Connectivity and voice quality are key reliability issues in today's VoIP (voice over Internet Protocol) networks. Today's VoIP users increasingly expect the Quality of Service (QoS) of the call to be equal or close to that of the Public Switched Telephone Network (PSTN). Because network conditions may change rapidly and continuously, connectivity for a VoIP call cannot be guaranteed. Further, problems that may be commonly encountered in an IP network such as packet loss, packet delay, and out of order packet delivery may lead to deteriorating quality of VoIP voice calls.
Unlike data connections, a real-time application like voice calls place much stricter requirements on packet delivery sequence and timing. Significant packet loss, packet delay, and out of order delivery problems make telephone conversations difficult. Users may experience echoes and talker overlap that are perceived as significant indicators of inferior QoS.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure describes many different examples for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations unless otherwise specified.
The multimedia gateway nodes may convert data from a format, protocol, and/or type required for one network to another format, protocol, and/or type required for another network, and/or otherwise convert data from a first type of data on a first transmission link to a second type of data on a second transmission link. The multimedia gateway nodes may terminate channels from a circuit-switched network and pass streaming media for a packet-switched network, such as Real-Time Transport Protocol (RTP) streams transported via User Datagram Protocol (UDP) in an IP network. Input data for the media gateway may include audio, video, and/or T.120 (real-time multi-point communications), among others, which the media gateway may handle simultaneously or otherwise.
Continuing on to step 80, test tones are generated and applied at both switches to provide test call bearer path traffic. In step 82, periodic report packets generated pursuant to RTP Control Protocol (RTCP) at the originating switch and/or the terminating switch are collected and examined to determine path conditions by a RTP/RTCP stack resident in measurement module 64. The RTCP report packets are transmitted using the same distribution mechanism as the data packets. RTP and RTCP are transport layer protocols situated below the application layer. According to RTCP, receiver reports and sender reports containing statistics such as the number of packets transmitted, the number of packets lost, an estimation of jitter, the last packet sequence number received, packet time stamp of the last sender report, and delay since the last sender report received are provided. The RTCP reports are used to obtain measurements of the network condition, and after a sufficient number of measurements have been obtained, the test call may be torn down by the originating switch in step 84. VoIP call generator 62 may be responsible for the test call setup and tear down steps described above, and measurement module 64 may be responsible for collecting and examining the RTCP report data. Thereafter, the test call results may be processed by post-processing module 66 in step 86. The test call data may be averaged, smoothed, filtered and otherwise processed to eliminate anomalies and outliers so that a more accurate picture of the bearer path conditions is presented. The processed data may also be exported or otherwise made available to system 40, which uses this information to formulate a route list. The processed test call results may also be exported to other network management entities. The processed test call results may be exported in a generic format readable by a number of applications.
According to the processed data, if the measurements indicate that congestion or other network problems are greater than a predetermined threshold, as determined in step 88, then an alarm may be generated in step 90. The alarm may be used to notify users or craft personnel or it may be used to alert routing engine 40 to avoid using particular paths. If the congestion is below the threshold, then system 60 may proceed to make another test call. If a previously congested path is now measured as being below the threshold, the previously issued alarm may be cleared so that the route can be used for voice calls. Alternatively, test call measurement data may be compared to multiple threshold levels to determine whether the congestion reached minor, major or critical levels. An alarm may be generated when one or each of these threshold levels has been reached.
Voice calls may be routed using the best route (e.g. uncongested and connectivity) established by using test call results. The resultant VoIP calls have improved voice quality and provide users with enhanced call experience. The test call results may be provided to other network management and routing equipment/software to further optimize the data network. Details of an example of how the measurement results may be used may be found in co-pending U.S. patent application Ser. No. 11/078,531, entitled “System and Method for Routing VoIP Calls,” formerly, incorporated herein by reference.
As employed herein, the term “network” may be used to refer to an entire network or to a network portion, a network application, and/or network apparatus. To that end, one or more instances of the multimedia gateway and/or softswitch, or components thereof, may be singularly or collectively employed to bridge two or more networks, including those of PSTNs and voice-over-packet (VoP) networks, among others. PSTN networks may employ TDM, among other non-packet formats and/or protocols. VoP networks may employ ATM, VoIP, universal-mobile-telecommunications-service (UTMS), code-division-multiple-access (CDMA, such as CDMA2000 and/or W-CDMA), voice-over-digital-subscriber-line (VoDSL), other formats and/or protocols, and/or combinations thereof.
Number | Name | Date | Kind |
---|---|---|---|
6330316 | Donak et al. | Dec 2001 | B1 |
6680952 | Berg et al. | Jan 2004 | B1 |
6683877 | Gibbs et al. | Jan 2004 | B1 |
6735175 | Havens | May 2004 | B1 |
6748433 | Yaakov | Jun 2004 | B1 |
6765921 | Stacey et al. | Jul 2004 | B1 |
6799210 | Gentry et al. | Sep 2004 | B1 |
6832254 | Scoggins et al. | Dec 2004 | B1 |
7173910 | Goodman | Feb 2007 | B2 |
7203172 | MacArthur et al. | Apr 2007 | B2 |
20020085506 | Hundscheidt et al. | Jul 2002 | A1 |
20020131604 | Amine | Sep 2002 | A1 |
20030053463 | Vikberg et al. | Mar 2003 | A1 |
20040003400 | Carney et al. | Jan 2004 | A1 |
20040057385 | Roshko | Mar 2004 | A1 |
20040062204 | Bearden et al. | Apr 2004 | A1 |
20040177335 | Beisiegel et al. | Sep 2004 | A1 |
20040240389 | Bessis et al. | Dec 2004 | A1 |
20040252646 | Adhikari et al. | Dec 2004 | A1 |
20050083844 | Zhu et al. | Apr 2005 | A1 |
20060203803 | Perry et al. | Sep 2006 | A1 |
20060245350 | Shei et al. | Nov 2006 | A1 |
20070183339 | Rousell et al. | Aug 2007 | A1 |
20070280123 | Atkins et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
1487152 | Dec 2004 | EP |
WO 0205068 | Jan 2002 | WO |
WO 2004012403 | Feb 2004 | WO |
WO 2004030288 | Apr 2004 | WO |
WO 2006095256 | Sep 2006 | WO |
WO 2005-022844 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060203801 A1 | Sep 2006 | US |