 410, registration continues. If it is determined that there is no match in step 408, then, in step 411, a default CGI value is stored in the UNC. The default CGI value and default UMA Service Zone can be sent to the mobile device. Any calls or billable communications can be at then standard rates (e.g. standard GSM rates for a given service provider). In step 412, registration continues.


CONCLUSION

Many specific details of certain embodiments of the invention are set forth in the description and in FIGS. 1-4 to provide a thorough understanding of these embodiments. A person skilled in the art, however, will understand that the invention may be practiced without several of these details and that additional details can be added to the invention. For example, some network elements are described herein as performing certain functions. Those functions could be performed by other elements in the same or differing networks, which could reduce the number of network elements. Alternatively or additionally, network elements performing those functions could be replaced by two or more elements to perform portions of those functions. Well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the invention. As used herein, one or more components “coupled” to each other can be coupled directly (i.e., no other components are between the coupled components) or indirectly (i.e., one or more other components can be placed between the coupled components).


While “WiFi” and UMA is used herein as examples, the system may employ any type of wireless protocol, including wireless local, wide and metropolitan area network (WLAN, WWAN, WMAN, respectively) access protocols. For example, wireless protocols can be based on any of the 802.11 IEEE standards. Some embodiments the system can employ Bluetooth, Ultra-wideband, WiMAX, or ZigBee protocols. Further, while a particular system employing wireless devices communicating with a network server via an AP and network (e.g. the Internet), other system configurations are possible. For example, a system can include a computer that provides a physical network link to the Internet and also provides a wireless bridge to a peripheral device (e.g., a wireless device or another computer).


The invention can be practiced with other communications, data processing, or computer system configurations. The facility can be implemented in environments other than the environments depicted in FIGS. 1 and 2. For example, the mobile telecommunications device described herein could be a non-IP-enabled mobile phone that connects to an IP-enabled access point that is connected to an IP-based telecommunications network over an IP network. As a second example, the mobile telecommunications device could be an analog telephone that connects to an IP-enabled terminal adaptor that is connected to an IP-based telecommunications network over an IP network. As a third example, the telecommunications device could be an IP-enabled softmobile (e.g., a personal computer having a USB device with an embedded SIM and UMA softphone application) that is connected to an IP-based telecommunications network over an IP network.


The telecommunications device may also include other devices, such as wearable computers, devices that perform monitoring or tracking functions, and any other device (or combination of devices) that is IP-enabled, either in hardware, software, or a combination of both hardware and software. As non-limiting examples, the mobile device could be any one or combination of Internet appliances, hand-held devices (including personal digital assistants (PDAs)), wearable computers, all manner of cellular or mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, set-top boxes, network PCs, mini-computers, mainframe computers, and the like. The terms “computer,” “server,” “host,” “host system,” and the like are generally used interchangeably herein, and refer to any of the above devices and systems, as well as any data processor. Therefore, those of skill in the art will understand that various configurations are possible and that the facility can be implemented in a wide variety of environments.


Of course, aspects of the invention can be embodied in a special purpose computer or data processor (e.g. a mobile phone) that is specifically programmed, configured, or constructed to perform one or more of the computer-executable instructions explained in detail herein. Aspects of the invention can also be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.


Aspects of the invention may be stored or distributed on computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Indeed, computer implemented instructions, data structures, screen displays, and other data under aspects of the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme).


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.


The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined or altered to provide further embodiments. Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the technology.


These and other changes can be made to the invention in light of the above Detailed Description. While the above description describes certain embodiments of the invention, and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the invention disclosed herein.


The terminology used in the Detailed Description is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the invention under the claims.


While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as a means-plus-function claim under 35 U.S.C sec. 112, other aspects may likewise be embodied as a means-plus-function claim. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.

Claims
  • 1. At least one non-transitory computer readable medium, carrying instructions, which when executed by at least one data processor, perform a method of: mapping at least one access point of an IP-based wireless access network (WLAN) to a service zone, wherein the WLAN connects to a cellular telephone network via a Generic Access Network (GAN), Unlicensed Mobile Access (UMA), or Session Initiation Protocol (SIP) protocol;storing the mapping of the access point to the service zone in a database;mapping the service zone to at least one service type, wherein the service type is associated with content or services provided to mobile device users who access the cellular telephone network via the access point;storing the mapping of the service zone to the service type in the database;mapping specific subscribers of the cellular telephone network with the at least one service type, wherein the specific subscribers are authorized to receive the at least one type of service when accessing the access point in the service zone; andstoring the mapping of the specific subscribers of the cellular telephone network to the service type in the database.
  • 2. The non-transitory computer-readable medium of claim 1, wherein the database stores for each mapping of the access point to the service zone: a Zone Number Field that includes a unique zone number integer and reflects different service zones, ora Zone Field that reflects one or more addresses associated with a single Zone Number.
  • 3. The non-transitory computer-readable medium of claim 2, wherein the database further stores for each mapping of the access point to the service zone: a Cellsite Global Indicator (CGI) Field that reflects a value sent to a Mobile Switching Center (MSC) to include in call detail records to indicate a rating in the service zone, ora UMA Service Zone Field that reflects UMA service zone information applicable to a location of the access point.
  • 4. The non-transitory computer-readable medium of claim 2, wherein each Zone Field is identified using at least one IP address, at least one MAC address, at least one proximate CGI, or at least one Fully Qualified Domain Name (FQDN).
  • 5. The non-transitory computer-readable medium of claim 2, wherein at least one Zone Field comprises a wild card value.
  • 6. The non-transitory computer-readable medium of claim 2, wherein at least one Zone Field comprises a subnet mask to indicate multiple IP addresses.
  • 7. The non-transitory computer-readable medium of claim 1, wherein the database stores for each mapping of the service zone to the service type: a Service Type Field that includes a unique service zone integer and reflects different service types, ora Zone Number Field as a foreign key that reflects either single or multiple service zones associated with a single Service Type.
  • 8. The non-transitory computer-readable medium of claim 1, wherein the database stores, for each mapping of the specific subscribers of the cellular telephone network to the service type, at least two of: an International Mobile Subscriber Identity (IMSI) Field that includes a unique subscriber identity integer and reflects different subscriber profiles,a Service Type Field as a foreign key that reflects a service type associated with the specific subscriber,a UMA Barring Field as a Boolean value that indicates whether the specific subscriber is allowed UMA service, ora UMA Roaming Field as a Boolean value that indicates whether the specific subscriber is allowed UMA roaming.
  • 9. The non-transitory computer-readable medium of claim 8, wherein the database further stores, for each mapping of the specific subscribers of the cellular telephone network to the service type, at least two of the following: a Mobile Station International Subscriber Directory Number (MSISDN) Field that includes a unique subscriber identity integer and reflects a MSISDN associated with the IMSI Field,a Serving UMA Network Controller (UNC) Field that reflects a UNC preferred for the specific subscriber,a MAC/CGI Pairs Field that reflects a MAC address/CGI pair and a UMA Service Zone text to send to the specific subscriber,a Default Location Field that includes a location identity integer and reflects a time zone of a call, ora Maximum Number of Access Points Field that reflects a maximum number of MAC/CGI entries allowed in the database.
  • 10. In a system having multiple wireless handheld devices capable of communicating over an IP-based wireless local area network (WLAN) that includes at least one access point for communicating with the handheld devices, an apparatus comprising: a database; anda server, coupled to the database, and configured to: map the at least one access point of the WLAN to a service zone, wherein the WLAN connects to a cellular telephone network via a Generic Access Network (GAN), Unlicensed Mobile Access (UMA), or Session Initiation Protocol (SIP) protocol;store the mapping of the access point to the service zone in a database;map the service zone to at least one service type, wherein the service type is associated with content or services provided to mobile device users who access the cellular telephone network via the access point;store the mapping of the service zone to the service type in the database;map specific subscribers of the cellular telephone network with the at least one service type, wherein the specific subscribers are authorized to receive the at least one type of service when accessing the access point in the service zone; andstore the mapping of the specific subscribers of the cellular telephone network to the service type in the database.
  • 11. The apparatus of claim 10, wherein the database stores for each mapping of the access point to the service zone: a Zone Number Field that includes a unique zone number integer and reflects different service zones, ora Zone Field that reflects one or more addresses associated with a single Zone Number.
  • 12. The apparatus of claim 11, wherein the database further stores for each mapping of the access point to the service zone: a CGI Field that reflects a value sent to a Mobile Switching Center (MSC) to include in call detail records to indicate a rating in the service zone, ora UMA Service Zone Field that reflects UMA service zone information applicable to a location of the access point.
  • 13. The apparatus of claim 11, wherein each Zone Field is identified using at least one IP address, at least one MAC address, at least one proximate CGI, or at least one FQDN.
  • 14. The apparatus of claim 11, wherein at least one Zone Field comprises a wild card value.
  • 15. The apparatus of claim 11, wherein at least one Zone Field comprises a subnet mask to indicate multiple IP addresses.
  • 16. The apparatus of claim 10, wherein the database stores for each mapping of the service zone to the service type: a Service Type Field that includes a unique service zone integer and reflects different service types, ora Zone Number Field as a foreign key that reflects either single or multiple service zones associated with a single Service Type.
  • 17. The apparatus of claim 10, wherein the database stores, for each mapping of the specific subscribers of the cellular telephone network to the service type, and least two of: an International Mobile Subscriber Identity (IMSI) Field that includes a unique subscriber identity integer and reflects different subscriber profiles,a Service Type Field as a foreign key that reflects a service type associated with the specific subscriber,a UMA Barring Field as a Boolean value that indicates whether the specific subscriber is allowed UMA service, ora UMA Roaming Field as a Boolean value that indicates whether the specific subscriber is allowed UMA roaming.
  • 18. The apparatus of claim 17, wherein the database further stores, for each mapping of the specific subscribers of the cellular telephone network to the service type, at least two of the following: a Mobile Station International Subscriber Directory Number (MSISDN) Field that includes a unique subscriber identity integer and reflects a MSISDN associated with the IMSI Field,a Serving UMA Network Controller (UNC) Field that reflects a UNC preferred for the specific subscriber,a MAC/CGI Pairs Field that reflects a MAC address/CGI pair and a UMA Service Zone text to send to the specific subscriber,a Default Location Field that includes a location identity integer and reflects a time zone of a call, anda Maximum Number of Access Points Field that reflects a maximum number of MAC/CGI entries allowed in the database.
  • 19. A mobile device capable of being associated with a service type, comprising: at least one processor;at least one memory coupled to the processor;at least one data input device coupled to the processor;at least one data output device coupled to the processor; andat least one wireless radio coupled to the processor, wherein the radio permits the mobile device to communicate with an access point of an IP-based wireless access network (WLAN),wherein the radio permits the mobile device to communicate with the WLAN based on a Generic Access Network (GAN), Unlicensed Mobile Access (UMA), or Session Initiation Protocol (SIP) protocol, andwherein the processor is configured to receive one service type for the mobile device based on: a determination of a service zone that covers the access point,an association of the mobile device with the service zone, andan identification of at least one of multiple services types assigned to the service zone, andwherein at least one of the service types is unrelated to billing.
  • 20. The mobile device of claim 19, wherein the mobile device is identified using an International Mobile Subscriber Identity (IMSI) number, a Subscriber Identity Module (SIM) number, or a mobile phone number.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. application Ser. No. 14/565,123, filed Dec. 9, 2014, now U.S. Pat. No. 9,693,189; which is a continuation application of U.S. application Ser. No. 13/154,365, filed Jun. 6, 2011, now U.S. Pat. No. 8,908,664; which is a continuation of U.S. application Ser. No. 12/446,451, filed Apr. 20, 2009; which is a U.S. National Stage Application of PCT Application No. PCT/US2007/082156, filed Oct. 22, 2007; which claims benefit of U.S. Provisional Application No. 60/853,156, filed Oct. 20, 2006; all of which are incorporated herein in their entireties by reference.

US Referenced Citations (228)
Number Name Date Kind
5724660 Kauser et al. Mar 1998 A
6002679 Liu et al. Dec 1999 A
6104712 Robert et al. Aug 2000 A
6119012 Amirijoo Sep 2000 A
6161018 Reed et al. Dec 2000 A
6222483 Twitchell et al. Apr 2001 B1
6249252 Dupray Jun 2001 B1
6252545 Da et al. Jun 2001 B1
6463288 Havinis et al. Oct 2002 B1
6542819 Kovacs et al. Apr 2003 B1
6603976 Amirijoo et al. Aug 2003 B1
6603978 Carlsson et al. Aug 2003 B1
6665611 Oran et al. Dec 2003 B1
6671514 Cedarvall et al. Dec 2003 B1
6690659 Ahmed et al. Feb 2004 B1
6711417 Gorman et al. Mar 2004 B1
6801778 Koorapaty et al. Oct 2004 B2
7151941 Vänttinen et al. Dec 2006 B2
7158500 Annamalai Jan 2007 B2
7177399 Dawson et al. Feb 2007 B2
7187923 Mousseau et al. Mar 2007 B2
7194354 Oran et al. Mar 2007 B1
7245900 Lamb et al. Jul 2007 B1
7272500 Walker Sep 2007 B1
7283822 Gallagher et al. Oct 2007 B2
7304985 Sojka et al. Dec 2007 B2
7313143 Bruno Dec 2007 B1
7317910 Niemenmaa et al. Jan 2008 B2
7336668 Adams Feb 2008 B2
7336962 Levitan Feb 2008 B2
7353034 Haney Apr 2008 B2
7369859 Gallagher May 2008 B2
7433673 Everson et al. Oct 2008 B1
7436789 Caliskan et al. Oct 2008 B2
7466986 Halcrow et al. Dec 2008 B2
7577431 Jiang Aug 2009 B2
7593605 King et al. Sep 2009 B2
7606555 Walsh et al. Oct 2009 B2
7610011 Albrett Oct 2009 B2
7613155 Shim Nov 2009 B2
7620404 Chesnais et al. Nov 2009 B2
7640008 Gallagher et al. Dec 2009 B2
7653394 McMillin Jan 2010 B2
7664494 Jiang Feb 2010 B2
7676394 Ramer et al. Mar 2010 B2
7688261 Di Esposti Mar 2010 B2
7714778 Dupray May 2010 B2
7768963 Alizadeh-Shabdiz Aug 2010 B2
7856315 Sheha et al. Dec 2010 B2
7903029 Dupray Mar 2011 B2
7904096 Shyr et al. Mar 2011 B2
7949326 Gallagher et al. May 2011 B2
7974639 Burroughs et al. Jul 2011 B2
8116291 Annamalai et al. Feb 2012 B2
8145183 Barbeau et al. Mar 2012 B2
8213957 Bull et al. Jul 2012 B2
8311557 Annamalai Nov 2012 B2
8364746 Annamalai et al. Jan 2013 B2
8369266 Jin et al. Feb 2013 B2
8509731 Kholaif et al. Aug 2013 B2
8571043 Horner Oct 2013 B2
8693454 Annamalai et al. Apr 2014 B2
8718592 Annamalai May 2014 B2
8737311 Jin et al. May 2014 B2
8908664 Caldwell et al. Dec 2014 B2
8953567 Annamalai Feb 2015 B2
9398418 Annamalai Jul 2016 B2
9661602 Annamalai et al. May 2017 B2
9693189 Caldwell et al. Jun 2017 B2
9820089 Annamalai Nov 2017 B2
9820102 Annamalai Nov 2017 B2
20020019698 Vilppula et al. Feb 2002 A1
20020064141 Sakakura May 2002 A1
20020077144 Keller et al. Jun 2002 A1
20020123354 Nowak Sep 2002 A1
20030009385 Tucciarone et al. Jan 2003 A1
20030016648 Lindsay et al. Jan 2003 A1
20030032404 Wager et al. Feb 2003 A1
20030058844 Sojka et al. Mar 2003 A1
20030074471 Anderson et al. Apr 2003 A1
20030095069 Stilp May 2003 A1
20030130182 Bakkeby et al. Jul 2003 A1
20030212776 Roberts et al. Nov 2003 A1
20030216143 Roese et al. Nov 2003 A1
20030222819 Karr et al. Dec 2003 A1
20040062264 Adams Apr 2004 A1
20040067759 Spirito et al. Apr 2004 A1
20040076157 Sojka et al. Apr 2004 A1
20040087315 Dufva et al. May 2004 A1
20040102196 Weckstrom et al. May 2004 A1
20040114577 Sojka et al. Jun 2004 A1
20040122730 Tucciarone et al. Jun 2004 A1
20040142704 Scholz Jul 2004 A1
20040157590 Lazaridis et al. Aug 2004 A1
20040162896 Cen et al. Aug 2004 A1
20040166856 Niemenmaa Aug 2004 A1
20040198386 Dupray Oct 2004 A1
20040202120 Hanson Oct 2004 A1
20040202194 Annamalai Oct 2004 A1
20040203853 Sheynblat Oct 2004 A1
20040203915 van Diggelen et al. Oct 2004 A1
20040224702 Chaskar Nov 2004 A1
20040240430 Lin et al. Dec 2004 A1
20040259566 Maanoja et al. Dec 2004 A1
20050003831 Anderson Jan 2005 A1
20050055578 Wright et al. Mar 2005 A1
20050059415 Easo et al. Mar 2005 A1
20050066044 Chaskar et al. Mar 2005 A1
20050070306 Kim et al. Mar 2005 A1
20050075116 Laird et al. Apr 2005 A1
20050079821 Bi Apr 2005 A1
20050105496 Ambrosino May 2005 A1
20050130673 Annamalai Jun 2005 A1
20050136943 Banerjee et al. Jun 2005 A1
20050138144 Sethi Jun 2005 A1
20050148342 Sylvain Jul 2005 A1
20050153687 Niemenmaa et al. Jul 2005 A1
20050159153 Mousseau et al. Jul 2005 A1
20050170851 Melpignano et al. Aug 2005 A1
20050181805 Gallagher Aug 2005 A1
20050186948 Gallagher et al. Aug 2005 A1
20050192024 Sheynblat Sep 2005 A1
20050232189 Loushine Oct 2005 A1
20050255866 Dupuy et al. Nov 2005 A1
20050272424 Gallagher et al. Dec 2005 A1
20050280557 Jha et al. Dec 2005 A1
20050286466 Tagg et al. Dec 2005 A1
20060009235 Sheynblat et al. Jan 2006 A1
20060014517 Barclay et al. Jan 2006 A1
20060014548 Bolin et al. Jan 2006 A1
20060015513 Poyhonen et al. Jan 2006 A1
20060025158 Leblanc et al. Feb 2006 A1
20060029296 King et al. Feb 2006 A1
20060030290 Rudolf et al. Feb 2006 A1
20060052115 Khushu Mar 2006 A1
20060062363 Albrett Mar 2006 A1
20060098899 King et al. May 2006 A1
20060105776 Burke May 2006 A1
20060121916 Aborn et al. Jun 2006 A1
20060172732 Nylander et al. Aug 2006 A1
20060178146 Lee et al. Aug 2006 A1
20060194594 Ruutu et al. Aug 2006 A1
20060212217 Sheha et al. Sep 2006 A1
20060245406 Shim Nov 2006 A1
20060258365 Cha et al. Nov 2006 A1
20060258369 Burroughs et al. Nov 2006 A1
20060276201 Dupray Dec 2006 A1
20060286984 Bonner Dec 2006 A1
20060293066 Edge et al. Dec 2006 A1
20070004379 Stanners Jan 2007 A1
20070032249 Krishnamurthi et al. Feb 2007 A1
20070060097 Edge et al. Mar 2007 A1
20070060114 Ramer et al. Mar 2007 A1
20070061198 Ramer et al. Mar 2007 A1
20070061242 Ramer et al. Mar 2007 A1
20070061243 Ramer et al. Mar 2007 A1
20070061244 Ramer et al. Mar 2007 A1
20070061245 Ramer et al. Mar 2007 A1
20070061246 Ramer et al. Mar 2007 A1
20070061247 Ramer et al. Mar 2007 A1
20070061303 Ramer et al. Mar 2007 A1
20070061317 Ramer et al. Mar 2007 A1
20070072624 Niemenmaa et al. Mar 2007 A1
20070073717 Ramer et al. Mar 2007 A1
20070073718 Ramer et al. Mar 2007 A1
20070073719 Ramer et al. Mar 2007 A1
20070073722 Ramer et al. Mar 2007 A1
20070073723 Ramer et al. Mar 2007 A1
20070123237 Cacioppo et al. May 2007 A1
20070149211 Dunn et al. Jun 2007 A1
20070155489 Beckley et al. Jul 2007 A1
20070167174 Halcrow et al. Jul 2007 A1
20070178913 Niemenmaa et al. Aug 2007 A1
20070189497 Bareis Aug 2007 A1
20070192294 Ramer et al. Aug 2007 A1
20070192318 Ramer et al. Aug 2007 A1
20070198485 Ramer et al. Aug 2007 A1
20070217454 Horner Sep 2007 A1
20070239685 Howell et al. Oct 2007 A1
20070239724 Ramer et al. Oct 2007 A1
20070288427 Ramer et al. Dec 2007 A1
20080009268 Ramer et al. Jan 2008 A1
20080014956 Balasubramanian Jan 2008 A1
20080045236 Nahon et al. Feb 2008 A1
20080076420 Khetawat et al. Mar 2008 A1
20080076429 Comstock et al. Mar 2008 A1
20080081620 Lu et al. Apr 2008 A1
20080096594 Vinding Apr 2008 A1
20080108319 Gallagher May 2008 A1
20080146245 Appaji Jun 2008 A1
20080192696 Sachs et al. Aug 2008 A1
20080254810 Fok et al. Oct 2008 A1
20080280624 Wrappe Nov 2008 A1
20090005061 Ward et al. Jan 2009 A1
20090054070 Gallagher et al. Feb 2009 A1
20090171583 DiEsposti Jul 2009 A1
20090177730 Annamalai et al. Jul 2009 A1
20090185669 Zitnik et al. Jul 2009 A1
20090275348 Weinreich et al. Nov 2009 A1
20090311987 Edge et al. Dec 2009 A1
20100046406 Annamalai et al. Feb 2010 A1
20100069099 Dunn et al. Mar 2010 A1
20100150120 Schlicht et al. Jun 2010 A1
20100220697 Liu et al. Sep 2010 A1
20100220700 Hodroj et al. Sep 2010 A1
20100289640 Annamalai Nov 2010 A1
20100291947 Annamalai Nov 2010 A1
20100331017 Ariga Dec 2010 A1
20110039576 Prakash et al. Feb 2011 A1
20110047033 Mahaffey et al. Feb 2011 A1
20110051658 Jin et al. Mar 2011 A1
20110051665 Huang Mar 2011 A1
20110111726 Kholaif et al. May 2011 A1
20110159886 Kangas et al. Jun 2011 A1
20110200022 Annamalai Aug 2011 A1
20120096490 Barnes, Jr. et al. Apr 2012 A1
20120116677 Higgison et al. May 2012 A1
20120140749 Caldwell et al. Jun 2012 A1
20120320888 Annamalai et al. Dec 2012 A1
20130150085 Jin et al. Jun 2013 A1
20130237250 Annamalai et al. Sep 2013 A1
20140045596 Vaughan et al. Feb 2014 A1
20140295894 Annamalai et al. Oct 2014 A1
20150181375 Annamalai Jun 2015 A1
20160165392 Caldwell et al. Jun 2016 A1
20170325192 Annamalai et al. Nov 2017 A1
20180070204 Annamalai Mar 2018 A1
20180070211 Annamalai Mar 2018 A1
Foreign Referenced Citations (9)
Number Date Country
1583374 Oct 2005 EP
2051556 Apr 2009 EP
10239416 Sep 1998 JP
1020040063234 Jul 2004 KR
2000027143 May 2000 WO
2005004520 Jan 2005 WO
2005004528 Jan 2005 WO
2005060292 Jun 2005 WO
2006102784 Oct 2006 WO
Non-Patent Literature Citations (33)
Entry
European Patent Office, Extended European Search Report, EP Patent Application 07868537.7, dated Mar. 7, 2017, 9 pages.
European Patent Office, Extended European Search Report, EP Patent Application 10775643.9, dated Dec. 1, 2016, 10 pages.
“Enabler Release Definition for Secure UserPlane for Location,” Candidate Version 1.0, Open Mobile Alliance, Jan. 22, 2007, 17 pages.
“Google Search of Location of Mobile,” http://www.google.com/search?q=location+of+mibile&sourceid=ie7&rls=com.microsoft:en-us:IE-SearchBox&ie=&oe= [Last Accessed Jun. 8, 2010], 2 pages.
“IP Muitimedia Subsystem,” Wikipedia, http://wikipedia.org/wiki/IP_Multimedia_Subsystem, 13 pages [Last Accessed May 5, 2010].
“Secure User Plane for Location Requirements,” Candidate Version 1.0, Open Mobile Alliance, Jun. 16, 2006, 80 pages.
“Secure UserPlane for Location Architecture,” Candidate Version 1.0, Open Mobile Alliance, Jan. 22, 2007, 80 pages.
“The 3GPP Standard for Convergence-Diagram,” UMA Universal Mobile Access, http://www.umatoday.com/img/diagrams/umaServices.jpg, [First Accessed Oct. 17, 2007], 1 page.
“The 3GPP Standard for Convergence-Dual Mode Handsets,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“The 3GPP Standard for Convergence-Femtocells,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“The 3GPP Standard for Convergence-Softmobiles,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“The 3GPP Standard for Convergence-Terminal Adaptors,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“UserPlane for Location Protocol,” Candidate Version 1.0, Open Mobile Alliance, Jan. 22, 2007, 56 pages.
Annamalai, Magesh, “Method and Delivery of UMA Value Added Location Services via SUPL,” U.S. Appl. No. 60/853,086, filed Oct. 20, 2006, 15 pages.
Dyoub, J. et al., “Dueling Architectures: Control plane vs. User-plane,” HP Invent, 2004, 2 pages.
European Patent Office, Extended European Search Report, EP Patent Application 06826444.9, dated Sep. 12, 2012, 8 pages.
Extended European Search Report, EP Patent Application 07760606.9, dated Jan. 23, 2013, 8 pages.
Gum, Arnold et al., “Infrastructure Wireless Choices for LBS,” GPS World, Mar. 2, 2006, http://www.gpsworld.com/wireless/infrastructure/wireless-choices-lbs-3750?print=1, [Last Accessed Apr. 28, 2010], 5 pages.
International Search Report and Written Opinion, International Applicaiton No. PCT/US2007/82133, Applicant: T-Mobile USA, Inc., Flied on Oct. 22, 2007, dated Apr. 29, 2008, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/2006/41226, Filed on Oct. 20, 2006, Appliant: T-Mobile USA, Inc., dated Dec. 4, 2007, 18 pages.
International Search Report and Written Opinion, International Application No. PCT/2007/82156, Filed on Oct. 22, 2007, Applicant: T-Mobile USA, Inc., dated May 28, 2008, 12 pages.
International Search Report and Written Opinion, International Application No. PCT/US2007/66579, Filed on Apr. 12, 2007, Applicant: T-Mobile, Inc., dated Sep. 9, 2008, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/US2007/82136, Applicant: T-Mobile USA, Inc., Flied on Oct. 22, 2007, dated Mar. 11, 2008, 11 pages.
International Search Report and Written Opinion, International Application No. PCT/US2010/035010, Applicant: T-Mobile USA, Inc., Flied on May 14, 2010, dated Dec. 22, 2010, 10 pages.
International Search Report and Written Opinion, International Application No. PCT/US2010/035014, Applicant: T-Mobile USA, Inc., Flied on May 14, 2010, dated Dec. 28, 2010, 11 pages.
Martin-Escalona, et al., “Delivery of Non-Standardized Assistance Data in E-OTD/GNSS Hybrid Location Systems,” IEEE 2002, pp. 1-5.
Raja, K., et al., “We Know,” IEE Communication Engineer, Jun./Jul. 2004, 6 pages.
Schulzrinne et al. “Emergency Services for Internet Telephony Systems,” Oct. 18, 2004, Network Working Group, Internet Draft, pp. 1-20.
Spinney, Jonathan, “Wireless Location Uses in the User Plane and Control Plane,” The Location Based Services Community, Jun. 27, 2005, 3 pages.
Steinfield, “The Development of Location Based Services in Mobile Commerce,” Elife after the dot.com bust, Berlin, Springer, 2004, pp. 1-15.
ETSI TS 101 724 Technical Spec. “Digital cellular telecommunications system (Phase 2+); Location Services (LCS); Functional description; Stage 2.” 3GPP TS 03.71 version 8.2.0 Release 1999. Jun. 2001. 109 pages.
Bohn, H. et al. “SIRENA—Service Infrastructure for Real-time Embedded Networked Devices: A service oriented framework for different domains,” Proceedings of the International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies. 2006 IEEE, 6 pages.
Kyasanur, P. et al. “Multichannel Mesh Networks: Challenges and Protocols,” IEEE Wireless Communications, Apr. 2006, pp. 30-36.
Related Publications (1)
Number Date Country
20170289811 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
60853156 Oct 2006 US
Continuations (3)
Number Date Country
Parent 14565123 Dec 2014 US
Child 15623325 US
Parent 13154365 Jun 2011 US
Child 14565123 US
Parent 12446451 US
Child 13154365 US