System and method for determining a wheel departure angle for a rollover control system

Information

  • Patent Grant
  • 7194351
  • Patent Number
    7,194,351
  • Date Filed
    Monday, June 30, 2003
    21 years ago
  • Date Issued
    Tuesday, March 20, 2007
    17 years ago
Abstract
A control system (18) and method for an automotive vehicle includes roll rate sensor (34) generating a roll rate signal, a lateral acceleration sensor (32) generating a lateral acceleration signal, a pitch rate sensor (37) generating a pitch rate signal, a yaw rate sensor (28) generating a yaw rate signal and a controller (26). The controller (26) is coupled to the roll rate sensor (34), the lateral acceleration sensor, the yaw rate sensor and the pitch rate sensor. The controller (26) determines a roll velocity total from the roll rate signal, the yaw rate signal and the pitch rate signal. The controller (26) also determines a relative roll angle from the roll rate signal and the lateral acceleration signal. The controller (26) determines a wheel departure angle from the total roll velocity. The controller (26) determines a calculated roll signal from the wheel departure angle and the relative roll angle signal.
Description
TECHNICAL FIELD

The present invention relates generally to a control apparatus for controlling a system of an automotive vehicle in response to sensed dynamic behavior, and more specifically, to a method and apparatus for controlling the roll characteristics of the vehicle by characterizing the wheel departure angle on which the vehicle is having a potential rollover event.


BACKGROUND

Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Dynamic control systems typically control the yaw of the vehicle by controlling the braking effort at the various wheels of the vehicle. Yaw control systems typically compare the desired direction of the vehicle based upon the steering wheel angle and the direction of travel. By regulating the amount of braking at each corner of the vehicle, the desired direction of travel may be maintained. Typically, the dynamic control systems do not address roll of the vehicle. For high profile vehicles in particulars it would be desirable to control the rollover characteristic of the vehicle to maintain the vehicle position with respect to the road. That is, it is desirable to maintain contact of each of the four tires of the vehicle on the road.


In vehicle roll stability control it is desired to alter the vehicle attitude such that its motion along the roll direction is prevented from achieving a predetermined limit (rollover limit) with the aid of the actuation from the available active systems such as controllable brake system, steering system and suspension system. Although the vehicle attitude is well defined, direct measurement is usually impossible.


There are two types of vehicle attitudes needed to be distinguished. One is the so-called global attitude, which is sensed by the angular rate sensors. The other is the relative attitude, which measures the relative angular positions of the vehicle with respect to the road surface on which the vehicle is driven. The global attitude of the vehicle is relative to an earth frame (or called the inertia frame), sea level, or a flat road. It can be directly related to the three angular rate gyro sensors. While the relative attitude of the vehicle measures the relative angular positions of the vehicle with respect to the road surface, which are always of various terrains. Unlike the global attitude, there are no gyro-type sensors that can be directly related to the relative attitude. A reasonable estimate is that a successful relative attitude sensing system utilizes both the gyro-type sensors (when the road becomes flat, the relative attitude sensing system recovers the global attitude) and some other sensor signals.


One reason to distinguish relative and global attitude is due to the fact that vehicles are usually driven on a three-dimensional road surface of different terrains, not always on a flat road surface. Driving on a road surface with a large road bank does increase the rollover tendency, i.e., a large output from the global attitude sensing system might well imply an uncontrollable rollover event regardless of the flat road driving and the 3-D road driving. However driving on a three-dimensional road with moderate road bank angle, the global attitude may not be able to provide enough fidelity for a rollover event to be distinguished. Vehicular rollover happens when one side of the vehicle is lifted from the road surface with a long duration of time without returning back. If a vehicle is driven on a banked road, the global attitude sensing system will pick up certain attitude information even when the vehicle does not experience any wheel lifting (four wheels are always contacting the road surface). Hence a measure of the relative angular positions of the vehicle with respect to the portion of the road surface on which the vehicle is driven provides more fidelity than global attitude to sense the rollover event when the vehicle is driven on a road with a moderate bank angle. Such an angle is called body-to-road roll angle and it is used as one of the key variables in the roll stability control module to compute the amount of actuation needed for preventing untripped rollover event.


When the vehicle does not have one side lifted, U.S. Pat. No. 6,556,908 does provide a method to calculate the relative attitudes and their accuracy may be affected by the vehicle loading, suspension and tire conditions. However, during a potential rollover event, such a relative roll angle is not a good measure of the true relative roll angle between vehicle body and the road surface. U.S. patent application provides another way to compute the true relative roll angle during a potential rollover event. This application is suited for cases where vehicle loading and suspension conditions are very close to the nominal systems. If the vehicle has large loading variations (especially roof loading), potential inaccuracy could cause false activations in roll stability controls.


During a potential rollover event, one or two wheels on the inside of the vehicle turn are up in the air and there is an angle between the axle of the lifted wheel and road surface. Such an angle is called a wheel departure angle. If such a wheel departure can be somehow characterized, the true body-to-road roll angle can be conceptually obtained as the sum of the wheel departure angle and the relative roll angle calculated in U.S. Pat. No. 6,556,908.


Another way to capture the true body-to-road roll angle is to use the resultant angle obtained by subtracting the road bank angle for the global roll angle calculated for example in U.S. patent application Ser. No. 09/967,038, filed Oct. 1, 2001. Although this method is theoretically feasible, it has inevitable drawbacks. The first drawback lies in the computation of the road bank angle, since there is no robust and accurate computation of road banks using the existing sensor set. Secondly, the global roll angle computation as shown in U.S. patent application Ser. No. 09/967,038 may be affected by the accuracy of the low frequency bank angle estimation.


Therefore, the aforementioned two methods of computing the body-to-road roll angle may not deliver accurate enough body-to-road roll angle for roll stability control purpose in certain situations. Because each of the individual methods described above does provide accurate measure with certain conditions, a sensor fusion algorithm would be a way to obtain an angle good for roll stability control. Such a sensor fusion method needs to integrate the various angles and conduct signal sensitizing and desensitizing, which may include the computations of (i) global roll angle as discussed in U.S. patent application Ser. No. 09/967,038; (ii) relative roll angle as discussed in U.S. Pat. No. 6,556,908; (iii) a rough characterization of the road bank angle, which is called a reference road bank angle); (iv) wheel departure angle; (v) body-to-road roll angle; (vi) transition and rollover condition.


The aforementioned computation is not only good for roll stability control, but also for other applications. For example, the reference road bank angle could be used in an active anti-roll-bar control, the yaw stability control, etc. An active roll control system using a controlled anti-roll-bar does not respond suitably to the side bank in the conventional setting, since the presence of road side bank cannot be detected and the system therefore responds to a side bank as if the vehicle were cornering. This can result in unnecessary power consumption for the active anti-roll-bar system. In order to eliminate this, U.S. Pat. No. 6,282,471 provides a very crude estimation of the road side bank using lateral acceleration sensor and vehicle reference speed. A vehicle driven on a road with a sharp side bank may cause false activation for the yaw stability control system and/or roll stability control system due to the fact that large lateral motion is determined through sensor signals even if the vehicle is driven in steady state condition on the banked road.


Therefore, it is desirable in vehicle dynamics control, especially for roll stability control to detect accurately a wheel departure angle so as to accurately predict the true roll position of the vehicle to properly activate the vehicle control systems.


SUMMARY

Because each of the individual methods described above does provide accurate measure with certain conditions, a sensor fusion algorithm would be a way to obtain an angle good for roll stability control. Such a sensor fusion method needs to integrate the various angles and conduct signal sensitizing and desensitizing, which may include the computations of (i) global roll angle as discussed in U.S. patent application Ser. No. 09/967,038; (ii) relative roll angle as discussed in U.S. Pat. No. 6,556,908; (iii) a rough characterization of the road bank angle (which is called a reference road bank angle); (iv) wheel departure angle; (v) body-to-road roll angle; (vi) transition and rollover condition.


In one embodiment, a control system for an automotive vehicle includes a roll rate sensor generating a roll rate signal, a lateral acceleration sensor generating a lateral acceleration signal, a longitudinal acceleration sensor generating a longitudinal acceleration, a yaw rate sensor generating a yaw rate signal and a controller. The controller is coupled to the roll rate sensor, the lateral acceleration sensor, the yaw rate sensor and the longitudinal acceleration sensor. The controller determines a total roll velocity from the roll rate signal, the yaw rate signal and a calculated pitch angle signal. The calculated pitch angle is a function of the static pitch angle plus the dynamic pitch angle called a relative pitch angle, which is a function of the longitudinal acceleration. The controller also determines a relative roll angle from the roll rate signal and the lateral acceleration signal. The controller determines a wheel departure angle from the total roll velocity. The controller determines a calculated roll signal used for roll stability control from the wheel departure angle and the relative roll angle signal. The relative roll angle signal may be further blended with the other computations such as reference bank angle, global roll angle, relative roll angle, vehicle rollover condition and transitional condition.


In another embodiment, a method of controlling an automotive vehicle comprises determining a total roll angle velocity, determining a wheel departure angle in response to a total roll angle velocity, and controlling the vehicle in response to the wheel departure angle.


One advantage of the invention is that the sensors and signals available in a roll stability control system are used to determine the wheel departure angle. Further, the processing involved in the wheel departure angle uses little processing resources. Another advantage is the wheel lifting and grounding status are used in the determination which may be set to extend beyond the actual time the wheels are lifted to account for processing delays (sensitizing) during wheel lifting and to reset the wheel departure angle to zero (desensitizing) during wheel grounding.


Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of a vehicle with variable vectors and coordinator frames.



FIG. 2 is an end view of an automotive vehicle on a bank with definitions of various angles including global roll angle, relative roll angle, wheel departure angle (WDA), road bank angle and body-to-road angle.



FIG. 3A is an end view of an on-camber divergent vehicle tendency.



FIG. 3B is an end view of an automotive vehicle in an off-camber divergent condition.



FIG. 3C is an end view of a vehicle in an on-camber convergent condition.



FIG. 3D is an end view of a vehicle in an off-camber convergent condition.



FIG. 4A is a block diagram of a stability control system.



FIG. 4B is a block diagram of the controller 26 used in the stability control system depicted in FIG. 4A.



FIG. 5 is a block diagrammatic view of the unit 27 depicted in FIG. 4B, which is used for quantitatively and qualitatively determining rollover trend of a vehicle.



FIG. 6 is flow chart of the operation of one embodiment of the present invention.



FIG. 7 is a plot of true roll angle, relative roll angle, wheel departure angle, and relative roll angle plus wheel departure angle.





DETAILED DESCRIPTION

In the following figures the same reference numerals will be used to identify the same components. The present teachings may be used in conjunction with a yaw control system or a rollover control system for an automotive vehicle. However, the present teachings may also be used with a deployment device such as airbag or roll bar.


Referring to FIG. 1, an automotive vehicle 10 on a road surface 11 with a safety system is illustrated with the various forces and moments thereon. Vehicle 10 has front right and front left tires 12a and 12b and rear right tires and rear left tires 13a and 13b, respectively. The vehicle 10 may also have a number of different types of front steering systems 14a and rear steering systems 14b including having each of the front and rear wheels configured with a respective controllable actuator, the front and rear wheels having a conventional type system in which both of the front wheels are controlled together and both of the rear wheels are controlled together, a system having conventional front steering and independently controllable rear steering for each of the wheels, or vice versa. Generally, the vehicle has a weight represented as Mg at the center of gravity of the vehicle, where g=9.8 m/s2 and M is the total mass of the vehicle.


As mentioned above, the system may also be used with active/semi-active suspension systems, anti-roll bar or other safety devices deployed or activated upon sensing predetermined dynamic conditions of the vehicle.


The sensing system 16 is part of a control system 18. The sensing system 16 may use a standard yaw stability control sensor set (including lateral acceleration sensor, yaw rate sensor, steering angle sensor and wheel speed sensor) together with a roll rate sensor and a longitudinal acceleration sensor. The various sensors will be further described below. The wheel speed sensors 20 are mounted at each corner of the vehicle, and the rest of the sensors of sensing system 16 may be mounted directly on the center of gravity of the vehicle body, along the directions x, y and z shown in FIG. 1. As those skilled in the art will recognize, the frame from b1, b2 and b3 is called a body frame 22, whose origin is located at the center of gravity of the car body, with the b1 corresponding to the x axis pointing forward, b2 corresponding to the y axis pointing off the driving side (to the left), and the b3 corresponding to the z axis pointing upward. The angular rates of the car body are denoted about their respective axes as ωx for the roll rate, ωy for the pitch rate and ωz for the yaw rate. The calculations set forth herein may take place in an inertial frame 24 that may be derived from the body frame 22 as described below.


The angular rate sensors and the acceleration sensors are mounted on the vehicle car body along the body frame directions b1, b2 and b3, which are the x-y-z axes of the vehicle's sprung mass.


The longitudinal acceleration sensor 36 is mounted on the car body located at the center of gravity, with its sensing direction along b1-axis, whose output is denoted as αx. The lateral acceleration sensor 32 is mounted on the car body located at the center of gravity, with its sensing direction along b2-axis, whose output is denoted as αy.


The other frame used in the following discussion includes the road frame, as depicted in FIG. 1. The road frame system r1r2r3 is fixed on the driven road surface, where the r3 axis is along the average road normal direction computed from the normal directions of the four-tire/road contact patches.


In the following discussion, the Euler angles of the body frame b1b2b3 with respect to the road frame r1r2r3 are denoted as θxr, θyr and θzr, which are also called the relative Euler angles.


Referring now to FIG. 2, the relationship of the various angles of the vehicle 10 relative to the road surface 11 is illustrated. The present teaching determines a wheel departure angle θwda, which is the angle from the axle or the wheel axis to the road surface 11. Also shown is a reference road bank angle θbank, which is shown relative to the vehicle 10 on a road surface. The vehicle 10 has a vehicle body 10a and vehicle suspension 10b. The relative roll angle θxr is the angle between the wheel axle and the body 10a. The global roll angle θx is the angle between the horizontal plane (e.g., at sea level) and the vehicle body 10a.


Referring now to FIG. 3A, vehicle 10 is illustrated in an on-camber divergent state. The on-camber divergent state refers to the vehicle having a greater than 0 wheel departure angle, a greater than 0 relative roll angle, and a moment represented by arrow 25 tending to increase the relative roll angle and the wheel departure angle. In this example, the bank angle is less than 0.


In FIG. 3B, when the bank angle is greater than 0, the wheel departure angle is greater than 0, the relative roll angle is greater than 0 and the moment is also to the right or increasing the relative roll angle and the wheel departure angle, the vehicle is in an off-camber divergent state.


Referring now to FIG. 3C, a bank angle of less than 0, a wheel departure angle greater than 0, and a relative roll angle greater than 0 is shown with a roll moment 25 acting to the left. Thus, the vehicle is in an on-camber convergent state. That is, the convergent state refers to the vehicle tending towards not overturning.


Referring now to FIG. 3D, when the bank angle is greater than 0, the wheel departure angle is greater than 0, and the relative roll angle is greater than 0 and the roll moment is tending to the left, the vehicle is in an off-camber convergent state. That is, the vehicle is tending toward not rolling over.


Referring now to FIG. 4A, one embodiment of a roll stability control system 18 is illustrated in further detail having a controller 26 used for receiving information from a number of sensors which may include a yaw rate sensor 28, a speed sensor 20, a lateral acceleration sensor 32, a roll rate sensor 34, a steering angle sensor (hand wheel position) 35, a longitudinal acceleration sensor 36, and steering angle position sensor 37.


In one embodiment, the sensors are located at the center of gravity of the vehicle. Those skilled in the art will recognize that the sensors may also be located off the center of gravity and translated equivalently thereto.


Lateral acceleration, roll orientation and speed may be obtained using a global positioning system (GPS). Based upon inputs from the sensors, controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors 20, 28, 32, 34, 35, 36, and 37, or various combinations of the sensors, may be used in a commercial embodiment. Safety device 38 may control an airbag 40, an active braking system 41, an active front steering system 42, an active rear steering system 43, an active suspension system 44, and an active anti-roll bar system 45, or combinations thereof. Each of the systems 4045 may have their own controllers for activating each one. As mentioned above, the safety system 38 may be at least the active braking system 41.


Roll rate sensor 34 may sense the roll condition of the vehicle based on sensing the height of one or more points on the vehicle relative to the road surface. Sensors that may be used to achieve this include a radar-based proximity sensor, a laser-based proximity sensor and a sonar-based proximity sensor.


Roll rate sensor 34 may also sense the roll condition based on sensing the linear or rotational relative displacement or displacement velocity of one or more of the suspension chassis components which may include a linear height or travel sensor, a rotary height or travel sensor, a wheel speed sensor used to look for a change in velocity, a steering wheel position sensor, a steering wheel velocity sensor and a driver heading command input from an electronic component that may include steer by wire using a hand wheel or joy stick.


The roll condition may also be sensed by sensing the force or torque associated with the loading condition of one or more suspension or chassis components including a pressure transducer in active air suspension, a shock absorber sensor such as a load cell, a strain gauge, the steering system absolute or relative motor load, the steering system pressure of the hydraulic lines, a tire lateral force sensor or sensors, a longitudinal tire force sensor, a vertical tire force sensor or a tire sidewall torsion sensor.


The roll condition of the vehicle may also be established by one or more of the following translational or rotational positions, velocities or accelerations of the vehicle including a roll gyro, the roll rate sensor 34, the yaw rate sensor 28, the lateral acceleration sensor 32, a vertical acceleration sensor, a vehicle longitudinal acceleration sensor, lateral or vertical speed sensor including a wheel-based speed sensor, a radar-based speed sensor, a sonar-based speed sensor, a laser-based speed sensor or an optical-based speed sensor.


Based on the inputs from sensors 20, 28, 32, 34, 35, 36, 37, controller 26 determines a roll condition and controls any one or more of the safety devices 4045.


Speed sensor 20 may be one of a variety of speed sensors known to those skilled in the art. For example, a suitable speed sensor 20 may include a sensor at every wheel that is averaged by controller 26. The controller 26 translates the wheel speeds into the speed of the vehicle. Yaw rate, steering angle, wheel speed and possibly a slip angle estimate at each wheel may be translated back to the speed of the vehicle at the center of gravity. Various other algorithms are known to those skilled in the art. For example, if speed is determined while speeding up or braking around a corner, the lowest or highest wheel speed may not be used because of its error. Also, a transmission sensor may be used to determine vehicle speed.


Referring now to FIGS. 4A and 4B, controller 26 is illustrated in further detail. There are two major functions in controller 26: the rollover trend determination, which is called a sensor fusion unit, 27A and the feedback control command unit 27B. The sensor fusion unit 27A can be further decomposed as a wheel lift detector 50, a transition detector 52 and a vehicle roll angle calculator 66.


Referring now to FIG. 5, the sensor fusion unit 27A is illustrated in further detail. The sensor fusion unit 27A receives the various sensor signals, 20, 28, 32, 34, 35, 36, 37 and integrates all the sensor signals with the calculated signals to generate signals suitable for roll stability control algorithms. From the various sensor signals wheel lift detection may be determined by the wheel lift detector 50. Wheel lift detector 50 includes both active wheel lift detection and active wheel lift detection, and wheel grounding condition detection. Wheel lift detector is described in co-pending U.S. provisional application Ser. No. 60/400,375 filed Aug. 1, 2002, which is incorporated by reference herein. The modules described below may be implemented in hardware or software in a general purpose computer (microprocessor). From the wheel lift detection module 50, a determination of whether each wheel is absolutely grounded, possibly grounded, possibly lifted, or absolutely lifted may be determined. Transition detection module 52 is used to detect whether the vehicle is experiencing aggressive maneuver due to sudden steering wheel inputs from the driver. The sensors may also be used to determine a relative roll angle in relative roll angle module 54. Relative roll angle may be determined in many ways. One way is to use the roll acceleration module 58 in conjunction with the lateral acceleration sensor. As described above, the relative roll angle may be determined from the roll conditions described above.


The various sensor signals may also be used to determine a relative pitch angle in relative pitch angle module 56 and a roll acceleration in roll acceleration module 58. The outputs of the wheel lift detection module 50, the transition detection module 52, and the relative roll angle module 54 are used to determine a wheel departure angle in wheel departure angle module 60. Various sensor signals and the relative pitch angle in relative pitch angle module 56 are used to determine a relative velocity total in module 62. The road reference bank angle block 64 determines the bank angle. The relative pitch angle, the roll acceleration, and various other sensor signals as described below are used to determine the road reference bank angle. Other inputs may include a roll stability control event (RSC) and/or the presence of a recent yaw stability control event, and the wheel lifting and/or grounding flags.


The global roll angle of the vehicle is determined in global roll angle module 66. The relative roll angle, the wheel departure angle, and the roll velocity total blocks are all inputs to the global roll angle total module 66. The global roll angle total block determines the global roll angle θx. An output module 68 receives the global roll angle total module 66 and the road reference bank angle from the road reference bank angle module 64. A roll signal for control is developed in roll signal module 70. The roll signal for control is illustrated as arrow 72. A sensitizing and desensitizing module 74 may also be included in the output module 68 to adjust the roll signal for control.


In the reference road bank angle module 64, the reference bank angle estimate is calculated. The objective of the reference bank estimate is to track a robust but rough indication of the road bank angle experienced during driving in both stable and highly dynamic situations, and which is in favor for roll stability control. That is, this reference bank angle is adjusted based on the vehicle driving condition and the vehicle roll condition. Most importantly, when compared to the global roll estimate, it is intended to capture the occurrence and physical magnitude of a divergent roll condition (two wheel lift) should it occur. This signal is intended to be used as a comparator against the global roll estimate for calculating the error signal which is fed back to roll stability controller 26.


Referring now to FIG. 6, the operation of the wheel departure angle block or module 60 is described in further detail. The wheel departure angle, θwda, between the axle or axis of the wheels and the average road surface is computed. This angle tries to fill the gap left when the relative roll angle is calculated in the relative roll angle module 54. The present embodiment allows a determination of the relative roll angle between the vehicle body and the road surface during a potential rollover event particularly where one or two inside wheels are lifted. This variable is used to boost roll_signal_for_control (the true relative roll angle between the vehicle body and the road surface) which is fed to the output module 68 for computing feedback control command. If this calculated value is less than the actual wheel departure angle, it might reduce the needed control command (under-control); if thus calculated value is greater than the actual wheel departure angle, it might increase the needed control command (over-control).


The external inputs to the wheel departure block 60 are obtained in step 80:

  • Roll velocity total: RVtot, (sometimes written as {dot over (θ)}x)
  • Past value of the wheel departure angle: θwda
  • Transition flags: Stransition(0) for front left wheel and Stransition(1) for front right wheel.


In step 82, the relative roll angle θxr is determined.


In step 84 the wheel lift status flags: Swld(i).

  • If the ith wheel is absolutely grounded, then Swld(i)=ABSOLUTELY_GROUNDED
  • If the ith wheel is in the edge of grounding, Swld(i)=POSSIBLY_GROUNDED
  • If the ith wheel is absolutely lifted, then Swld(i)=ABSOLUTELY_LIFTED
  • If the ith wheel is in the edge of lifting Swld(i)=POSSIBLY _LIFTED
  • If the ith wheel's status cannot be firmly identified, Swld(i)=NO_INDICATION


Predefined Calibratable Parameter Definitions are determined in step 86.

  • Wheel departure angle smoothing ratio: ρ, in the present example a value of 1.1 is used.
  • Relative roll angle threshold for starting wheel departure angle computation during transition maneuver (transition flag is active) pre-charge active: Θtransition-active
  • where Θtransition-active=Ayp*ROLL_GRADIENT and Ayp reflects the threshold for the percentage of ROLL_GRADIENT, default value 40%.
  • Relative roll angle threshold for starting wheel departure angle computation during initial wheel lifting: Θ1
  • where Θ1=Ayb1*ROLL_GRADIENT and Ayb1 reflects the threshold for the percentage of ROLL_GRADIENT. In this example, a value of 75% is used.
  • Relative roll angle threshold for starting wheel departure angle computation during medium wheel lifting: Θ2
  • where Θ2=Ayb2*ROLL_GRADIENT and Ayb2 reflects the threshold for the percentage of ROLL_GRADIENT. In this example, a value of 50% is used.
  • Wheel departure angle threshold for starting wheel departure angle computation during medium wheel lifting: Ψ2
  • where Ψ2=Ayw2*ROLL_GRADIENT and Ayw2 reflects the threshold for the percentage of ROLL_GRADIENT. In this example, a value of 25% is used.
  • Relative roll angle threshold for starting wheel departure angle computation during high wheel lifting: Θ3
  • where Θ3=Ayb3*ROLL_GRADIENT and Ayb3 reflects the threshold for the percentage of ROLL_GRADIENT. In this example, a value of 40% is used.
  • Wheel departure angle threshold for starting wheel departure angle computation during high wheel lifting: Ψ3
  • where Ψ3=Ayw3*ROLL_GRADIENT and Ayw3 reflects the threshold for the percentage of ROLL_GRADIENT. In this example, a value of 75% is used.
  • Wheel departure angle filter coefficient: α. In this example, a value of 511/512 is used.
  • Wheel departure angle lower bound: Ψmin. In this example, a value of −10 degrees is used.
  • Wheel departure angle upper bound: Ψmax. In this example, a value of 10 degrees is used.
  • Loop time: p_LOOP_TIME_SEC=0.007.


A local temporary variable used is the Wheel departure angle intermediate value: θwda-int.


When the vehicle is highly lifted on one side (inside in a turn), the relative roll calculated from the relative roll angle module 54 in step 82 may not capture the true relative roll angle between the vehicle body and the road due to lateral acceleration saturation and gravity component in the lateral accelerometer. FIG. 2 shows the angles involved in this case. The relative roll angle θxr is the angle due to suspension height variation (also called chassis roll angle or suspension roll angle) which is intended to capture the relative roll between the axle and the vehicle body. The global roll angle θx is the roll angle of the vehicle body with respect to the sea level. The wheel departure angle θwda is used to capture the relative roll angle between the axle and the road surface. The road bank angle θbank is the relative angle between the road surface and the sea level.


Considering the angles in FIGS. 2 and 3, the following relationship is true:

θwdax−θxr−θbank  (1)


Notice that in equation (1) only two variables are known: the total roll angle velocity {dot over (θ)}x (RVtot) and the suspension relative roll angle θxr. Using these known values the wheel departure angle θwda is computed.


The roll velocity total RVtot can be computed from roll rate sensor signal, yaw rate sensor signal and the pitch rate sensor signal in the following formula:

RVtotxzyryss)

where ωx is the roll rate signal, ωz is the yaw rate signal and θyr is the relative pitch angle and θyrss is a steady state capture of the pitch angle.


The relative roll angle θxr and relative pitch may be determined as set forth in U.S. Pat. No. 6,556,908, which is incorporated by reference herein.

θybr=sin−1y-susp}







θ

x





b





r


=


sin

-
1




{


Θ

x
-
susp



cos


(

θ

y





b





r


)



}







where Θy-susp and Θx-susp can be calculated as described in the following. Two variables as defined at each sampling instant:










RRA_RAW


(
k
)


=



1

c
1






ω
.

x



(
k
)



-



c
0


c
1





a
y



(
k
)











RPA_RAW


(
k
)


=



1

d
1






ω


.


y



(
k
)



-



d
0


d
1





a
x



(
k
)












where the coefficients c0,c1,d0,d1 can be obtained based on the vehicle parameters (see U.S. Pat. No. 6,556,908 for detail), {circumflex over (ω)}y is an estimation of the pitch rate signal, which can be calculated as {circumflex over ({dot over (ω)}y={dot over (θ)}ysec(θx)+ωz tan(θx). Then at the (k+1)th sampling instant (current values), the estimates of {circumflex over (Θ)}x-susp(k+1) and {circumflex over (Θ)}y-susp(k+1) may be computed from their values in the kth sampling instant (past values) and the current and past values of RRA_RAW and RPA_RAW. The iterative formula may be expressed as the following with properly chosen coefficients e0,e1,f0 and f1:

{circumflex over (Θ)}x-susp(k+1)=e0{circumflex over (Θ)}x-susp(k)+e1[RRARAW(k+1)+RRARAW(k)]
{circumflex over (Θ)}y-susp(k+1)=f0{circumflex over (Θ)}y-susp(k)+f1[RPARAW(k+1)+RPARAW(k)]


Equation (1) may be rewritten as the following














θ

w





d





a





t


=

RV
-




θ
bank




t









or




(
2
)








θ

w





d





a




(
t
)


=




0
t




RV


(
τ
)









τ



-


θ
bank



(
t
)







(
3
)








where RV is calculated from the known roll velocity total and the relative roll velocity










RV


(
t
)






=



RV
tot



(
t
)






-





θ

x





r




(
t
)





t







(
4
)







The wheel lift status is also factored into the determination of the wheel departure angle through (3). Assume at time instant t0, one or two wheels of the vehicle start to depart from contacting the road surface (based on wheel lifting information or any other indication) and before time instant t0 all the wheels of the vehicle are grounded. Let the road bank angle at time t0 be θb0, then









0
=




0

t
0





RV


(
τ
)









τ



-

θ

b





0







(
5
)







At time instant t such that t0≦t≦tf (tf is the time instant when the lifted wheels come back to contact the road surface), (5) is subtracted from (3) to obtain the following











θ

w





d





a




(
t
)


=





t
0

t




RV


(
τ
)









τ



-

[



θ
bank



(
t
)


-

θ

b





0



]






(
6
)







If the vehicle is on level ground then θbank=0, or the vehicle is on a constant road bank (i.e., θbank(t)=θb0), then (6) is the same as

θwda(t)={circumflex over (θ)}wda(t)  (7)

where the approximate or estimated {circumflex over (θ)}wda is defined as the following












θ
^


w





d





a




(
t
)


=




t
0

t



R






V


(
τ
)









τ







(
8
)







The approximate {circumflex over (θ)}wda computed in (8) is a good approximation of the actual wheel departure angle θwda if the change in the road bank angle (delta road bank Δθbank)

Δθbank(t)=θbank(t)−θb0  (9)

is close to zero or negligible with respect to {circumflex over (θ)}wda.


The following is a list of cases where the change in the road bank angle is zero or very low:

    • If the vehicle is driven on a level ground, then the delta road bank is zero and {circumflex over (θ)}wda is the actual departure angle.
    • If the vehicle is not driven on a transient road bank, or say the vehicle is driven on a steady state bank road, then the delta road bank is close to zero and {circumflex over (θ)}wda is close to the actual wheel departure angle.
    • If during wheel lifting, the road bank does not change much in comparison with the road bank at the initial wheel lifting time instant, then the delta road bank can be negligible and {circumflex over (θ)}wda is close to the actual wheel departure angle.
    • If during wheel lifting the vehicle is driven very aggressive such that the roll velocity due to the road bank is much smaller than the roll velocity due to the wheel departure and the relative roll, then the delta road bank can be negligible and {circumflex over (θ)}wda is close to actual wheel departure angle.


The aforementioned cases cover large portion of the scenarios where the wheel lifting could happen. Notice that since the delta road bank comes from taking away θb0 from the actual road bank, and wheel lift event usually happens in seconds, the magnitude of delta road bank is relatively much smaller than the actual road bank. Therefore, if in cases where delta road bank is non-zero, its magnitude should be less than the magnitude of {circumflex over (θ)}wda. As shown below, a small non-zero error may not cause an adverse control effect.


First, the increased magnitude of delta road bank case is considered, i.e., the magnitude of the road bank is greater than the magnitude of the road bank at the time of entering wheel lifting. Since increased magnitude of the road bank helps stabilize the vehicle for on-camber driving (FIGS. 3a, 3c), hence less likely the control will be needed. While for off-camber driving (FIGS. 3B and 3D), increased magnitude of road bank will worsen the stability of the vehicle and it needs special control attention. Assume the vehicle is turning left. In this case, Δθbank>0, and the actual wheel departure angle θwda is positive. Therefore,

θwda−{circumflex over (θ)}wda=−Δθbank<0  (10)

or say the magnitude of the calculated wheel departure angle {circumflex over (θ)}wda is greater than the actual wheel departure angle. This means the error due to delta road bank in this case will generate an over-estimated wheel departure angle, which generates an over-control command and helps control. Hence the error does not have an adverse effect. In a right turn, Δθbank<0, and the actual wheel departure angle θwda is negative. Therefore,

θwda−{circumflex over (θ)}wda=−Δθbank>0  (11)

or say the magnitude of the calculated wheel departure angle {circumflex over (θ)}wda is greater than the actual wheel departure angle. Hence, the error does not have an adverse effect.


When the magnitude of the road bank is decreasing, i.e., the magnitude of the road bank is less than the magnitude of the road bank at the time of entering wheel lifting. Since decreased magnitude of road bank helps stabilize the vehicle for off-camber driving, control is less likely to be needed. While for on-camber driving, decreased magnitude of road bank will worsen the stability of the vehicle and control is needed. Assume the vehicle is turning left. In this case, Δθbank>0, and the actual wheel departure angle θwda is positive. Therefore (10) is true, i.e., the magnitude of the calculated wheel departure angle {circumflex over (θ)}wda is greater than the actual wheel departure angle. Hence the error does not have adverse effect. Assume the vehicle is turning right. In this case, Δθbank<0, and the actual wheel departure angle θwda is negative. Therefore (11) is true, i.e., the magnitude of the calculated wheel departure angle {circumflex over (θ)}wda is greater than the actual wheel departure angle. Hence the error does not have adverse effect.


The error due to small magnitude of the delta road bank does not reduce control effort when the control is most likely needed.


A more accurate implementation of equation (8) thus identifies the time in which the wheels lift at t0 and the time in which the wheels are no longer lifted, time instant tf, or say the conditions where the wheel lifting can be detected in steps 88 and 90. That is, (8) may be theoretically implemented as in step 92 as in the following:














if (θxr ≧ 0 & &(Swld (0) = ABSOLUTELY_LIFTED ∥ Swld (2) = ABSOLUTELY_LIFTED))


 ∥ (θxr < 0 & &(Swld (1) = ABSOLUTELY_LIFTED ∥ Swld (3) = ABSOLUTELY_LIFTED)))


{


  θwda = θwda + RV * p_LOOP_TIME_SEC;


}


else


{


  θwda = 0;


}









In the above, the wheel departure angle is determined when the relative roll angle is greater than or equal to 0 and the left side wheel (0) and (2) are absolutely lifted or the relative roll angle is less than zero and the right side wheels are absolutely lifted.


Considering the current wheel lift status Swld(i)s for i=0,1,2,3 sometimes have delays, the above computation may end up with an under-estimated θwda due to the fact that integration is delayed. Therefore, there is a need to extend the absolutely lifted condition beyond the time set by the wheel lifting status by a predetermined time in step 94. The predetermined times are determined by the thresholds. The following flag is used to extend wheel lifting condition to include conditions involving relative roll angle and the past value of the wheel departure angle.











WHEEL_LIFTING

_CONDITION











=






θ

x





r






Θ
1

















(





θ

x





r






Θ
2






&&




θ

w





d





a






Ψ
2



)















(





θ

x





r






Θ
3






&&




θ

w





d





a






Ψ
3



)

)









(



θ

x





r



0





&&

(



S
wld



(
0
)


=

ABSOLUTELY_LIFTED





S
wld



(
2
)




















=
ABSOLUTELY_LIFTED

)

)








(



θ

x





r


<
0





&&

(



S
wld



(
1
)


=

ABSOLUTELY_LIFTED





S
wld



(
3
)





















=
ABSOLUTELY_LIFTED

)

)

)








Consider the fact that during an aggressive maneuver which activates the pre-charge control, the wheel lifting is likely to happen, further time extension of the wheel lifting condition is needed












TRANSITION_WHEEL

_LIFTING

_CONDITION

=













(




S
transition



(
1
)



1





&&





θ

x





r







Θ

transition
-
avtive



)













(




S
transition



(
0
)



1





&&






θ

x





r


<

-

Θ

transition
-
avtive





)









On the other hand, the pure integration here might introduce numerical error, hence the pure integration is replaced by the following high-pass-filtered integration

θwda-int=α*θwda-int+RV*pLOOPTIMESEC;


Notice that the wheel departure angle is assumed to be in the same trend as the relative roll angle. Also, a previous or first wheel departure is used. That is, the previous equation adds an incremental change to the previous wheel departure angle. In order to achieve this, the sign enforcement and a numerical limitation are implemented as in the following:

if θxr≧0
θwda-int=minmax,maxwda-int,0));

else

θwda-int=maxmin,minwda-int,0));


When the wheel lifting conditions are not met, or the vehicle potentially does not have any lifted wheels and is beyond the time described above, the integration will be terminated in step 96, i.e., the wheel departure angle computation will be terminated through the following

















if ((WHEEL_LIFTING_CONDITION == 1









∥ TRANSITION_WHEEL_LIFTING_CONDITION == 1))









{









if (θxr > 0)










{
if (Swld [0] == ABSOLUTELY_GROUNDED




& & Swld [2] == ABSOLUTELY_GROUNDED)




θwda−int = 0;}









else



{ if (Swld [1] == ABSOLUTELY_GROUNDED











& & Swld [3] == ABSOLUTELY_GROUNDED)




θwda−int = 0;}









θwda = θwda−int ;









}



else



{









θwda−int = 0;



θwda = θwda / ρ;









}










The following is a detailed implementation of the afore-mentioned algorithm to compute the wheel departure angle θwda.














θxr = (θxr − θxr−past) / p_LOOP_TIME_SEC;









if ( (Stransition (1) == 1 & & θxr ≧ Θtransition−active)









∥ (Stransition (0) == 1 & & θxr < −Θtransition−active )









||| θxr |≧ Θ1



∥ (| θxr |≧ Θ2 & & | θwda |≧ Ψ2



∥ (| θxr |≧ Θ3 & & | θwda |≧ Ψ3) )



∥ (θxr ≧ 0 & &(Swld (0) = ABSOLUTELY_LIFTED ∥ Swld (2) = ABSOLUTELY_LIFTED))



∥ (θxr < 0 & &(Swld (1) = ABSOLUTELY_LIFTED ∥ Swld (3) = ABSOLUTELY_LIFTED)))



{









θwda−int = α * θwda−int + RV * p_LOOP_TIME_SEC;



if (θxr > 0)



{









θwda−int = min(Θmax , max(θwda−int , 0));



if (Swld [0] == ABSOLUTELY_GROUNDED









& & Swld [2] == ABSOLUTELY_GROUNDED)



θwda−int = 0;









}



else



{









θwda−int = max(Θmin , min(θwda−int , 0));



if (Swld [1] == ABSOLUTELY_GROUNDED









& & Swld [3] == ABSOLUTELY_GROUNDED)



θwda−int = 0;









}



θwda = θwda−int ;









}



else



{









θwda−int = 0;



θwda = θwda / ρ;









}










Thus, as can be seen, the various threshold conditions must be met before determining the wheel departure angle from the formula θwda-int=α*θwda-int+RV*p_LOOP_TIME_SEC. If the conditions are not met the θwda wda is set to 0.


Referring now to FIG. 7, a comparison between the true body roll angle (from a laser sensor) and the calculated roll angle by adding the wheel departure angle to the relative roll angle was performed in a vehicle. The laser sensor was used in a test to confirm the results set forth herein. A laser sensor is expensive and is not used in production. As can be seen, the true roll and the θwda plus relative roll angle. are nearly equal. This indicates that the calculated wheel departure angle θwda does fill the gap between the vehicle true roll angle and the calculated relative roll angle θxr during potential rollover event.


While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

Claims
  • 1. A method of controlling an automotive vehicle comprising: determining a total roll angle velocity;determining a wheel departure angle in response to a total roll angle velocity; andcontrolling the vehicle in response to the wheel departure angle.
  • 2. A method as recited in claim 1 further comprising determining a relative roll angle; and wherein controlling the vehicle comprises controlling the vehicle in response total roll angle velocity and the relative roll angle.
  • 3. A method as recited in claim 2 wherein determining a relative roll angle comprises determining a relative roll angle in response to a roll rate and a lateral acceleration.
  • 4. A method as recited in claim 2 wherein determining a total roll angle velocity is performed when the relative roll angle is within a first predetermined threshold and the wheel departure angle is within a second predetermined threshold.
  • 5. A method as recited in claim 4 wherein the first predetermined threshold and the second predetermined thresholds are a function of a roll gradient.
  • 6. A method as recited in claim 1 wherein determining a total roll angle velocity comprises determining is response to a roll rate.
  • 7. A method as recited in claim 1 wherein determining a total roll angle velocity comprises determining is response to a roll rate and a yaw rate.
  • 8. A method as recited in claim 1 wherein determining a total roll angle velocity comprises determining is response to a roll rate, a yaw rate and a pitch rate.
  • 9. A method as recited in claim 1 wherein determining a total roll angle velocity comprises determining is response to a roll rate, a yaw rate and a pitch rate.
  • 10. A method as recited in claim 1 wherein determining a total roll angle velocity comprises determining is response to a roll rate and a previous wheel departure angle.
  • 11. A method as recited in claim 1 wherein determining a total roll angle velocity comprises determining is response to a roll rate, a previous wheel departure angle and a time constant.
  • 12. A method as recited in claim 1 wherein determining a total roll angle velocity is performed in response to a wheel lift status.
  • 13. A method as recited in claim 1 wherein determining a total roll angle velocity is performed in response to a brake precharge status.
  • 14. A method of controlling a safety system of an automotive vehicle comprising: determining a total roll angle velocity;determining a wheel departure angle in response to a total roll angle velocity;determining a relative roll angle; andcontrolling the safety system in response to the wheel departure angle and the relative roll angle.
  • 15. A method as recited in claim 14 further comprising: determining a total roll angle velocity;determining a wheel departure angle in response to a total roll angle velocity;determining a relative roll angle; andcontrolling the safety system in response to the wheel departure angle and the relative roll angle during wheel lift and for a predetermined time thereafter.
  • 16. A method as recited in claim 14 wherein controlling the safety system comprises controlling at least one of an active brake control system, an active rear steering system, an active front steering system, an active anti-roll bar system, and an active suspension system.
  • 17. A method as recited in claim 14 wherein determining a total roll angle velocity is performed when the relative roll angle is within a first predetermined threshold and the wheel departure angle is within a second predetermined threshold.
  • 18. A method as recited in claim 17 wherein the first threshold and second thresholds are a function of a roll gradient.
  • 19. A method as recited in claim 14 wherein determining a total roll angle velocity comprises determining is response to a roll rate.
  • 20. A method as recited in claim 14 wherein determining a total roll angle velocity comprises determining is response to a roll rate and a yaw rate.
  • 21. A method as recited in claim 14 wherein determining a total roll angle velocity comprises determining is response to a roll rate, a yaw rate and a pitch rate.
  • 22. A method as recited in claim 14 wherein determining a total roll angle velocity comprises determining is response to a roll rate, a yaw rate and a pitch rate.
  • 23. A method as recited in claim 14 wherein determining a total roll angle velocity comprises determining is response to a roll rate and a previous wheel departure angle.
  • 24. A method as recited in claim 14 wherein determining a total roll angle velocity comprises determining is response to a roll rate, a previous wheel departure angle and a time constant.
  • 25. A method as recited in claim 14 wherein determining a total roll angle velocity is performed in response to a wheel lift status.
  • 26. A method as recited in claim 14 wherein determining a total roll angle velocity is performed in response to a brake precharge status.
  • 27. A control system comprising: a roll rate sensor generating a roll rate signal;a lateral acceleration sensor generating a lateral acceleration signal;a yaw rate sensor generating a yaw rate signal; anda controller coupled to the roll rate sensor, the lateral acceleration sensors, and the yaw rate sensor, said controller determining a total roll velocity total from the roll rate signal, the yaw rate signal and a pitch rate signal, said controller determining a relative roll angle from the roll rate signal and the lateral acceleration signal, said controller determining a wheel departure angle from he total roll velocity, said controller determining a calculated roll signal from the wheel departure angle and the relative roll angle signal.
  • 28. A control system as recited in claim 27 further comprising a longitudinal acceleration sensor generating a longitudinal acceleration signal, said controller determining the total roll velocity as a function of the longitudinal acceleration signal.
  • 29. A control system as recited in claim 28 wherein said controller determines a calculated pitch rate as a function of the longitudinal accelerator, said total roll velocity being a function of the calculated pitch rate.
RELATED APPLICATIONS

The present invention claims priority to U.S. provisional application Ser. Nos. 60/400,376, 60/400,375, 60/400,172, and 60/400,261, filed Aug. 1, 2002, the disclosures of which are incorporated by reference herein. The present invention is also related to U.S. Applications entitled “SYSTEM AND METHOD FOR CHARACTERIZING THE ROAD BANK FOR VEHICLE ROLL STABILITY CONTROL”, and entitled “SYSTEM AND METHOD FOR CHARACTERIZING VEHICLE BODY TO ROAD ANGLE FOR VEHICLE ROLL STABILITY CONTROL”, filed simultaneously herewith.

US Referenced Citations (190)
Number Name Date Kind
2917126 Phillips Dec 1959 A
3604273 Kwok et al. Sep 1971 A
3608925 Murphy Sep 1971 A
3899028 Morris et al. Aug 1975 A
3948567 Kasselmann et al. Apr 1976 A
3972543 Presley et al. Aug 1976 A
4023864 Lang et al. May 1977 A
RE30550 Reise Mar 1981 E
4480714 Yabuta et al. Nov 1984 A
4592565 Eagle Jun 1986 A
4597462 Sano et al. Jul 1986 A
4650212 Yoshimura Mar 1987 A
4679808 Ito et al. Jul 1987 A
4690553 Fukamizu et al. Sep 1987 A
4761022 Ohashi Aug 1988 A
4765649 Ikemoto et al. Aug 1988 A
4767588 Ito Aug 1988 A
4778773 Sukegawa Oct 1988 A
4809183 Eckert Feb 1989 A
4827416 Kawagoe et al. May 1989 A
4872116 Ito et al. Oct 1989 A
4888696 Akatsu et al. Dec 1989 A
4898431 Karnopp et al. Feb 1990 A
4930082 Harara et al. May 1990 A
4951198 Watanabe et al. Aug 1990 A
4960292 Sadler Oct 1990 A
4964679 Rath Oct 1990 A
4967865 Schindler Nov 1990 A
4976330 Matsumoto Dec 1990 A
4998593 Karnopp et al. Mar 1991 A
5033770 Kamimura et al. Jul 1991 A
5058017 Adachi et al. Oct 1991 A
5066041 Kindermann et al. Nov 1991 A
5088040 Matsuda et al. Feb 1992 A
5089967 Haseda et al. Feb 1992 A
5163319 Spies et al. Nov 1992 A
5189920 Martinez Mar 1993 A
5200896 Sato et al. Apr 1993 A
5208749 Adachi et al. May 1993 A
5224765 Matsuda Jul 1993 A
5228757 Ito et al. Jul 1993 A
5239868 Takenaka et al. Aug 1993 A
5247466 Shimada et al. Sep 1993 A
5261503 Yasui Nov 1993 A
5265020 Nakayama Nov 1993 A
5278761 Ander et al. Jan 1994 A
5282134 Gioutsos et al. Jan 1994 A
5311431 Cao et al. May 1994 A
5311956 Sugiyama May 1994 A
5324102 Roll et al. Jun 1994 A
5335176 Nakamura Aug 1994 A
5365439 Momose et al. Nov 1994 A
5370199 Akuta et al. Dec 1994 A
5408411 Nakamura et al. Apr 1995 A
5446658 Pastor et al. Aug 1995 A
5510989 Zabler et al. Apr 1996 A
5548536 Ammon Aug 1996 A
5549328 Cubalchini Aug 1996 A
5579245 Kato Nov 1996 A
5598335 You Jan 1997 A
5602734 Kithil Feb 1997 A
5610575 Gioutsos Mar 1997 A
5627756 Fukada et al. May 1997 A
5634698 Cao et al. Jun 1997 A
5640324 Inagaki Jun 1997 A
5648903 Liubakka Jul 1997 A
5671982 Wanke Sep 1997 A
5676433 Inagaki et al. Oct 1997 A
5694319 Suissa et al. Dec 1997 A
5703776 Soung Dec 1997 A
5707117 Hu et al. Jan 1998 A
5707120 Monzaki et al. Jan 1998 A
5720533 Pastor et al. Feb 1998 A
5723782 Bolles, Jr. Mar 1998 A
5732377 Eckert Mar 1998 A
5732378 Eckert et al. Mar 1998 A
5732379 Eckert et al. Mar 1998 A
6085860 Hackl et al. Mar 1998 A
5736939 Corcoran Apr 1998 A
5737224 Jeenicke et al. Apr 1998 A
5740041 Iyoda Apr 1998 A
5742918 Ashrafi et al. Apr 1998 A
5742919 Ashrafi et al. Apr 1998 A
5762406 Yasui et al. Jun 1998 A
5782543 Monzaki et al. Jul 1998 A
5787375 Madau et al. Jul 1998 A
5801647 Survo et al. Sep 1998 A
5809434 Ashrafi et al. Sep 1998 A
5816670 Yamada et al. Oct 1998 A
5825284 Dunwoody et al. Oct 1998 A
5857535 Brooks Jan 1999 A
5869943 Nakashima et al. Feb 1999 A
5878357 Sivashankar et al. Mar 1999 A
5893896 Imamura et al. Apr 1999 A
5925083 Ackermann Jul 1999 A
5931546 Nakashima et al. Aug 1999 A
5944137 Moser et al. Aug 1999 A
5944392 Tachihata et al. Aug 1999 A
5946644 Cowan et al. Aug 1999 A
5964819 Naito Oct 1999 A
5971503 Joyce et al. Oct 1999 A
6002974 Schiffmann Dec 1999 A
6002975 Schiffmann et al. Dec 1999 A
6026926 Noro et al. Feb 2000 A
6038495 Schiffmann Mar 2000 A
6040916 Griesinger Mar 2000 A
6050360 Pattok et al. Apr 2000 A
6055472 Breunig et al. Apr 2000 A
6062336 Amberkar et al. May 2000 A
6065558 Wielenga May 2000 A
6073065 Brown et al. Jun 2000 A
6079513 Nishizaki et al. Jun 2000 A
6081761 Harada et al. Jun 2000 A
6086168 Rump Jul 2000 A
6089344 Baughn et al. Jul 2000 A
6104284 Otsuka Aug 2000 A
6122568 Madau et al. Sep 2000 A
6122584 Lin et al. Sep 2000 A
6129172 Yoshida Oct 2000 A
6141604 Mattes et al. Oct 2000 A
6141605 Joyce Oct 2000 A
6144904 Tseng Nov 2000 A
6149251 Wuerth et al. Nov 2000 A
6161905 Hac et al. Dec 2000 A
6169939 Raad et al. Jan 2001 B1
6170594 Gilbert Jan 2001 B1
6176555 Semsey Jan 2001 B1
6178375 Breunig Jan 2001 B1
6179310 Clare et al. Jan 2001 B1
6179394 Browalski et al. Jan 2001 B1
6184637 Yamawaki et al. Feb 2001 B1
6185485 Ashrafi et al. Feb 2001 B1
6186267 Hackl et al. Feb 2001 B1
6192305 Schiffmann Feb 2001 B1
6195606 Barta et al. Feb 2001 B1
6198988 Tseng Mar 2001 B1
6202009 Tseng Mar 2001 B1
6202020 Kyrtsos Mar 2001 B1
6206383 Burdock Mar 2001 B1
6219604 Dilger et al. Apr 2001 B1
6223114 Boros et al. Apr 2001 B1
6226579 Hackl et al. May 2001 B1
6233510 Platner et al. May 2001 B1
6263261 Brown et al. Jul 2001 B1
6266596 Hartman et al. Jul 2001 B1
6272420 Schramm et al. Aug 2001 B1
6278930 Yamada et al. Aug 2001 B1
6282471 Burdock et al. Aug 2001 B1
6282472 Jones et al. Aug 2001 B1
6282474 Chou et al. Aug 2001 B1
6292734 Murakami et al. Sep 2001 B1
6292759 Schiffmann Sep 2001 B1
6311111 Leimbach et al. Oct 2001 B1
6314329 Madau et al. Nov 2001 B1
6315373 Yamada et al. Nov 2001 B1
6321141 Leimbach Nov 2001 B1
6324446 Brown et al. Nov 2001 B1
6324458 Takagi et al. Nov 2001 B1
6330522 Takeuchi Dec 2001 B1
6332104 Brown et al. Dec 2001 B1
6338012 Brown et al. Jan 2002 B2
6349247 Schramm et al. Feb 2002 B1
6351694 Tseng et al. Feb 2002 B1
6352318 Hosomi et al. Mar 2002 B1
6356188 Meyers et al. Mar 2002 B1
6370938 Leimbach et al. Apr 2002 B1
6394240 Barwick May 2002 B1
6397127 Meyers et al. May 2002 B1
6419240 Burdock et al. Jul 2002 B1
6424897 Mattes et al. Jul 2002 B1
6428118 Blosch Aug 2002 B1
6438464 Woywod et al. Aug 2002 B1
6456194 Carlson et al. Sep 2002 B1
6477480 Tseng et al. Nov 2002 B1
6496758 Rhode et al. Dec 2002 B2
6496763 Griessbach Dec 2002 B2
6498976 Ehlbeck et al. Dec 2002 B1
6542073 Yeh et al. Apr 2003 B2
6547022 Hosomi et al. Apr 2003 B2
6554293 Fennel et al. Apr 2003 B1
6556908 Lu et al. Apr 2003 B1
6559634 Yamada May 2003 B2
20020014799 Nagae Feb 2002 A1
20020040268 Yamada et al. Apr 2002 A1
20020056582 Chubb May 2002 A1
20020075139 Yamamoto et al. Jun 2002 A1
20020075143 Foo et al. Jun 2002 A1
20020096003 Yamada et al. Jul 2002 A1
20020128795 Schiffmann Sep 2002 A1
20020139599 Lu Oct 2002 A1
Foreign Referenced Citations (38)
Number Date Country
36 16 907 Nov 1987 DE
38 15 938 Nov 1989 DE
43 21 571 Jan 1994 DE
42 27 886 Feb 1994 DE
43 35 979 Apr 1995 DE
43 42 732 Jun 1995 DE
199 07 633 Oct 1999 DE
0 430 813 Dec 1993 EP
0 662 601 Jul 1995 EP
0 758 601 Feb 1997 EP
24 25 342 Dec 1979 FR
2257403 Jan 1993 GB
2 342 078 Apr 2000 GB
62055211 Sep 1985 JP
63116918 May 1988 JP
63151539 Jun 1988 JP
63203456 Aug 1988 JP
1101238 Apr 1989 JP
2171373 Jul 1990 JP
3042360 Feb 1991 JP
3045452 Feb 1991 JP
4008837 Jan 1992 JP
5016699 Jan 1993 JP
5254406 Oct 1993 JP
6278586 Oct 1994 JP
6297985 Oct 1994 JP
6312612 Nov 1994 JP
8080825 Mar 1996 JP
9005352 Jan 1997 JP
10024819 Jan 1998 JP
10329682 Dec 1998 JP
11011272 Jan 1999 JP
11170992 Jun 1999 JP
11254992 Sep 1999 JP
11255093 Sep 1999 JP
11304663 Oct 1999 JP
11304662 Nov 1999 JP
816849 Mar 1981 SU
Related Publications (1)
Number Date Country
20040064236 A1 Apr 2004 US
Provisional Applications (4)
Number Date Country
60400376 Aug 2002 US
60400375 Aug 2002 US
60400172 Aug 2002 US
60400261 Aug 2002 US