E-CAD (electronic computer-aided design) analysis tools often rely on connectivity information when performing analysis of VLSI circuit netlists. In typical VLSI E-CAD analysis tools, net connectivity in a circuit design is determined simultaneously with design analysis. An analysis run is typically lengthy, and a connectivity error that is found while an analysis is in progress generally requires the analysis to be re-run. Some previously existing E-CAD tools perform connectivity checking by tracing each net in the entire design, and reporting errors if the net is terminated abruptly, or if the net does not connect properly to a block (cell) in the design. Tracing each net in a design, particularly in a design such as a typical VLSI processor comprising millions of nets, is undesirably slow.
A method is described for determining connectivity of a hierarchical circuit design. Hierarchical interface connections in the circuit design are evaluated by determining, for each block instance in each of the hierarchical blocks in the design, whether each port instance, on each block instance, is connected to a net in a parent block; and whether each port, in each of the hierarchical blocks, is connected to a net within the block. A warning message is generated upon detection of at least one disconnected net within the hierarchical blocks.
A more complete understanding hereof may be obtained by reference to the drawings, in which:
Definitions
A net is a single electrical path in a circuit that has the same electrical characteristics at all of its points. Any collection of wires that carries the same signal between circuit components is a net. If the components allow the signal to pass through unaltered (as in the case of a terminal), then the net continues on subsequently connected wires. If, however, the component modifies the signal (as in the case of a transistor or a logic gate), then the net terminates at that component and a new net begins on the other side. Connectivity of components in a VLSI circuit design is typically specified using a netlist, which indicates the specific nets that interconnect the various circuit components.
A significant characteristic of VLSI and other types of circuit design is a reliance on hierarchical description. A primary reason for using hierarchical description is to hide the vast amount of detail in a design. By reducing the distracting detail to a single object that is lower in the hierarchy, one can greatly simplify many E-CAD operations. For example, simulation, verification, design-rule checking, and layout constraints can all benefit from hierarchical representation, which makes them more computationally tractable. Since many circuits are too complicated to be easily considered in their totality, a complete design is often viewed as a collection of component aggregates that are further divided into sub-aggregates in a recursive and hierarchical manner. In VLSI circuit design, these aggregates are commonly referred to as blocks (or cells). The use of a block at a given level of hierarchy is called an ‘instance’. Each block has one or more ‘ports’, each of which provides a connection point between a net within the block and a net external to the block.
As shown in
As can be seen from
At step 205, connectivity module 111 selects a top level block of hierarchical VLSI design 300 and recursively analyzes each port/portinst within the block to determine connectivity between the nets in the design. In step 210, each of the steps in sections 220 and 240 is performed for each hierarchical block of interest in design 300. In section 220, for each block instance in a particular hierarchical block, the steps in section 230 are performed for each port instance (portinst) in that block instance. In section 230, at step 231, a port instance is checked for the presence of a net externally connected to the block instance. If a connectivity error is found (step 232), then a warning message, indicating the name of the ‘disconnected’ port instance, is generated by user interface module 112, at step 250.
In section 240, for each port in each hierarchical block presently being analyzed, the port is checked for the presence of a net internally connected to the block. If a connectivity error is found (step 242), then a warning message, indicating the name of the ‘disconnected’ port, is generated by user interface module 112, at step 250.
In an exemplary embodiment, operation of system 100 determines connectivity of design 300 in a manner consistent with algorithm A, shown below, which corresponds to the steps shown in the
System 100 executes the above algorithm, in part, on a portion of design 300, in accordance with the steps shown in the
Lines 2-5 above are first performed for block instance i1 port instances 309, 310, ce2, and 317, as follows. Note that actual port and portinst names have been omitted, with reference numbers being substituted in their stead:
Next, lines 2-5 above are then performed for block instance i2 port instances 312, 320, ce3, and 315, as follows:
Next, lines 6-8 of the above algorithm are performed for each port in test_block_i0, as follows:
Next, lines 6-8 of the above algorithm are performed for each port in test_block_μl, as follows:
Finally, lines 6-8 of the above algorithm are performed for each port in test_block_i2, as follows:
After the above checks have been made, it can be seen that there are three connectivity errors in design 300: port instances ‘ce2’and ‘ce3’ (on block instances i1 and i2, respectively) do not connect to nets in parent blocks test_block_i0 and test_block_i1, respectively; and port ‘ce1’ constitutes a connectivity error because this port on block ‘test_block_i1’ does not have a connected net within the block. Connectivity module 111 therefore generates a warning upon detection of one or more disconnected nets, and transmits the warning to user interface module 112 for display or printing via user terminal 114, and/or to storage unit 106 for storage, in step 250. The warning includes the name of the disconnected port or port instance.
Instructions that perform the operation discussed with respect to
Certain changes may be made in the above methods and systems without departing from the scope of the present system. It is to be noted that all matter contained in the above description or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense. For example, the items shown in
The present document contains material related to the material of copending, cofiled, U.S. patent applications Attorney Docket Number 100111221-1, entitled System And Method For Determining Wire Capacitance For A VLSI Circuit; Attorney Docket Number 100111227-1, entitled System And Method For Determining Applicable Configuration Information For Use In Analysis Of A Computer Aided Design; Attorney Docket Number 100111228-1, entitled Systems And Methods Utilizing Fast Analysis Information During Detailed Analysis Of A Circuit Design; Attorney Docket Number 100111230-1, entitled Systems And Methods For Determining Activity Factors Of A Circuit Design; Attorney Docket Number 100111232-1, entitled System And Method For Determining A Highest Level Signal Name In A Hierarchical VLSI Design; Attorney Docket Number 100111234-1, entitled System And Method Analyzing Design Elements In Computer Aided Design Tools; Attorney Docket Number 100111235-1, entitled System And Method For Determining Unmatched Design Elements In A Computer-Automated Design; Attorney Docket Number 100111236-1, entitled Computer Aided Design Systems And Methods With Reduced Memory Utilization; Attorney Docket Number 100111238-1, entitled System And Method For Iteratively Traversing A Hierarchical Circuit Design; Attorney Docket Number 100111257-1, entitled Systems And Methods For Establishing Data Model Consistency Of Computer Aided Design Tools; Attorney Docket Number 100111259-1, entitled Systems And Methods For Identifying Data Sources Associated With A Circuit Design; and Attorney Docket Number 100111260-1, entitled Systems And Methods For Performing Circuit Analysis On A Circuit Design, the disclosures of which are hereby incorporated herein by reference.