The present disclosure relates to systems and methods for determining eye movements, and more particularly, to determining the eye movements of a driver of a vehicle.
Eye-tracking is a technique that enables observing and recording eye movements. Recording eyes with a camera and analyzing the images allows determining periods of eye fixation and periods of fast movement between fixations, referred to as saccades. However, the reliability of this technique may be limited in case of bad lighting and high noise, in particular in a vehicle. Therefore, a demand exists for improving the reliability of eye movement determination.
The following publications relate to eye metrics:
The following publications relate to applications of eye metrics measurement:
Disclosed and claimed herein are methods and systems for determining eye movement.
A first aspect of the present disclosure relates to a computer-implemented method for determining a movement associated with an eye of a person, the method comprising:
The camera to record the series of images may be a visible light camera or an infrared camera. In addition to the camera, an artificial light source may be used to improve the signal-to-noise ratio. An infrared camera may be used, in particular with an infrared light source, which does not distract the person when in operation. Cameras may optionally be cooled to improve the signal-to-noise ratio. The first signal indicate a maximum distance between the eyelids, a position of the pupil relative to the eyelids, or a pupil diameter. The first signal may be expressed as a time series. The signal may be subject to noise or other spurious effects, such as the person turning the eye away from the camera. Other possible sources of error are lack of mechanical stability of the camera mounting, computational errors in data analysis, and limitations in illumination. These effects may reduce the reliability of the first signal. The movement parameter, as derived from the first signal, may be the signal itself, a linear or non-linear translation of the signal to another frame of reference, a first derivative indicative of a velocity, a second derivative indicative of an acceleration, or the result of more complex calculations. For example a movement parameter may also be the duration of a period of time in which variations in the signal are below a further predetermined threshold. In an embodiment, the movement parameter indicates an amplitude, a duration, a velocity, or a frequency of the movement. The state is determined depending on a comparison of a movement parameter with a predetermined threshold. The threshold may be a physiologically known limit of eye movement, such as a highest possible blink or saccade velocity. The disclosure is thus based on the principle that the reliability of eye movement determination can be increased by taking into account known facts on the physiology of the eye. Although the method is suitable for determining human eye movements, it may alternatively be applied for determining eye movement of certain animals in an embodiment, albeit with different values of the predetermined criteria. Data that contradict the predetermined criteria may be considered inconclusive as to whether the eye is open or closed. The reliability is thereby increased, and there is no need for filters for suppressing noise. Such filters may in general reduce noise, but they also bear the risk of producing different errors. For example, a sliding average filter may reduce outliers, but also flattens a curve to the extent that the signal may incite an erroneous interpretation in subsequent analysis steps. However, the method of the present disclosure may be supplemented by filtering techniques as detailed below.
In a further embodiment,
Therefore, it is determined whether the first signal indicates an open eye, a closed eye, or is inconclusive as to whether the eye is open or closed. This determination is not only based on a threshold relating to the openness of the eye, as derived, for example, from a signal indicative of the maximum distance between the eyelids. Rather, it is further dependent on predetermined criteria that represent known physiological facts on human eye blinks.
In a further embodiment,
Thereby, based on a signal indicative of a position of a pupil, a saccade may be distinguished from a fixation. Rather than just calculating the eye movement velocity, a second movement parameter is calculated and compared against known physiological parameters, for example the maximum saccade velocity. Alternatively, the signal may have the form of Euler angles for the eyeball position.
The eye movement velocity may be determined by calculating a numeric temporal derivative of the second signal. Performing the calculation for each point in time may refer to calculating a derivative of a curve that represents an angle or a position, wherein each value corresponds to one recorded image of the image series. Alternatively, each value may correspond to an average of a small number of images (e. e. three images) subsequently recorded, in order to reduce noise. The velocity is then compared to a predetermined second threshold to determine whether the eyes move fast, i. e. a saccade is happening, or the eyes move slowly, i. e. the eyes are fixed into one direction.
In a further embodiment, the portion corresponds to one or more periods in time when the eye is open, and the method further comprises:
Thereby, a saccade or fixation is detected based on a signal indicative of eye gaze, and the analysis is applied only to images for which it has been previously determined with high reliability that the eye is open. In contrast, images that are deemed inconclusive are excluded. Thereby, the method benefits from the increased reliability of the blink detection as detailed above. In a further embodiment, said method further comprises deriving a fourth movement parameter indicative of one or more of a saccade amplitude, saccade velocity, saccade duration, and fixation duration. Thereby, also the saccade or fixation is detected based on physiologically proven criteria.
In a further embodiment, the determination comprises generating an eye movement classification comprising:
This two-step procedure consists in first distinguishing between first and second state, such as between an open and a closed eye, or between a saccade and a fixation, using a first threshold. In a second step, the reliability of the classification is improved by explicitly marking the points in time for which the preliminary classification did not yield physiologically possible results as inconclusive.
In a further embodiment, the method further comprises determining one or more fixation periods, and determining, for each fixation period, an averaged eye gaze signal. The average may be calculated over the duration of the fixation period. This allows identifying a gaze direction. If these steps are performed on data generated by the steps above, the determination of the gaze direction is possible at much higher reliability. In addition, also the accuracy of the determination of the gaze direction is higher. This is because other noise removal steps that may distort the measured data, such as calculating a sliding average, are unnecessary. Furthermore, the beginning and end time of a fixation period may be determined more accurately.
In a further embodiment, the method further comprises filtering measurement noise from the signal. The combination of both filtering noise and using a plurality of movement parameters allows further increasing the reliability.
In a second aspect of the disclosure, a system for determining a cognitive demand level of a user is provided. The system comprises a first computing device, a first sensor, a second computing device, and a second sensor. The system is configured to execute the steps described above. All properties of the computer-implemented method of the present disclosure also apply to the system.
The features, objects, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numerals refer to similar elements.
Upon operation, the camera 102 records a series of images. The images are first analyzed by an eye openness analysis unit 112, which determines a continuous signal indicative of an eye openness. The signal may relate to a maximum distance between upper and lower eyelid, and it may be subject to noise and measurement errors, such as an erroneous value due to the person turning the head away from the camera. The preliminary classifier 116 determines whether the signal exceeds a first threshold, and classifies the signal at that point in time as indicative of an open eye or a closed eye. Comparator 118 receives the output of the preliminary classifier 116 and determines whether the signal complies with the criteria. If, for example, two blinks are determined at a temporal delay that is below a threshold defined by physiological limits, the system may determine that the signal is not compliant with the criteria. In response to a determination that the signal is not compliant with the criteria, the classification modifier 120 changes the classification in a way that avoids an erroneous signal. For example, the classification may be determined as inconclusive for the period in time in which it is not compliant with the criteria. However, one or more additional or alternative classifications may be generated, that are indicative of an open eye or a closed eye under certain conditions. If, for example, the signal of only one image is indicative of a closed eye, whereas the signal indicates an open eye for the preceding and subsequent images, the signal may be considered indicative of an open eye for the purpose of determination of a blink period.
The image generated by the camera and the output of the eye openness analysis unit 112 are sent into an eye gaze analysis unit 122. The eye gaze analysis unit 122 is configured to analyze the images that have been determined to represent an open eye. Analysis of images depicting closed eyes or images where the first signal is inconclusive is thus avoided, and therefore, a first source of error is mitigated. The corresponding periods in time are marked as inconclusive of the eye gaze direction and movement. For the images representing an open eye, a signal generator 124 generates a signal indicative of the eye gaze, which may be expressed as either a pair of Euler angles, or as positions of the pupil relative to a center of the eye. Furthermore, a numerical derivative is calculated to determine a velocity of the eye movement. The preliminary classifier 126 classifies periods in time where the velocity exceeds a second threshold as saccades, and periods in time where the velocity is below the second threshold as fixations. Comparator 128 then verifies for each point in time if the classification complies with the eye movement criteria. If this is not the case, for example if a velocity exceeds a threshold indicative of a physiologically possible eye movement velocity, the classification modifier 130 may set the classification as inconclusive as to whether a fixation or a saccade is present. Thereby, every point in the time during which the images are taken is unambiguously classified as blink, saccade, fixation, or inconclusive.
In the end, 314, the classification of the eye gaze is provided for further analysis. For example, for the fixation periods, an averaged direction may be determined. Thereby, it can be determined at which object the person is looking. This information may be used for an augmented reality system. The data may also be used for determining a cognitive demand.
Number | Date | Country | Kind |
---|---|---|---|
PCT/RU2020/000560 | Oct 2020 | RU | national |
The present application claims priority to International Patent Application No. PCT/RU2020/000560, entitled “SYSTEM AND METHOD FOR DETERMINING AN EYE MOVEMENT,” and filed on Oct. 20, 2020. The entire contents of the above-listed application is hereby incorporated by reference for all purposes.