1. Field of the Invention
The invention relates to acceleration request determining system, acceleration request determining method, and control system and control method of an internal combustion engine. In particular, the invention relates to acceleration request determining system and method and control system and method of an internal combustion engine, which improve the output performance of the engine and the fuel economy when appropriate, while assuring sufficient levels of the output performance and the fuel economy at the same time.
2. Description of the Related Art
As a control technology for an internal combustion engine, it is known to determine whether a request for acceleration is made in order to, for example, improve the output performance of the engine. For example, the presence of a request for acceleration is determined based on, for example, the opening of a throttle valve that is controlled in accordance with the amount of depression of the accelerator pedal, as described in the Japanese patent application publication No. JP-A-2004-245104 as one embodiment of the invention. Also, in an internal combustion engine having a turbocharger and a variable valve actuating mechanism, it is known to extend a valve overlap, namely, a period in which intake valves and exhaust valves are both open. For example, the Japanese patent application publication No. JP-A-2004-245104 describes a turbo charged engine in which the valve overlap of the intake and exhaust valves is extended when a request for acceleration is made. Also, the Japanese patent application publication No. JP-A-H11-257109 describes an air-fuel ratio control system of an internal combustion engine, which extends the valve overlap when the engine operates at a rich air-fuel ratio, such as when the engine operates at a high load. In the turbo charged engine of the Japanese patent application publication No. JP-A-2004-245104, the valve overlap is extended so as to bring about secondary combustion of unburned HC, thereby to reduce a turbo lag of the turbocharger. The air-fuel ratio control system of the Japanese patent application publication No. JP-A-H11-257109 extends the valve overlap so as to make the exhaust air-fuel ratio equal to the stoichiometric ratio or lean, thereby to maintain the converting or purifying capability of a catalyst at a sufficiently high level and thus prevent an increase of unburned HC in the exhaust gas.
In the meantime, the pressure measured at the upstream side of the throttle valve (which will be simply referred to as “upstream pressure”) changes with changes in the environment and also changes with time. More specifically, in the case where the vehicle is at a high altitude, for example, the atmospheric pressure is low; therefore, the intake air density is reduced, and the upstream pressure is also reduced. In a vehicle equipped with a turbo charged engine, for example, if the cooling efficiency of an intercooler is reduced, the intake air density decreases as the ability to cool the intake air deteriorates, and a pressure loss of intake air in the intercooler increases as the intake temperature increases. As a result, the upstream pressure of the throttle valve located downstream of the intercooler is also reduced.
As shown in
Suppose that the presence of a request for acceleration is determined when the opening of the throttle valve that is controlled in accordance with the amount of depression of the accelerator pedal reaches opening X2 as indicated in
The invention provides an acceleration request determining system and a control system of an internal combustion engine, which improve the output performance of the engine and the fuel economy when appropriate, while assuring sufficient levels of the output performance and the fuel economy at the same time.
A first aspect of the invention relates to an acceleration request determining system for determining whether a request for acceleration is made to an internal combustion engine. The acceleration request determining system is characterized by including acceleration request determining means for determining whether a request for acceleration is made, based on an upstream pressure and a downstream pressure of a throttle valve disposed in an intake system of the internal combustion engine. The acceleration request determining system is characterized in that the upstream pressure and downstream pressure of the throttle valve, which determine the WOT point, are used as criteria of judgment on the presence of a request for acceleration, so that the presence of a request for acceleration can be determined on the basis of the WOT point. The acceleration request determining system is able to determine whether, a request for acceleration is made on the basis of the WOT point, even if the WOT point changes with environmental changes or chronological changes. By controlling suitable objects to be controlled, based on the request for acceleration determined by the acceleration request determining system, it is possible to improve the output performance of the engine and the fuel economy when appropriate, while assuring sufficient levels of the output performance and the fuel economy at the same time. While it is preferable that the pressures used as criteria of judgment be directly detected based on output signals of pressure sensors or the like, the pressures are not limited to those derived from direct measurements, but may be estimated through, for example, computing. Namely, the pressures as criteria of judgment mean those indicative of the upstream pressure and the downstream pressure. While it is most preferable to use a request for acceleration determined by the acceleration request determining system for controlling objects, to be controlled which are capable of favorably improving the output performance of the engine, the invention is not limited to this application, but the request for acceleration may be used for controlling suitable objects to be controlled for various purposes, so as to solve various problems arising from accelerated conditions of the vehicle.
The acceleration request determining system as described above may further include pressure difference detecting means for detecting a pressure difference between the upstream pressure and downstream pressure of the throttle valve, and the acceleration request determining means may determine whether the pressure difference detected by the pressure difference detecting means is equal to or smaller than a predetermined value, and determine that a request for acceleration is made when the pressure difference is equal to or smaller than the predetermined value. For example, the presence or absence of a request for acceleration may be determined on the basis of the WOT point. In the above form of the invention, one condition under which the acceleration request determining means determines that a request for acceleration is made is indicated by way of example, though the presence of a request for acceleration may be finally determined based on this condition and other conditions. Accordingly, if there are no other particular conditions to be considered, or all of the other conditions are satisfied, the acceleration request determining means determines that a request for acceleration is made when it determines that the pressure difference is equal to or smaller than the predetermined value. In another form of the invention, the acceleration request determining means may determine the presence of a request for acceleration based on, for example, the pressure ratio of the upstream pressure to the downstream pressure.
A second aspect of the invention relates to a control system of an internal combustion engine. The control system of the engine including the acceleration request determining system as described above, a supercharger that boosts a pressure of intake air supplied to the engine, a variable valve actuating mechanism that changes valve characteristics of at least one of an intake valve and an exhaust valve of the engine, variable valve actuating mechanism control means for controlling the variable valve actuating mechanism so as to change the valve characteristics of at least one of the intake valve and the exhaust valve when the acceleration request determining means determines that a request for acceleration is made. The variable valve actuating mechanism combined with, for example, a supercharged engine is a preferable one of the objects to be controlled using the request for acceleration determined by the acceleration request determining system of the first aspect of the invention, since the control of the variable valve actuating mechanism is expected to provide a greater effect, particularly by solving the above-described problem due to changes in the performance of the intercooler.
The above-mentioned valve characteristics are to be interpreted to include the valve lift as well as the valve timing. As a manner of changing the valve characteristics, it is preferable to change the valve characteristics in view of the supercharging (e.g., turbo charging) effect of the supercharger so as to provide the maximum intake charging efficiency and maximum output torque after changing thereof. In one example of the manner of changing the valve characteristics, in particular, the valve timing, the variable valve actuating mechanism control means preferably controls the variable valve actuating mechanism so as to advance the valve timing of the intake valve so that the amount of intake air charged in the cylinder is increased at an equal downstream pressure. To provide a more favorable manner of changing the valve characteristics, the control system preferably stores map data of the optimum valve characteristics which are defined by the engine speed and the downstream pressure that reflects the supercharging effect and an influence of a pumping loss, as the valve characteristics that provide the maximum intake charging efficiency and maximum output torque.
The variable valve actuating mechanism control means may control the variable valve actuating mechanism so as to retard the valve timing of the exhaust valve. Furthermore, the variable valve actuating mechanism control means may control the variable valve actuating mechanism so as to advance the valve timing of the intake valve and retard the valve timing of the exhaust valve. Thus, the valve overlap is extended when not only the valve timing of the intake valve is advanced but also the valve timing of the exhaust valve is retarded. If the valve overlap is extended during a transient supercharging (e.g., turbo-charging) period, the amount of intake air that flows through the cylinder is effectively increased so that the amount of gas remaining in the cylinder can be reduced, whereby the possibility of occurrence of knocking can be favorably reduced. The supercharged internal combustion engine is not limitedly supercharged by a turbocharger, but may be supercharged by a suitable supercharger, such as a mechanical supercharger. In the case where the supercharged engine is supercharged by a turbocharger, in particular, the turbo-charging effect is enhanced by an increase of the exhaust energy resulting from the changing of the valve characteristics by the variable valve actuating mechanism as described above and changing of the ignition timing as described later. Thus, the increased exhaust energy and the turbo-charging effect provide synergistic effects, such as an increase in the amount of intake air charged in the cylinder and an increase in the amount of intake air that flows through the cylinder.
The control system of the internal combustion engine may further include supercharger control means for controlling the supercharger when the acceleration request determining means determines that a request for acceleration is made. The control system of the engine makes it possible to reduce a turbo lag by suitably controlling the supercharger, thereby to more favorably improve the output performance of the engine.
The control system of the internal combustion engine may further include ignition timing control means for controlling ignition timing of the engine, and the ignition timing control means may advance the ignition timing of the engine when the acceleration request determining means determines that a request for acceleration is made. The control system of the engine makes it possible to more favorably improve the output performance, by advancing the ignition timing by a degree corresponding to a reduction of the possibility of knocking. Not only in the case where the presence of a request for acceleration is determined, but also in the case where the amount of intake air that flows through the cylinder is increased due to changing of the valve characteristics, the ignition timing control means of the invention may advance the ignition timing so as to improve the output performance of the engine. In particular, it is desirable to increase the amount of intake air that flows through the cylinder during a transient turbo-charging period, in order to improve the output performance.
The control system of the internal combustion engine may further include air fuel ratio determining means for determining whether the air fuel ratio of exhaust gas downstream of a catalyst disposed in an exhaust system of the engine is lean, and the variable valve actuating mechanism control means may control the variable valve actuating mechanism so as to stop changing the valve characteristics when the air fuel ratio determining means determines that the air fuel ratio is lean. If the amount of intake air that flows through the cylinder continues to be increased even after the air fuel ratio becomes lean, the catalyst adsorbs an increased amount of oxygen, and the purifying or converting capability of the catalyst may deteriorate. With the control system of the engine as described above, the amount of intake air that flows through the cylinder stops being increased, and, therefore, otherwise possible deterioration of the purifying capability of the catalyst can be suppressed or prevented. Not only in the case where the presence of a request for acceleration is determined, but also in the case where the amount of intake air that flows through the cylinder is increased due to changing of the valve characteristics, it is possible to suppress deterioration of the purifying capability of the catalyst by stopping changing the valve characteristics in the same manner as in the above-described control system of the engine.
The control system of the internal combustion engine may further include air fuel ratio determining means for determining whether an air fuel ratio of exhaust gas downstream of a catalyst disposed in an exhaust system of the engine is lean. When the air fuel ratio determining means determines that the air fuel ratio is lean, and the valve characteristics of the intake valve and the exhaust valve are changed, the variable valve actuating mechanism control means may control the variable valve actuating mechanism so as to return the valve characteristics of the exhaust valve to those before changing, in advance of the valve characteristics of the intake valve. After the air fuel ratio becomes lean, it is desirable to return the valve characteristics to those before changing, as in the control system of the engine as described above. If the valve characteristics of the intake valve are returned even in the presence of a request for acceleration, the intake air amount may be significantly reduced, and the driveability may be affected. In the control system of the engine as described above, the valve characteristics of the exhaust valve are returned to those before changing, prior to returning of the valve characteristics of the intake valve, so that deterioration of the purifying capability of the catalyst can be favorably suppressed. Not only in the case where the presence of a request for acceleration is determined, but also in the case where the amount of intake air that flows through the cylinder is increased due to changing of the valve characteristics, it is possible to suppress deterioration of the purifying capability of the catalyst by returning the valve characteristics in the same manner as in the control system of the engine as described above.
In the control system of the internal combustion engine as described above, when the acceleration request determining means determines that no request for acceleration is made, and the valve characteristics of the intake valve and the exhaust valve are changed, the variable valve actuating mechanism control means may control the variable valve actuating mechanism so as to return the valve characteristics of the intake valve to those before changing, in advance of the valve characteristics of the exhaust valve. When no request for acceleration is made, it is desirable to return the valve characteristics to those before changing as in the control system of the engine as described above. By returning the valve characteristics of the intake valve to those before changing prior to returning of the valve characteristics of the exhaust valve, it is possible to reduce a pumping loss, or the like, at an early stage to favorably improve the fuel economy, and also reduce the rate of change of the output performance. It is to be noted that the acceleration request determining means determines that no request for acceleration is made when the intake air amount reaches a target value after the presence of a request for acceleration is determined. Not only in the case where the presence of a request for acceleration is determined, but also in the case where the valve characteristics of the intake valve and exhaust valve are changed and the valve characteristics of the intake valve are changed so as to increase the amount of intake air charged, it is possible to favorably improve the fuel economy by returning the valve characteristics to those before changing, as is the case with the variable valve actuating mechanism control means of the control system of the engine as described above.
A third aspect of the invention relates to an acceleration request determining method for determining whether a request for acceleration is made to an internal combustion engine. The acceleration request determining method is characterized by including the steps of: determining whether a request for acceleration is made, based on an upstream pressure at the upstream side of a throttle valve disposed in an intake system of the internal combustion engine and a downstream pressure at the downstream side of the throttle valve.
A fourth aspect of the invention relates to a method of controlling an internal combustion engine including a supercharger that boosts a pressure of intake air supplied to the internal combustion engine, and a variable valve actuating mechanism that changes valve characteristics of at least one of an intake valve and an exhaust valve of the engine. The control method of the engine is characterized by including the steps of: determining whether a request for acceleration is made, based on an upstream pressure of a throttle valve disposed in an intake system of the engine and a downstream pressure of the throttle valve, and controlling the variable valve actuating mechanism so as to change the valve characteristics of at least one of the intake valve and the exhaust valve when it is determined that a request for acceleration is made.
According to the first through fourth aspects of the invention, an acceleration request determining system, an acceleration request determining method, a control system of an internal combustion engine, and a method of controlling an internal combustion engine are provided which are able to improve the output performance of the engine and the fuel economy when appropriate, while assuring sufficient levels of the output performance and the fuel economy at the same time.
The foregoing and further objects, features and advantages of the invention will become apparent from the following description of preferred embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
One embodiment of the invention will be described in detail with reference to the drawings.
The exhaust system 20 includes exhaust ports (only one of which is shown in
The turbocharger 30 includes a compressor rotor 31, a turbine rotor 32, an assist motor 33, and a wastegate valve 34. The turbocharger 30 is positioned such that a compressor unit that contains the compressor rotor 31 is disposed in the intake system 10, and a turbine unit that contains the turbine rotor 32 is disposed in the exhaust system 20. The compressor rotor 31 and the turbine rotor 32 are connected to each other with a rotary shaft (not shown). When the turbine rotor 32 is driven by the exhaust gas, the compressor rotor 31 is driven via the rotary shaft so as to compress the intake air. The assist motor 33 has a rotor (not shown) mounted on the rotary shaft, and a stator (not shown). When a coil of the stator is energized under control of the ECU 1, the rotary shaft rotates so as to assist in driving of the compressor rotor 31. The wastegate valve 34 serves to control (i.e., reduce) the boost pressure to be equal to or lower than a predetermined level. When the wastegate valve 34 is opened, the exhaust gas passes through the wastegate valve 34 while bypassing the turbine rotor 32.
The internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, pistons 53, intake valves 54, exhaust valves 55, ignition plugs 56, fuel injectors 57, connecting rods 58, a crankshaft 59, an intake-side VVT (Variable Valve Timing) mechanism 61, and an exhaust-side VVT mechanism 62. The engine 50 of this embodiment is an in-line four-cylinder turbo-charged gasoline engine. It is, however, to be understood that the invention is not limitedly applied to this type of engine, but may be applied to other suitable types of engines. For example, the engine 50 may have other suitable arrangements and number of cylinders, and may be a so-called direct-injection gasoline engine, a lean-burn engine, or any other type of engine. While
Referring to
The intake-side VVT mechanism (hereinafter simply referred to as InVVT) 61 serves to change the valve timing of the intake valve 54, and has an intake-side camshaft and a hydraulic system, which are not illustrated. In the InVVT 61, the hydraulic system changes the phase of the intake-side camshaft relative to the phase of the crankshaft 59 under control of the ECU 1, so as to change the valve timing of the intake valve 54. The hydraulic system employs a mechanism that can continuously change the phase of the intake-side camshaft. The exhaust-side VVT mechanism (hereinafter simply referred to as ExVVT) 62 serves to change the valve timing of the exhaust valve 55, and has an exhaust-side camshaft and a hydraulic system, which are not illustrated. Like the InVVT 61, the ExVVT 62 is able to continuously change the valve timing of the exhaust valve 55 under control of the ECU 1. The InVVT 61 and ExVVT 62 may be replaced with other suitable mechanisms, such as those capable of changing the valve lift as well as the valve timing. In this embodiment, the InVVT 61 and ExVVT 62 provide a variable valve actuating mechanism.
The ECU 1 consists principally of CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and input and output circuits, all of which are not illustrated in
Various sensors, including the air flow meter 12, pressure sensors 17a and 17b, temperature sensor 18, A/F sensor 23, oxygen sensor 24, and the crank angle sensor 63, are connected to the ECU 1. To the ECU 1 are also connected various objects to be controlled, including the electrically operated throttle device 14, turbocharger 30, ignition plugs 56, fuel injectors 57, and the InVVT 61 and ExVVT 62, via drive circuits (not shown). In
Next, a control routine executed by the ECU 1 configured as described above for improving the output performance of the engine 50 according to a request for acceleration based on a pressure difference will be described in detail with reference to the flowchart shown in
The flowchart of
If it is determined in step 11 that a request for acceleration is made, the CPU performs a process for controlling the InVVT 61, more specifically, the hydraulic system mounted on the intake-side camshaft, so as to advance the valve timing of the intake valve 54.
If the valve timing of the intake valve 54 is advanced, the volume in the cylinder is increased at the time when the intake valve 54 is closed, but the downstream pressure P2 is reduced, resulting in an increase of a pumping loss. In view of this, the valve timing of the intake valve 54 is advanced in step 12 in the following manner, so that the intake charging efficiency and the output torque can be maximized.
By empirically obtaining the output torque characteristics at a given engine speed Ne as shown in
In the case where the valve timing is not changed, point W in
In step 12, the CPU performs a process for controlling the ExVVT 62, more specifically, the hydraulic system mounted on the exhaust-side camshaft, so as to retard the valve timing of the exhaust valve 55. Since the valve overlap is extended as a result of this process, the amount of the intake air that flows through the cylinder from the intake port 52a into the exhaust port 52b can be further increased, whereby the turbo-charging effect of the turbocharger 30 can be further enhanced. Furthermore, in step 12, the CPU performs a process for controlling the turbocharger 30, more specifically, the assist motor 33, so as to assist in driving of the compressor rotor 31. With regard to the engine having the output torque characteristics as shown in
Returning to
In step 12, at least one of the InVVT 61 and ExVVT 62 may be controlled for gradual changes, so that the intake valve 54 and/or the exhaust valve 55 is/are advanced or retarded by a certain degree or degrees each time an affirmative decision (YES) is made in step 11. In this case, if the ExVVT 62 is controlled for gradual changes, for example, the CPU initially controls the ExVVT 62 in step 14 so as to stop changing of the valve timing of the exhaust valve 55, and then controls the ExVVT 62 so as to return the valve timing of the exhaust valve 55 by a certain degree in step 14 each time an affirmative decision (YES) is made in step 13. In the case where the control for gradual changes is performed in step 14, step 12 will be executed in each of the subsequent cycles of the routine. In the case where the control for gradual changes is not performed, on the other hand, step 12 will be skipped in the subsequent cycles of the routine.
If a negative decision (NO) is made in step 13, on the other hand, the CPU performs a process for correcting the ignition timing to the optimum ignition timing (step 15).
During the transient turbo-charging period, on the other hand, the intake air smoothly flows through the cylinder, so that the gas remaining in the cylinder is sufficiently scavenged. As a result, the possibility of occurrence of knocking is significantly reduced, which makes it possible to advance the ignition timing by a larger degree than that during the steady turbo-charging period. In this embodiment, the ignition timing is corrected to be advanced during the transient turbo-charging period in which the intake air smoothly flows through the cylinder in the above manner, so as to more favorably improve the output performance of the engine 50. If the valve timings of the intake and exhaust valves 54, 55 are returned in step 14, the CPU performs a process for returning the ignition timing in step 15, so as to correct the ignition timing to the optimum ignition timing according to the changes in the valve timings. Thus, even in the case where the valve timings of the intake and exhaust valves 54, 55 are returned by a certain degree each time step S14 is executed, the ignition timing is controlled so as to achieve desirable combustion suitable for the amount of the intake air that flows through the cylinder. Following step 15, the CPU performs a process for setting a flag indicating that the vehicle is being accelerated (which flag will be called “acceleration flag”) ON (step 16).
If a negative decision (NO) is made in step 11, on the other hand, the CPU determines whether the vehicle was being accelerated in the last cycle of the routine, by determining whether the acceleration flag is ON (step 21). In step 21, the CPU also determines whether a request for a settling process is made, by determining whether a settling-process flag set in step 24 or step 25 (which will be described later) is ON. If it is determined that the vehicle was not being accelerated in the last cycle, and no request for a settling process is made, the CPU repeatedly executes step 11 and step 21 until an affirmative decision (YES) is made in step 11. If it is determined that the vehicle was being accelerated in the last cycle, or a request for a settling process is made, the CPU performs a process of step 22.
In step 22, the CPU initially controls the InVVT 61 so as to return the valve timing of the intake valve 54 to that before changing prior to returning the valve timing of the exhaust valve 55, and then controls the ExVVT 62 so as to return the valve timing of the exhaust valve 55 to that before changing. The valve timing of the exhaust valve 55 may start being returned while the valve timing of the intake valve 54 is being returned. In step 22, the CPU controls both the InVVT 61 and the ExVVT 62 for gradual changes, so as to return the valve timings by a certain degree each time an affirmative decision (YES) is made in step 21. It is thus possible to favorably improve the fuel economy by reducing the pumping loss early, and also suppress deterioration of the driveability by reducing the rate of change of the output performance.
Following step 22, the CPU determines whether the valve timings of the intake valve 54 and exhaust valve 55 become equal to respective steady-state target valve timings (step 23). If a negative decision (NO) is made in step 23, the CPU set a flag indicative of the presence of a request for a settling process (which flag will be referred to as “settling-process request flag”) ON (step 24). Subsequently, the CPU sets the acceleration flag OFF (step 26), and, subsequent to step 11, performs the processes of step 21 through step 23. If an affirmative decision (YES) is made in step 23, the CPU sets the settling-process request flag OFF, and then performs the process of step 26.
Next, an example of changes in various quantities of state, which occur as the CPU executes the control routine of the flowchart shown in
From time T1 to time T2 at which the intake air amount becomes equal to its target value, it is repeatedly determined in step 11 that a request for acceleration is made, and the vehicle is kept in an accelerated condition. During this period (T1-T2), the upstream pressure P1, downstream pressure P2 and the intake air amount increase as the boost pressure increases. Since the amount of intake air that flows through the cylinder increases up to time T2, the ignition timing is advanced in step 15. At time T2, the intake air amount becomes equal to the target value, and it is thus determined in step 11 that no request for acceleration is made. Then, the InVVT 61 is controlled in advance of the ExVVT 62 through repeated execution of step 22, so that the valve timing of the intake valve 54 gradually changes and reaches the steady-state target valve timing at time T3. Following the control of the InVVT 61, the ExVVT 62 is controlled through repeated execution of step 22, so that the valve timing of the exhaust valve 55 gradually changes and reaches the steady-state target valve timing at time T4. If greater importance is to be placed on the fuel economy, the InVVT 61 may not be controlled for gradual changes, but may be controlled so as to instantly change the valve timing of the intake valve 54 to the steady-state target valve timing at time T2.
If the air fuel ratio becomes lean as indicated by a broken line in
The request for acceleration determined by the acceleration request determining system provided by the ECU 1 in this embodiment may be used for controlling appropriate objects to be controlled, other than the turbocharger 30, the InVVT 61 and the ExVVT 62 as indicated in this embodiment. In this case, for example, the acceleration request determining means may determine the presence of a request for acceleration, based on different conditions concerning the upstream pressure P1 and downstream pressure P2, for each of the objects to be controlled based on the request for acceleration, in view of the response and function of the object to be controlled. Also, with regard to the same object to be controlled, for example, the acceleration request determining means may determine the presence of a request for acceleration in a step-by-step manner, based on different conditions concerning the upstream pressure P1 and the downstream pressure P2, in view of the response and function of the object to be controlled. Namely, the presence of a request for acceleration may be determined based on criteria that differ in degrees. Also, when it is determined whether a request for acceleration is made as in step 11 of the flowchart of
The embodiment as described above is a preferred embodiment of the invention. It is, however, to be understood that the invention is not limited to the illustrated embodiment, but may be embodied with various changes or modifications, without departing from the principle of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-088411 | Mar 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/000947 | 3/28/2007 | WO | 00 | 8/6/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/110774 | 10/4/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6425357 | Shimizu et al. | Jul 2002 | B2 |
6619258 | McKay et al. | Sep 2003 | B2 |
20020017277 | Kanno | Feb 2002 | A1 |
20040149268 | Hasegawa et al. | Aug 2004 | A1 |
20060196182 | Kimoto et al. | Sep 2006 | A1 |
20060201152 | Irisawa | Sep 2006 | A1 |
20060243231 | Hasegawa et al. | Nov 2006 | A1 |
20070012296 | Kakinuma et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
1505733 | Jun 2004 | CN |
1 437 498 | Jul 2004 | EP |
1 447 550 | Aug 2004 | EP |
A 59-176433 | Oct 1984 | JP |
A-61-207857 | Sep 1986 | JP |
A 1-106934 | Apr 1989 | JP |
A-5-321804 | Dec 1993 | JP |
A-8-165947 | Jun 1996 | JP |
A 11-257109 | Sep 1999 | JP |
A 2001-355466 | Dec 2001 | JP |
A-2003-3871 | Jan 2003 | JP |
A-2003-211997 | Jul 2003 | JP |
A 2004-183512 | Jul 2004 | JP |
A 2004-245104 | Sep 2004 | JP |
A-2004-316531 | Nov 2004 | JP |
A-2005-069045 | Mar 2005 | JP |
A-2006-017053 | Jan 2006 | JP |
A-2006-70791 | Mar 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090050119 A1 | Feb 2009 | US |