The present invention generally relates to the field of electronic document management where multiple versions of one or more documents have a complex geneology.
In many business situations it is common for multiple versions of one or more documents to be created. Some businesses use tools such as Document Management Systems (DMS) or other content repositories to try to track and store each version of the document that is created. Even when such systems are in use, versions tend to be created and/or stored in locations outside the DMS when copies of the document are sent by email, received from 3rd party contributors, copied for offline editing, etc. This problem is most acute for document formats that encourage editing (such as Microsoft™ Office™ format documents) as opposed to document formats which are largely used for presentation of a final copy (such as Adobe™ PDF documents).
The problem facing a document author or collaborator is often this: having received or found a new version of a document, how do they decide what to do with it? Was the version of a document that has arrived in an email message created by editing the most recent version stored in the DMS? Was it created by editing an older version of the document? Is it just a duplicate of some other version of the document? Depending on the answers to these questions, different actions are required—for instance in the first case of the document being created by editing the latest DMS version it is likely enough just to save the received version as a new version into the DMS. In the second case it is likely that the changes made to the received version need to be merged into the latest DMS version, while in the last case no action at all may be required.
In these circumstances, a software tool capable of determining the genealogical relationships between document versions automatically would provide great value as it would provide the document author/collaborator with relevant information allowing them to make a proper decision on the action needed when new versions of a document are located or received. In order to be useful in the situations described above, the tool must be capable of determining genealogical relationships based on the content of the documents only, as other meta-information such as DMS version information, file names, file timestamps, etc., may not be present or may be modified in some or all versions located outside the DMS—for instance copied files may have altered names or timestamps and files sent via email may have lost their original timestamp.
A tool capable of determining document genealogy from content only would also be useful in the context of document forensics—in cases where large collections of documents and versions of documents have been collected and investigators wish to piece together the history of the document or documents involved.
One embodiment of the invention applies to word processing documents in the RTF, DOC, DOCX and DOCM formats, which are most frequently edited using Microsoft Word ™. Recent versions of Microsoft Word (since at least Word 2003) have included a feature where a random integer of up to 4 bytes length, named a Revision Sequence ID or RSID, is added to the document for every editing session that the document undergoes. Microsoft Word itself uses this information to help in the process of merging documents—to determine whether a change noted between two versions was an insertion by author ‘A’ or a deletion by author ‘B’, however the list of RSIDs also provides information that can be used to accurately recreate the genealogy of a set of documents.
The storage of RSIDs in the different document file formats (RTF, DOC, DOCX, DOCM, etc.) is specified in the freely available Microsoft documentation for these file formats. Therefore, one embodiment of the invention includes a module that examines a set of RTF, DOC, DOCX, DOCM or other files provided as input and extracts the RSIDs for those files (101). This embodiment builds a data structure that tabulates an identifier for the file with that files' extracted RSID (104). This data structure is then used by the rest of the embodiment of the invention.
The use of RSIDs within each document format is actually quite complicated, but for the purposes of determining document version genealogy, all that is required is the complete set of all RSIDs present in the document version of interest. Although the specifications for the file formats seem to allow for RSIDs to take an integer value of 4 bytes length (i.e. between 0 and 232-1), in practice Microsoft Word only seems to allocate values of up to 3 bytes in length (i.e. between 0 and 224-1). This may be an implementation detail that could change in future versions of Microsoft Word and in any case the range allowed for the RSID values does not impact the methods described here other than the size of the RSID data structure and the speed of execution of embodiments of the invention.
In practice, Microsoft Word may assign more than one new RSID for each editing session, tests indicating that one is added when the document is opened and another each time it is saved to disk. Note that if the document is opened, but not modified or saved, even if new RSIDs are created within the memory of the Microsoft Word application, they will not be stored to the document file (as it is not saved) and are thus discarded without trace when the document is closed. The fact that the number of RSIDs added to the document per editing session may be greater than one does not affect the techniques described here.
Given that new RSIDs are added to the document each time it is modified and saved, it follows that if two document versions A and B are encountered the invention can determine that version B is an ancestor of version A when the following two conditions hold true
Based upon this principle and other similar derivations the invention can determine the genealogy of a set of documents from their RSIDs.
The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed invention. In the drawings, the same reference numbers and any acronyms identify elements or acts with the same or similar structure or functionality for ease of understanding and convenience. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the Figure number in which that element is first introduced (e.g., element 204 is first introduced and discussed with respect to
Various examples of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant art will understand, however, that the invention may be practiced without many of these details. Likewise, one skilled in the relevant art will also understand that the invention can include many other features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below, so as to avoid unnecessarily obscuring the relevant description. The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the invention. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
Consider document versions A, B, C, etc. Let the set of RSIDs associated with each version be RA, RB, RC, etc. Let the mathematical symbol ‘<’ be used to denote ancestry, so that A<B can be read as ‘Version A is an ancestor of Version B’. Let T(A,B) indicate that versions A and B belong to the same genealogical version tree. Let E(A,B) indicate that the versions A and B have equal RSIDs and therefore cannot be distinguished by this methodology. Therefore we have the following logical conditions:
RA≡RB→E(A,B) (1)
RA∩RB≠∅→T(A,B) (2)
RA⊂RB→A<B (3)
T(A,B) and RA⊂RB and RB⊂RA→∃C:C<A,C<B,RC=RA∩RB (4)
These four logical equations can be interpreted as
Preliminary steps before the construction of a genealogical tree for a set of documents proceeds as follows:
Once a set of related groups have been constructed, a genealogical tree is determined for each group which has more than one member document. This is accomplished by the logic module (103) that applies logic rules to the extracted RSIDs. Note that all members of a given related document group are already determined to be versions of the same document—they will now be referred to as versions throughout the remaining description. This step is the primary step of the invention and proceeds as follows:
At the end of this procedure, there will only be a single version remaining (the root version) with no parent version determined. The procedure will have possibly created several ‘missing versions’ where it can determine that two versions are related to each other as siblings but that there common ancestor has not been presented to the algorithm. The choice in step 5 of creating a single synthesized missing version such that the number of RSIDs in RC is at a maximum is important as it ensures that the fewest children are attached to each synthesized version and that thus the most detailed tree possible is generated. Constructing a synthesized missing version from the minimum number of intersecting RSIDs would instead lead to a tree where many child versions attached themselves to that new version, making the tree very wide but less deep and containing less information regarding detailed ancestry.
In yet another embodiment of the invention, the system is adapted to rely on codes extracted from the content in the versions itself. This would be useful in situations where the RSIDs are not used, for example, for text documents extracted from scanned data and the like. In this embodiment, numerical values called fingerprints are extracted from each document. The relative distance in value between fingerprints can provide an indication of the relative differences in the documents. By means of these distances, a relative geneology of the document versions can be determined automatically. String matching algorithms can be used to identify identical sections of the documents. One logical rule in this embodiment is that two versions that have a high number of identical strings are more likely to be closely related to than two with fewer. The relative distance between document versions can be used to determine a hierarchy that is the expected geneology of the document versions.
Operating Environment:
The system and method described herein can be executed using a computer system, generally comprised of a central processing unit (CPU) that is operatively connected to a memory device, data input and output circuitry (I/O) and computer data network communication circuitry. A video display device may be operatively connected through the I/O circuitry to the CPU. Components that are operatively connected to the CPU using the I/O circuitry include microphones, for digitally recording sound, and video camera, for digitally recording images or video. Audio and video may be recorded simultaneously as an audio visual recording. The I/O circuitry can also be operatively connected to an audio loudspeaker in order to render digital audio data into audible sound. Audio and video may be rendered through the loudspeaker and display device separately or in combination. Computer code executed by the CPU can take data received by the data communication circuitry and store it in the memory device. In addition, the CPU can take data from the I/O circuitry and store it in the memory device. Further, the CPU can take data from a memory device and output it through the I/O circuitry or the data communication circuitry. The data stored in memory may be further recalled from the memory device, further processed or modified by the CPU in the manner described herein and restored in the same memory device or a different memory device operatively connected to the CPU including by means of the data network circuitry. The memory device can be any kind of data storage circuit or magnetic storage or optical device, including a hard disk, optical disk or solid state memory.
The remote computer may be a laptop or desktop type of personal computer. It can also be a cell phone, smart phone or other handheld device, including a tablet. The precise form factor of the user's computer does not limit the claimed invention. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held, laptop or mobile computer or communications devices such as cell phones and PDA's, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
Those skilled in the relevant art will appreciate that the invention can be practiced with other communications, data processing, or computer system configurations, including: wireless devices, Internet appliances, hand-held devices (including personal digital assistants (PDAs)), wearable computers, all manner of cellular or mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, set-top boxes, network PCs, mini-computers, mainframe computers, and the like. Indeed, the terms “computer,” “server,” and the like are used interchangeably herein, and may refer to any of the above devices and systems.
The computer can display on the display screen operatively connected to the I/O circuitry the appearance of a user interface. Various shapes, text and other graphical forms are displayed on the screen as a result of the computer generating data that causes the pixels comprising the display screen to take on various colors and shades. The user interface also displays a graphical object referred to in the art as a cursor. The object's location on the display indicates to the user a selection of another object on the screen. The cursor may be moved by the user by means of another device connected by I/O circuitry to the computer. This device detects certain physical motions of the user, for example, the position of the hand on a flat surface or the position of a finger on a flat surface. Such devices may be referred to in the art as a mouse or a track pad. In some embodiments, the display screen itself can act as a trackpad by sensing the presence and position of one or more fingers on the surface of the display screen. When the cursor is located over a graphical object that appears to be a button or switch, the user can actuate the button or switch by engaging a physical switch on the mouse or trackpad or computer device or tapping the trackpad or touch sensitive display. When the computer detects that the physical switch has been engaged (or that the tapping of the track pad or touch sensitive screen has occurred), it takes the apparent location of the cursor (or in the case of a touch sensitive screen, the detected position of the finger) on the screen and executes the process associated with that location. As an example, not intended to limit the breadth of the disclosed invention, a graphical object that appears to be a 2 dimensional box with the word “enter” within it may be displayed on the screen. If the computer detects that the switch has been engaged while the cursor location (or finger location for a touch sensitive screen) was within the boundaries of a graphical object, for example, the displayed box, the computer will execute the process associated with the “enter” command. In this way, graphical objects on the screen create a user interface that permits the user to control the processes operating on the computer.
The system may also be comprised of a central server that is connected by a data network to a user's computer. The central server may be comprised of one or more computers connected to one or more mass storage devices. The precise architecture of the central server does not limit the claimed invention. In addition, the data network may operate with several levels, such that the user's computer is connected through a fire wall to one server, which routes communications to another server that executes the disclosed methods. The precise details of the data network architecture does not limit the claimed invention.
A server may be a computer comprised of a central processing unit with a mass storage device and a network connection. In addition a server can include multiple of such computers connected together with a data network or other data transfer connection, or, multiple computers on a network with network accessed storage, in a manner that provides such functionality as a group. Practitioners of ordinary skill will recognize that functions that are accomplished on one server may be partitioned and accomplished on multiple servers that are operatively connected by a computer network by means of appropriate inter process communication. Practitioners of ordinary skill will recognize that the invention may be executed on one or more computer processors that are linked using a data network, including, for example, the Internet. In another embodiment, different steps of the process can be executed by one or more computers and storage devices geographically separated by connected by a data network in a manner so that they operate together to execute the process steps.
In one embodiment, a user's computer can run an application that causes the user's computer to transmit a stream of one or more data packets across a data network to a second computer, referred to here as a server. The server, in turn, may be connected to one or more mass data storage devices where the database is stored. A data message and data upload or download can be delivered over the Internet using typical protocols, including TCP/IP, HTTP, TCP, UDP, SMTP, RPC, FTP or other kinds of data communication protocols that permit processes running on two remote computers to exchange information by means of digital network communication.
As a result a data message can be one or more data packets transmitted from or received by a computer containing a destination network address, a destination process or application identifier, and data values that can be parsed at the destination computer located at the destination network address by the destination process in order that the relevant data values are extracted and used by the destination process.
The server can execute a program that receives the transmitted packet and interpret the transmitted data packets in order to extract database query information. The server can then execute the remaining steps of the invention by means of accessing the mass storage devices to derive the desired result of the query. Alternatively, the server can transmit the query information to another computer that is connected to the mass storage devices, and that computer can execute the invention to derive the desired result. The result can then be transmitted back to the user's computer by means of another stream of one or more data packets appropriately addressed to the user's computer.
In addition, the user's computer may obtain data from the server that is considered a website, that is, a collection of data files that when retrieved by the user's computer and rendered by a program running on the user's computer, displays on the display screen of the user's computer text, images, video and in some cases outputs audio.
The access of the website can be by means of a client program running on a local computer that is connected over a computer network accessing a secure or public page on the server using an Internet browser or by means of running a dedicated application that interacts with the server, sometimes referred to as an “app.” The data messages may comprise a data file that may be an HTML document (or other hypertext formatted document file), commands sent between the remote computer and the server and a web-browser program or app running on the remote computer that interacts with the data received from the server. The command can be a hyper-link that causes the browser to request a new HTML document from another remote data network address location. The HTML can also have references that result in other code modules being called up and executed, for example, Flash, scripts or other code. The HTML file may also have code embedded in the file that is executed by the client program as an interpreter, in one embodiment, Javascript. As a result a data message can be a data packet transmitted from or received by a computer containing a destination network address, a destination process or application identifier, and data values or program code that can be parsed at the destination computer located at the destination network address by the destination application in order that the relevant data values or program code are extracted and used by the destination application.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator.) Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Javascript, C, C++, JAVA, or HTML or scripting languages that are executed by Internet web-broswers) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The computer program and data may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed hard disk), an optical memory device (e.g., a CD-ROM or DVD), a PC card (e.g., PCMCIA card), or other memory device. The computer program and data may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program and data may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software or a magnetic tape), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web.)
It is appreciated that any of the software components of the present invention may, if desired, be implemented in ROM (read-only memory) form. The software components may, generally, be implemented in hardware, if desired, using conventional techniques. In some instances, especially where a mobile computing device is used to access web content through the network (e.g., when a 3G or an LTE service of a mobile phone is used to connect to the network), the network may be any type of cellular, IP-based or converged telecommunications network, including but not limited to Global System for Mobile Communications (GSM), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDM), General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Advanced Mobile Phone System (AMPS), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS), Evolution-Data Optimized (EVDO), Long Term Evolution (LTE), Ultra Mobile Broadband (UMB), or Voice over Internet Protocol (VoIP), Unlicensed Mobile Access (UMA).
The described embodiments of the invention are intended to be exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in the appended claims. Although the present invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only, and is not to be taken by way of limitation. It is appreciated that various features of the invention which are, for clarity, described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable combination. It is appreciated that the particular embodiment described in the specification is intended only to provide an extremely detailed disclosure of the present invention and is not intended to be limiting.
It should be noted that the flow diagrams are used herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Oftentimes, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.
Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed or implemented in parallel, or may be performed at different times.
Priority Claim: This application claims priority as a nonprovisional continuation to U.S. Provisional Patent Application No. 62/097,190 filed on Dec. 29, 2014, which is incorporated herein for all that it teaches.
Number | Name | Date | Kind |
---|---|---|---|
4479195 | Herr et al. | Oct 1984 | A |
4949300 | Christenson et al. | Aug 1990 | A |
5008853 | Bly et al. | Apr 1991 | A |
5072412 | Henderson, Jr. et al. | Dec 1991 | A |
5220657 | Bly et al. | Jun 1993 | A |
5245553 | Tanenbaum | Sep 1993 | A |
5247615 | Mori et al. | Sep 1993 | A |
5293619 | Dean | Mar 1994 | A |
5379374 | Ishizaki et al. | Jan 1995 | A |
5446842 | Schaeffer et al. | Aug 1995 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5617539 | Ludwig et al. | Apr 1997 | A |
5619649 | Kovnat et al. | Apr 1997 | A |
5634062 | Shimizu et al. | May 1997 | A |
5671428 | Muranaga et al. | Sep 1997 | A |
5699427 | Chow et al. | Dec 1997 | A |
RE35861 | Queen | Jul 1998 | E |
5787175 | Carter | Jul 1998 | A |
5787444 | Gerken | Jul 1998 | A |
5801702 | Dolan et al. | Sep 1998 | A |
5806078 | Hug et al. | Sep 1998 | A |
5819300 | Kohno et al. | Oct 1998 | A |
5832494 | Egger et al. | Nov 1998 | A |
5890177 | Moody et al. | Mar 1999 | A |
5898836 | Freivald et al. | Apr 1999 | A |
6003060 | Aznar et al. | Dec 1999 | A |
6012087 | Freivald et al. | Jan 2000 | A |
6049804 | Burgess et al. | Apr 2000 | A |
6067551 | Brown et al. | May 2000 | A |
6088702 | Plantz et al. | Jul 2000 | A |
6128635 | Ikeno | Oct 2000 | A |
6145084 | Zuili et al. | Nov 2000 | A |
6189019 | Blumer et al. | Feb 2001 | B1 |
6212534 | Lo et al. | Apr 2001 | B1 |
6219818 | Freivald et al. | Apr 2001 | B1 |
6243091 | Berstis | Jun 2001 | B1 |
6263350 | Wollrath et al. | Jul 2001 | B1 |
6263364 | Najork et al. | Jul 2001 | B1 |
6269370 | Kirsch | Jul 2001 | B1 |
6285999 | Page | Sep 2001 | B1 |
6301368 | Bolle et al. | Oct 2001 | B1 |
6317777 | Skarbo et al. | Nov 2001 | B1 |
6321265 | Najork et al. | Nov 2001 | B1 |
6336123 | Inoue et al. | Jan 2002 | B2 |
6351755 | Najork et al. | Feb 2002 | B1 |
6356937 | Montville et al. | Mar 2002 | B1 |
6377984 | Najork et al. | Apr 2002 | B1 |
6404446 | Bates et al. | Jun 2002 | B1 |
6418433 | Chakrabarti et al. | Jul 2002 | B1 |
6418453 | Kraft et al. | Jul 2002 | B1 |
6424966 | Meyerzon et al. | Jul 2002 | B1 |
6449624 | Hammack et al. | Sep 2002 | B1 |
6505237 | Beyda et al. | Jan 2003 | B2 |
6513050 | Williams et al. | Jan 2003 | B1 |
6547829 | Meyerzon et al. | Apr 2003 | B1 |
6556982 | McGaffey et al. | Apr 2003 | B1 |
6560620 | Ching | May 2003 | B1 |
6584466 | Serbinis et al. | Jun 2003 | B1 |
6591289 | Britton | Jul 2003 | B1 |
6594662 | Sieffert et al. | Jul 2003 | B1 |
6596030 | Ball et al. | Jul 2003 | B2 |
6614789 | Yazdani et al. | Sep 2003 | B1 |
6658626 | Aiken | Dec 2003 | B1 |
6662212 | Chandhok et al. | Dec 2003 | B1 |
6738762 | Chen et al. | May 2004 | B1 |
6745024 | DeJaco et al. | Jun 2004 | B1 |
6918082 | Gross | Jul 2005 | B1 |
7035427 | Rhoads | Apr 2006 | B2 |
7085735 | Hall et al. | Aug 2006 | B1 |
7107518 | Ramaley et al. | Sep 2006 | B2 |
7113615 | Rhoads et al. | Sep 2006 | B2 |
7152019 | Tarantola et al. | Dec 2006 | B2 |
7194761 | Champagne | Mar 2007 | B1 |
7212955 | Kirshenbaum et al. | May 2007 | B2 |
7233686 | Hamid | Jun 2007 | B2 |
7240207 | Weare | Jul 2007 | B2 |
7299504 | Tiller et al. | Nov 2007 | B1 |
7321864 | Gendler | Jan 2008 | B1 |
7356704 | Rinkevich et al. | Apr 2008 | B2 |
7434164 | Salesin et al. | Oct 2008 | B2 |
7454778 | Pearson et al. | Nov 2008 | B2 |
7496841 | Hadfield et al. | Feb 2009 | B2 |
7564997 | Hamid | Jul 2009 | B2 |
7570964 | Maes | Aug 2009 | B2 |
7613770 | Li | Nov 2009 | B2 |
7624447 | Horowitz et al. | Nov 2009 | B1 |
7627613 | Dulitz et al. | Dec 2009 | B1 |
7640308 | Antonoff et al. | Dec 2009 | B2 |
7673324 | Tirosh et al. | Mar 2010 | B2 |
7680785 | Najork | Mar 2010 | B2 |
7685298 | Day | Mar 2010 | B2 |
7694336 | Rinkevich et al. | Apr 2010 | B2 |
7707153 | Petito et al. | Apr 2010 | B1 |
7720256 | Desprez et al. | May 2010 | B2 |
7730175 | Roesch et al. | Jun 2010 | B1 |
7788235 | Yeo | Aug 2010 | B1 |
7796309 | Sadovsky et al. | Sep 2010 | B2 |
7797724 | Calvin | Sep 2010 | B2 |
7818678 | Massand | Oct 2010 | B2 |
7844116 | Monga | Nov 2010 | B2 |
7857201 | Silverbrook et al. | Dec 2010 | B2 |
7877790 | Vishik et al. | Jan 2011 | B2 |
7890752 | Bardsley et al. | Feb 2011 | B2 |
7895166 | Foygel et al. | Feb 2011 | B2 |
7903822 | Hair et al. | Mar 2011 | B1 |
7941844 | Anno | May 2011 | B2 |
7958101 | Teugels et al. | Jun 2011 | B1 |
8005277 | Tulyakov et al. | Aug 2011 | B2 |
8042112 | Zhu et al. | Oct 2011 | B1 |
8117225 | Zilka | Feb 2012 | B1 |
8181036 | Nachenberg | May 2012 | B1 |
8196030 | Wang et al. | Jun 2012 | B1 |
8201254 | Wilhelm et al. | Jun 2012 | B1 |
8209538 | Craigie | Jun 2012 | B2 |
8233723 | Sundaresan | Jul 2012 | B2 |
8286085 | Denise | Oct 2012 | B1 |
8286171 | More et al. | Oct 2012 | B2 |
8301994 | Shah | Oct 2012 | B1 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8406456 | More | Mar 2013 | B2 |
8473847 | Glover | Jun 2013 | B2 |
8478995 | Alculumbre | Jul 2013 | B2 |
8555080 | More et al. | Oct 2013 | B2 |
8635295 | Mulder | Jan 2014 | B2 |
8732127 | van Rotterdam | May 2014 | B1 |
8776190 | Cavage et al. | Jul 2014 | B1 |
8797603 | Dougherty | Aug 2014 | B1 |
8839100 | Donald | Sep 2014 | B1 |
9092636 | More et al. | Jul 2015 | B2 |
9098500 | Asokan | Aug 2015 | B1 |
9652485 | Bhargava | May 2017 | B1 |
20010018739 | Anderson et al. | Aug 2001 | A1 |
20010042073 | Saether et al. | Nov 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020016959 | Barton et al. | Feb 2002 | A1 |
20020019827 | Shiman et al. | Feb 2002 | A1 |
20020023158 | Polizzi et al. | Feb 2002 | A1 |
20020052928 | Stern et al. | May 2002 | A1 |
20020063154 | Hoyos et al. | May 2002 | A1 |
20020065827 | Christie et al. | May 2002 | A1 |
20020065848 | Walker et al. | May 2002 | A1 |
20020073188 | Rawson, III | Jun 2002 | A1 |
20020087515 | Swannack et al. | Jul 2002 | A1 |
20020099602 | Moskowitz et al. | Jul 2002 | A1 |
20020120648 | Ball et al. | Aug 2002 | A1 |
20020129062 | Luparello | Sep 2002 | A1 |
20020136222 | Robohm | Sep 2002 | A1 |
20020138744 | Schleicher et al. | Sep 2002 | A1 |
20020159239 | Arnie et al. | Oct 2002 | A1 |
20020164058 | Aggarwal et al. | Nov 2002 | A1 |
20030009518 | Harrow et al. | Jan 2003 | A1 |
20030009528 | Sharif et al. | Jan 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030046572 | Newman et al. | Mar 2003 | A1 |
20030051054 | Redlich et al. | Mar 2003 | A1 |
20030061260 | Rajkumar | Mar 2003 | A1 |
20030078880 | Alley et al. | Apr 2003 | A1 |
20030093755 | O'Carroll | May 2003 | A1 |
20030097454 | Yamakawa et al. | May 2003 | A1 |
20030112273 | Hadfield | Jun 2003 | A1 |
20030115273 | Delia et al. | Jun 2003 | A1 |
20030131005 | Berry | Jul 2003 | A1 |
20030147267 | Huttunen | Aug 2003 | A1 |
20030158839 | Faybishenko et al. | Aug 2003 | A1 |
20030191799 | Araujo et al. | Oct 2003 | A1 |
20030196087 | Stringer et al. | Oct 2003 | A1 |
20030223624 | Hamid | Dec 2003 | A1 |
20030233419 | Beringer | Dec 2003 | A1 |
20030237047 | Borson | Dec 2003 | A1 |
20040002049 | Beavers et al. | Jan 2004 | A1 |
20040031052 | Wannamaker et al. | Feb 2004 | A1 |
20040122659 | Hourihane et al. | Jun 2004 | A1 |
20040128321 | Hamer | Jul 2004 | A1 |
20040186851 | Jhingan et al. | Sep 2004 | A1 |
20040187076 | Ki | Sep 2004 | A1 |
20040261016 | Glass et al. | Dec 2004 | A1 |
20050021980 | Kanai | Jan 2005 | A1 |
20050038893 | Graham | Feb 2005 | A1 |
20050055306 | Miller et al. | Mar 2005 | A1 |
20050055337 | Bebo et al. | Mar 2005 | A1 |
20050071755 | Harrington et al. | Mar 2005 | A1 |
20050108293 | Lipman et al. | May 2005 | A1 |
20050138540 | Baltus et al. | Jun 2005 | A1 |
20050204008 | Shinbrood | Sep 2005 | A1 |
20050251738 | Hirano | Nov 2005 | A1 |
20050251748 | Gusmorino et al. | Nov 2005 | A1 |
20050268327 | Starikov | Dec 2005 | A1 |
20060005247 | Zhang et al. | Jan 2006 | A1 |
20060013393 | Ferchichi et al. | Jan 2006 | A1 |
20060021031 | Leahy et al. | Jan 2006 | A1 |
20060047765 | Mizoi et al. | Mar 2006 | A1 |
20060050937 | Hamid | Mar 2006 | A1 |
20060059196 | Sato et al. | Mar 2006 | A1 |
20060064717 | Shibata et al. | Mar 2006 | A1 |
20060067578 | Fuse | Mar 2006 | A1 |
20060069740 | Ando | Mar 2006 | A1 |
20060098850 | Hamid | May 2006 | A1 |
20060112120 | Rohall | May 2006 | A1 |
20060129627 | Phillips | Jun 2006 | A1 |
20060158676 | Hamada | Jul 2006 | A1 |
20060171588 | Chellapilla et al. | Aug 2006 | A1 |
20060184505 | Kedem | Aug 2006 | A1 |
20060190493 | Kawai et al. | Aug 2006 | A1 |
20060218004 | Dworkin et al. | Sep 2006 | A1 |
20060218643 | DeYoung | Sep 2006 | A1 |
20060224589 | Rowney | Oct 2006 | A1 |
20060236246 | Bono et al. | Oct 2006 | A1 |
20060261112 | Todd et al. | Nov 2006 | A1 |
20060271947 | Lienhart et al. | Nov 2006 | A1 |
20060272024 | Huang et al. | Nov 2006 | A1 |
20060277229 | Yoshida et al. | Dec 2006 | A1 |
20060294468 | Sareen et al. | Dec 2006 | A1 |
20060294469 | Sareen et al. | Dec 2006 | A1 |
20070005589 | Gollapudi | Jan 2007 | A1 |
20070011211 | Reeves et al. | Jan 2007 | A1 |
20070025265 | Porras et al. | Feb 2007 | A1 |
20070027830 | Simons et al. | Feb 2007 | A1 |
20070094510 | Ross et al. | Apr 2007 | A1 |
20070100991 | Daniels et al. | May 2007 | A1 |
20070101154 | Bardsley et al. | May 2007 | A1 |
20070101413 | Vishik et al. | May 2007 | A1 |
20070112930 | Foo et al. | May 2007 | A1 |
20070150443 | Bergholz et al. | Jun 2007 | A1 |
20070179967 | Zhang | Aug 2007 | A1 |
20070192728 | Finley et al. | Aug 2007 | A1 |
20070220068 | Thompson et al. | Sep 2007 | A1 |
20070253608 | Tulyakov et al. | Nov 2007 | A1 |
20070261099 | Broussard et al. | Nov 2007 | A1 |
20070261112 | Todd et al. | Nov 2007 | A1 |
20070294318 | Arora et al. | Dec 2007 | A1 |
20070294612 | Drucker et al. | Dec 2007 | A1 |
20070299880 | Kawabe | Dec 2007 | A1 |
20080022003 | Alve | Jan 2008 | A1 |
20080033913 | Winburn | Feb 2008 | A1 |
20080034282 | Zernik | Feb 2008 | A1 |
20080065668 | Spence et al. | Mar 2008 | A1 |
20080080515 | Tombroff et al. | Apr 2008 | A1 |
20080082529 | Mantena et al. | Apr 2008 | A1 |
20080091465 | Fuschino et al. | Apr 2008 | A1 |
20080091735 | Fukushima et al. | Apr 2008 | A1 |
20080162527 | Pizano et al. | Jul 2008 | A1 |
20080177782 | Poston et al. | Jul 2008 | A1 |
20080209001 | Boyle et al. | Aug 2008 | A1 |
20080219495 | Hulten et al. | Sep 2008 | A1 |
20080235760 | Broussard et al. | Sep 2008 | A1 |
20080263363 | Jueneman et al. | Oct 2008 | A1 |
20080275694 | Varone | Nov 2008 | A1 |
20080288597 | Christensen et al. | Nov 2008 | A1 |
20080301193 | Massand | Dec 2008 | A1 |
20080306894 | Rajkumar et al. | Dec 2008 | A1 |
20080310624 | Celikkan | Dec 2008 | A1 |
20080320316 | Waldspurger et al. | Dec 2008 | A1 |
20090025087 | Peirson et al. | Jan 2009 | A1 |
20090030997 | Malik | Jan 2009 | A1 |
20090034804 | Cho et al. | Feb 2009 | A1 |
20090049132 | Gutovski | Feb 2009 | A1 |
20090052778 | Edgecomb et al. | Feb 2009 | A1 |
20090064326 | Goldstein | Mar 2009 | A1 |
20090083073 | Mehta et al. | Mar 2009 | A1 |
20090083384 | Bhogal et al. | Mar 2009 | A1 |
20090129002 | Wu et al. | May 2009 | A1 |
20090164427 | Shields et al. | Jun 2009 | A1 |
20090177754 | Brezina et al. | Jul 2009 | A1 |
20090183257 | Prahalad | Jul 2009 | A1 |
20090187567 | Rolle | Jul 2009 | A1 |
20090216843 | Willner et al. | Aug 2009 | A1 |
20090222450 | Zigelman | Sep 2009 | A1 |
20090234863 | Evans | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090271620 | Sudhakar | Oct 2009 | A1 |
20090319480 | Saito | Dec 2009 | A1 |
20100011077 | Shkolnikov et al. | Jan 2010 | A1 |
20100011428 | Atwood et al. | Jan 2010 | A1 |
20100017404 | Banerjee et al. | Jan 2010 | A1 |
20100017850 | More et al. | Jan 2010 | A1 |
20100049807 | Thompson | Feb 2010 | A1 |
20100058053 | Wood et al. | Mar 2010 | A1 |
20100064004 | Ravi et al. | Mar 2010 | A1 |
20100064372 | More et al. | Mar 2010 | A1 |
20100070448 | Omoigui | Mar 2010 | A1 |
20100076985 | Egnor | Mar 2010 | A1 |
20100083230 | Ramakrishnan | Apr 2010 | A1 |
20100114985 | Chaudhary et al. | May 2010 | A1 |
20100114991 | Chaudhary et al. | May 2010 | A1 |
20100131604 | Portilla | May 2010 | A1 |
20100146382 | Abe et al. | Jun 2010 | A1 |
20100174678 | Massand | Jul 2010 | A1 |
20100174761 | Longobardi et al. | Jul 2010 | A1 |
20100186062 | Banti et al. | Jul 2010 | A1 |
20100217987 | Shevade | Aug 2010 | A1 |
20100235763 | Massand | Sep 2010 | A1 |
20100241943 | Massand | Sep 2010 | A1 |
20100257352 | Errico | Oct 2010 | A1 |
20100287246 | Klos et al. | Nov 2010 | A1 |
20100299727 | More et al. | Nov 2010 | A1 |
20100318530 | Massand | Dec 2010 | A1 |
20100332428 | McHenry et al. | Dec 2010 | A1 |
20110029625 | Cheng et al. | Feb 2011 | A1 |
20110035655 | Heineken | Feb 2011 | A1 |
20110041165 | Bowen | Feb 2011 | A1 |
20110106892 | Nelson et al. | May 2011 | A1 |
20110107106 | Morii et al. | May 2011 | A1 |
20110125806 | Park | May 2011 | A1 |
20110141521 | Qiao | Jun 2011 | A1 |
20110145229 | Vailaya et al. | Jun 2011 | A1 |
20110173103 | Batra et al. | Jul 2011 | A1 |
20110197121 | Kletter | Aug 2011 | A1 |
20110225646 | Crawford | Sep 2011 | A1 |
20110252098 | Kumar | Oct 2011 | A1 |
20110252310 | Rahaman et al. | Oct 2011 | A1 |
20110264907 | Betz et al. | Oct 2011 | A1 |
20110314384 | Lindgren et al. | Dec 2011 | A1 |
20120011361 | Guerrero et al. | Jan 2012 | A1 |
20120016867 | Clemm et al. | Jan 2012 | A1 |
20120030563 | Lemonik et al. | Feb 2012 | A1 |
20120036157 | Rolle | Feb 2012 | A1 |
20120079267 | Lee | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120110092 | Keohane et al. | May 2012 | A1 |
20120117096 | Massand | May 2012 | A1 |
20120117644 | Soeder | May 2012 | A1 |
20120131635 | Huapaya | May 2012 | A1 |
20120133989 | Glover | May 2012 | A1 |
20120136862 | Glover | May 2012 | A1 |
20120136951 | Mulder | May 2012 | A1 |
20120151316 | Massand | Jun 2012 | A1 |
20120173881 | Trotter | Jul 2012 | A1 |
20120185511 | Mansfield et al. | Jul 2012 | A1 |
20120246115 | King et al. | Sep 2012 | A1 |
20120260188 | Park et al. | Oct 2012 | A1 |
20120265817 | Vidalenc et al. | Oct 2012 | A1 |
20120317239 | Mulder | Dec 2012 | A1 |
20130007070 | Pitschke | Jan 2013 | A1 |
20130060799 | Massand | Mar 2013 | A1 |
20130074195 | Johnston et al. | Mar 2013 | A1 |
20130097421 | Lim | Apr 2013 | A1 |
20130212707 | Donahue et al. | Aug 2013 | A1 |
20130227043 | Murakami | Aug 2013 | A1 |
20130227397 | Tvorun et al. | Aug 2013 | A1 |
20140032489 | Hebbar et al. | Jan 2014 | A1 |
20140115436 | Beaver et al. | Apr 2014 | A1 |
20140136497 | Georgiev et al. | May 2014 | A1 |
20140181223 | Homsany et al. | Jun 2014 | A1 |
20140280336 | Glover | Sep 2014 | A1 |
20140281872 | Glover | Sep 2014 | A1 |
20150026464 | Hanner et al. | Jan 2015 | A1 |
20150172058 | Follis | Jun 2015 | A1 |
20160350270 | Nakazawa | Dec 2016 | A1 |
Entry |
---|
Non-Final Office Action dated Apr. 27, 2012 in Co-Pending U.S. Appl. No. 12/275,185, filed Nov. 20, 2008. |
Non-final Office Action issued for U.S. Appl. No. 13/799,067 dated Oct. 30, 2014. |
Non-Final Office Action dated Apr. 26, 2013 in Co-Pending U.S. Appl. No. 13/659,817 by More, S., filed Oct. 24, 2012. |
Non-Final Office Action dated Apr. 26, 2013 in Co-Pending U.S. Appl. No. 13/659,817 of More, S., filed Oct. 24, 2012. |
Non-Final Office Action dated Apr. 27, 2012 in Co-Pending U.S. Appl. No. 12/275,185 of More, S., filed Nov. 20, 2008. |
Non-Final Office Action dated Aug. 1, 2012 in Co-Pending U.S. Appl. No. 12/621,429, filed Nov. 18, 2009. |
Non-Final Office Action dated Aug. 1, 2012 in Co-Pending U.S. Appl. No. 12/621,429 of More, S., filed Nov. 18, 2009. |
Non-Final Office Action dated Aug. 13, 2013 in co-pending U.S. Appl. No. 13/306,819 by Glover, R.W., filed Nov. 29, 2011. |
Non-Final Office Action dated Dec. 22, 2011 in Co-Pending U.S. Appl. No. 12/209,082. |
Non-Final Office Action dated Dec. 6, 2012 in co-pending U.S. Appl. No. 13/306,798, filed Nov. 29, 2011. |
Non-Final Office Action dated Jan. 9, 2012 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Non-Final Office Action dated Mar. 11, 2011, in Co-pending U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Restriction Requirement dated Feb. 14, 2005 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Restriction Requirement dated Feb. 5, 2008 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Restriction Requirement dated Jun. 30, 2006 for U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Restriction Requirement dated Jun. 30, 2006 in U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
U.S. Appl. No. 13/789,104, filed Mar. 7, 2013, Gofman. |
Non-Final Office Action dated Mar. 16, 2006 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Non-Final Office Action dated Mar. 16, 2006 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Non-Final Office Action dated Mar. 18, 2013 in Co-Pending U.S. Appl. No. 13/659,793 by More, S., filed Oct. 24, 2012. |
Non-Final Office Action dated Mar. 18, 2013 in Co-Pending U.S. Appl. No. 13/659,793 of More, S., filed Oct. 24, 2012. |
Non-Final Office Action dated Mar. 20, 2006 in Co-pending U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Non-Final Office Action dated Mar. 20, 2006 in U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Non-Final Office Action dated May 17, 2013 in co-pending U.S. Appl. No. 13/306,765 by Mulder, S.P.M., filed Nov. 29, 2011. |
Non-Final Office Action dated May 7, 2008 in Co-pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001. |
Non-Final Office Action dated May 7, 2008 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Non-Final Office Action dated Sep. 19, 2011 for U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Non-Final Office Action dated Sep. 19, 2011 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Non-Final Office Action dated Sep. 19, 2012 in Co-Pending U.S. Appl. No. 12/844,818 by Glover, R., filed Jul. 27, 2010. |
Notice of Allowance dated Aug. 19, 2012 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Notice of Allowance dated Jul. 8, 2013 in Co-Pending U.S. Appl. No. 12/209,082 by S. More et al., filed Sep. 11, 2008. |
Notice of Allowance dated Jun. 26, 2012 in Co-Pending U.S. Appl. No. 12/275,185 of More, S., filed Nov. 20, 2008. |
Notice of Allowance dated Jun. 26, 2012, in Co-Pending U.S. Appl. No. 12/275,185, filed Nov. 20, 2008. |
Notice of Allowance dated Mar. 13, 2013 in Co-Pending U.S. Appl. No. 12/844,818 by Glover, R., filed Jul. 27, 2010. |
Notice of Allowance dated Mar. 13, 2013 in Co-Pending U.S. Appl. No. 12/844,818 of Glover, R., filed Jul. 27, 2010. |
Notice of Allowance dated Oct. 2, 2012, in Co-Pending U.S. Appl. No. 12/275,185 by More, S., filed Nov. 20, 2008. |
Notice of Allowance dated Oct. 2, 2012, in Co-Pending U.S. Appl. No. 12/275,185 of More, S., filed Nov. 20, 2008. |
Notice of Allowance dated Oct. 24, 2008 in Co-pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001. |
Notice of Allowance dated Oct. 24, 2008 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Notice of Allowance dated Sep. 25, 2013, in Co-Pending U.S. Appl. No. 13/659,817 by More, S., filed Oct. 24, 2012. |
Advisory Action dated Apr. 12, 2013, in Co-Pending U.S. Appl. No. 12/621,429 by More, S., filed Nov. 18, 2009. |
Advisory Action dated Apr. 12, 2013, in Co-Pending U.S. Appl. No. 12/621,429 of More, S., filed Nov. 18, 2009. |
Advisory Action dated Nov. 1, 2013, in Co-Pending U.S. Appl. No. 13/659,793 by More, S., filed Oct. 24, 2012. |
Co-pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001. |
Co-pending U.S. Appl. No. 10/136,733, filed Apr. 30, 2002. |
Co-pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Co-pending U.S. Appl. No. 12/209,082, filed Sep. 11, 2008. |
Co-pending U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Co-pending U.S. Appl. No. 12/275,185, filed Nov. 20, 2008. |
Co-pending U.S. Appl. No. 12/621,429, filed Nov. 18, 2009. |
Co-pending U.S. Appl. No. 12/844,818, filed Jul. 27, 2010. |
Co-pending U.S. Appl. No. 13/306,765, filed Nov. 29, 2011. |
Co-pending U.S. Appl. No. 13/306,798, filed Nov. 29, 2011. |
Co-pending U.S. Appl. No. 13/306,819, filed Nov. 29, 2011. |
Co-pending U.S. Appl. No. 13/620,364, filed Sep. 14, 2012. |
Co-Pending U.S. Appl. No. 13/659,793, filed Oct. 24, 2012. |
Co-Pending U.S. Appl. No. 13/659,817, filed Oct. 24, 2012. |
Final Office Action dated Apr. 16, 2012 in Co-Pending U.S. Appl. No. 12/177,043, filed Jul. 21, 2008. |
Final Office Action dated Apr. 17, 2007 for U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Final Office Action dated Apr. 17, 2007 for U.S. Appl. No. 10/023,010, filed Dec. 7, 2001, now U.S. Pat. No. 7,496,841. |
Final Office Action dated Apr. 17, 2007 in Co-Pending U.S. Appl. No. 10/023,010, filed Dec. 17, 2001, now U.S. Pat. No. 7,496,841. |
Final Office Action dated Aug. 12, 2011 for U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Final Office Action dated Aug. 12, 2011 in Co-Pending U.S. Appl. No. 12/209,096, filed Sep. 11, 2008. |
Final Office Action dated Aug. 16, 2013 in co-pending U.S. Appl. No. 13/306,798 of Glover, R.W., filed Nov. 29, 2011. |
Final Office Action dated Feb. 1, 2013 in Co-Pending U.S. Appl. No. 12/621,429 by More, S., filed Nov. 18, 2009. |
Final Office Action dated Feb. 1, 2013 in Co-Pending U.S. Appl. No. 12/621,429 of More, S., filed Nov. 18, 2009. |
Final Office Action dated Jan. 18, 2013 in Co-Pending U.S. Appl. No. 12/844,818 by Glover, R., filed Jul. 27, 2010. |
Final Office Action dated Jan. 18, 2013 in Co-Pending U.S. Appl. No. 12/844,818 of Glover, R., filed Jul. 27, 2010. |
Final Office Action dated May 10, 2012 in Co-Pending U.S. Appl. No. 12/209,082, filed Sep. 11, 2008. |
Final Office Action dated May 10, 2012 in Co-Pending U.S. Appl. No. 12/209,082. |
Final Office Action dated Oct. 21, 2013, in Co-Pending U.S. Appl. No. 13/659,793 by More, S., filed Oct. 24, 2012. |
“MIMEsweeper Solutions”. |
3BOpen Doc Making StarOffice and OpenOffice.org a viable option. |
Bettenburg et al., An Empirical Study on the Risks of Using Off-the-Shelf Techniques for Processing Mailing List Data, 2009, IEEE 4 pages. |
Bindu et al., Spam War: Battling Ham against Spam, 2011 IEEE 6 pages. |
Bobba et al. Attribute-Based Messaging: Access Control and Confidentiality, 2010, ACM 35 pages. |
Chen et al., Online Detection and Prevention of Phishing Attacks, 2006, IEEE 7 pages. |
Kamouskos et al., Active Electronic Mail, 2002, ACM 6 pages. |
Kaushik et al., Email Feedback: A Policy based Approach to Overcoming False Positives, 2005, 10 pages. |
Stolfo et al., AMT?MET: Systems for Modeling and Detecting Errant Email. 2003, IEEE 6 pages. |
“EzClean—Metadata removal utility for Microsoft Office”. |
“CS MAILsweeper™ 4.3 for SMTP” by Clearswift Ltd (© 2002). |
“EzClean—New Features—version 3.3”. |
“EzClean 3.2—New Features”. |
“How do I make sure that there is no embarrassing Metadata in any documents that I attach to e-mails? ezClean makes it easy!”. |
“Lotus Announces cc:Mail for The World Wide Web; Provides EasyAccess to E-Mail via The Web”. |
“Middleboxes: Taxonomy and Issues,” Internet Engineering TaskForce (IETF), RFC 3234 (Feb. 2002). |
“MIME (Multipurpose Internet Mail Extensions): Mechanisms forSpecifying and Describing the Format of Internet Message Bodies,” Internet Engineering Task Force (IETF), RFC 1341 (Jun. 1992). |
“Think Your Deletions are Gone Forever? Think Again! ezClean Makes Metadata Removal Easy!”. |
3B Transform from 2005. |
3BOpenDoc—Convert documents to and from OSF. |
Bitform Extract SDK 2005.1. |
EZclean version 3.3 Installation Guide and Admin Manual. |
Silver, Michael A.; MacDonald, Neil. Plan to Deal with Metadata Issues with Windows Vista. Gartner, Inc.. Dec. 21, 2005.ID No. G00136321. |
Simple Mail Transfer Protocol, Internet Engineering Task Force(IETF), RFC 821 (Aug. 1982). |
Number | Date | Country | |
---|---|---|---|
20160232158 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62097190 | Dec 2014 | US |