The present invention relates generally to systems and methods for determining offers based on user interests, and more particularly, systems and methods to determine offers for users of electronic commerce systems based on predictions of user interests.
A variety of recommender systems are currently being used in Internet-based electronic commerce to increase the relevance of products and services offered to potential purchasers. Recommender systems include computer-implemented services that recommend to a user or purchaser items selected from a data structure storing data related to the items.
Prior recommender systems includes systems where offers are produced based on similarity where if a determination is made that a user likes a first item, the user is then deemed to likely enjoy other items that are similar to the first item. Similarity in such prior systems is defined via a predefined distance metric.
In some recommender systems, collaborative filtering is used, which is a statistical technique that uses the transactional history of many users to generate a predictive model of users' preferences over possible offers. Collaborative filtering techniques can produce accurate models of user preferences, but lack transparency.
Other prior recommender systems use predictive technologies and require intensive computational resources. Such systems can be dependent on how informative different features are and on the ability of the system to search the feature space for an optimal combination of features.
According to one aspect of the present disclosure, a computer-implemented method recommends offers to a user. The method is implemented via one or more processors operating on one or more server systems. The method includes receiving attribute data associated with one or more target users. An offer to transmit to the one or more target users is determined. The offer is based on at least a portion of the attribute data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is configured to be received by the one or more targeted users and is output.
According to another aspect of the present disclosure, a system for recommending offers includes one or more non-transitory physical computer-readable storage media configured to store attribute and transaction data associated with one or more target users. The attribute and transaction data include target user identifications, offer attributes, and prior target user transaction data. A recommender component includes one or more communication interfaces for connecting with the storage media. The communication interfaces are configured to send and receive data. The recommender component further includes one or more processors operative to generate a recommended offer for at least one of the one or more target users by implementing acts including receiving the attribute and transaction data from at least one of the one or more storage media. The recommended offer is determined based on at least a portion of the attribute and transaction data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is output via at least one of the one or more communication interfaces. The outputting of the offer is configured to be received by the one or more target users.
According to yet another aspect of the present disclosure, a method includes receiving in a recommender system attribute and transactional data stored on one or more memory devices. The attribute and transactional data are associated with one or more target users of the recommender system. An offer to transmit to the one or more target users is determined via one or more processors associated with the recommender system. The offer is based on at least a portion of the attribute and transaction data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is output via one or more communication interfaces associated with a network. The outputting of the offer is configured to be received by the one or more target users.
According to further aspects of the present disclosure, one or more physical machine-readable storage media include instructions which, when executed by one or more processors, cause the one or more processors to perform the above methods.
Additional aspects of the present disclosure will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.
Features and advantages of the present disclosure will become more apparent from the following detailed description of exemplary embodiments thereof taken in conjunction with the accompanying drawings in which:
While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
While the present disclosure is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail various aspects of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspects of the invention to the aspects illustrated.
Electronic commerce via the Internet can be greatly enhanced by implementing on computer systems, such as backend server(s), processes that model users or potential purchasers and anticipate their preferences. These computer-implemented processes can then be used to determine offers to send to the user during the user's online session. It can be particularly desirable for the offers to be transparent to increase confidence that the offer is providing the user an enhanced on-line purchase experience. A desirable system has the ability to accommodate users with varying levels of sophistication and experience. Transparency in the offer is especially desirable where it is not immediately apparent to a user why they received a particular offer. In contrast, offers that are opaque or that may be poorly targeted can cause distrust in future offers and lead to general apathy by the user toward future interactions involving an offer.
Users of Internet-based electronic commerce systems receive increasingly many inducements, often including different varieties, with the intention of furthering the businesses of various online vendors. These inducements, also referred to as offers, generally involve an exchange of value between an online vendor and an online user. For example, users may receive offers such as discounts on goods and services, in exchange for making a bulk purchase, referrals, or marketing information such as personal descriptions and preferences. When a user receives an offer that is of interest to the user, user experience is enhanced, as is the likelihood of a successful value exchange (e.g., the user accepting the online vendor's offer). Increasing the rate of successful offers by a vendor improves the overall value of the vendor. In contrast, poorly-targeted offers come at the detriment of vendor value; such offers can confuse or even irritate the user, engendering negativity toward the vendor. As discussed above, it can be a desirable goal to maintain a favorable rate of successful offers. Similarly, it can also be desirable for the vendor to minimize the effects of poorly-targeted online offers.
In certain technical aspects of the present disclosure, a computer-implemented system makes recommendations for offers based on explainable predictions of user interests. A desirable effect can include that the recommendations are determined based on explainable predictions of user interests, that the users are given improved transparency about offers they receive, and/or that users are given an ability to influence offers they receive in the future. For example, it is contemplated that in certain aspects of a computer-implemented method or system, the availability of explanations are used to enable a user to affect their opinions on received recommendations (e.g., offers), improve future recommendations, and thus, improves the user's online experience.
Referring now to
The elements illustrated in the system diagram of
Recommender system 110 can include a set of instructions implemented on one or more processors for determining an offer transmittal 112 that aligns with the interests of a user 150. It is further contemplated that is can be desirable for the set of instructions to also include determining an explanation transmittal 114 for the offer. The determination of the offer and/or the explanation are at least partially based on user and offer information as well as past transactions stored in and retrieved from the database 120. After the offer is determined or calculated by the recommender system 110, it is then transmitted or outputted via an interface from the recommender system 110 to a user 150 associated with the recommender system. The user 150, through the desktop or mobile interface, can have an option at to accept or decline a received transmitted offer 112. Similarly, the user 150 can also have the option to provide feedback or commentary to a received transmitted explanation 114 that is also transmitted or output from an interface of the recommender system. Thus, the user 150 can directly scrutinize the explanation, enabling refinements of future offers. The offer 112 and explanation 114 can be transmitted to the network from the backend server(s) 100 and received by the user 150. As a response to the offer 112 and explanation 114, the user 150 has the option to transmit to the network an acceptance or declination transmittal 152 and an explanation feedback transmittal 154 that are received by the backend server(s) 100. The received user responses 152 and 154 are then stored and used to update the database 120 which in turn can transmit updated data 100 to be used by the recommender system 110. The updated data may either be transmitted directly to the recommender system 110, or the updated data may be stored on the database 120 awaiting a request from the recommender system 110 for the updated data.
It is contemplated that in some aspects of the present disclosure, the offer transmittal 112 and explanation transmittal 114 can be output from the same or different output interfaces of the recommender system 110. Similarly, the accept/decline transmittal 152 and explanation feedback transmittal 154 from the user 150 can be output from the same or different output interfaces of the user 150. It is also contemplated that the reception of transmittals 112 and 114 can be made by the same or different input interfaces of user 150, and transmittals 152 and 154 can also be made by the same or different input interface of the back end server 100 or database 120. In addition, it is also contemplated that communications of updated data between database 120 and recommender system 110 or within the back end server 100 can occur through the same or different input/output interfaces. It is yet further contemplated that each unit including the back end server 100, the recommender system 110, the database 120, and/or the user 150 can have one or more input/output interfaces. Some of the interfaces may be dedicated to certain operations and some interface can combine different operations.
It is contemplated that the explanation feedback transmittal 154 may include passive, active, or a combination of active and passive feedback. In certain aspects it is desirable to prompt a user 150 for explicit feedback (e.g., active) that may be in the form of a simple yes or no question or a more complicated response. In other aspects, it may be desirable to monitor the passive activity of user 150 at the time an offer is sent, such as mouse clicks or certain types of data that may be tracked via cookies.
User 150 can include a desktop or mobile interface having, for example, a graphical user interface. The desktop or mobile interface is connected to the Internet or other type of network and is associated with a user or potential purchaser. Thus, it would be understood that information exchanged between the backend server(s) 100 and the user 150 occur over a network than can include, for example, wireless networks, WAN, and LAN systems. Furthermore, it would be understood that an interaction loop can exist between the user 150 and the back end server(s) 100 (e.g., recommender system 110 and database 120), which in turn can provide improved offers (e.g., more relevant to a user's preferences) and acceptable explanations over time by the recommender system 110 as the database receives more data about a user.
As discussed above, the system diagram illustrated in
It is contemplated that a system, such as the one described in the context of
It is further contemplated that the generation of explanatory models for a recommender system using decision trees can be further improved by introducing latent clustering to data generated by a decision tree. While decision trees alone may offer efficient computing in terms of memory and computing speed constraints, their predictive performance may not lead to a desired outcome. Thus, to improve upon explanatory models based on decision trees alone, the predictive accuracy of an explanatory model, such as a computer-implemented process for recommender system 110, is improved by adding clustering aspects. Clustering is a technique that can be applied to the recommender system 110 for generating highly optimized numerical representations based on hidden attributes. Applied alone clustering techniques can be difficult to interpret, but in combination with decision trees can provide a desirable application for a recommender system for determining offers. A process implemented in the recommender system that combines these two features can apply the explainability of decision trees as well as the accuracy from clustering. This further allows recommendations relevant to a particular user to be generated while also allowing explanations for the recommendation are made available to the user for feedback and additional refinement for future offers.
It is contemplated that in certain non-limiting exemplary aspects of the present disclosure a recommender system combines decision tree learning with hidden variable modeling or clustering. Such aspects can include the additional (hidden) structure in the leaves of the decision trees being inferred. For example, this exemplary aspect can be understood as one non-limiting way of introducing an additional split-level to a decision tree with split values inferred through clustering.
It is contemplated that in certain non-limiting aspects, data of interest can describe users, offers, and transactions by users on offers (e.g., viewed, not viewed). For example, input data can include an attribute table for users (e.g., a table with values of various attributes for users), an attribute table for offers, and a table for transactions. A users table can be defined in which each column corresponds to an attribute (e.g. age, gender) and rows correspond to different users. Similarly, an offers table can be defined representing attribute values for offers. A transactions table can be defined such that each column represents a different transaction and rows correspond to different user-offer pairs. For example, that user x viewed offer y can be recorded in a <x, y> row in a column corresponding to a “viewed” transaction.
More generally, it is contemplated that a data table D for m attributes/transactions containing n data cases is described by the relationship of D={id1, t11 . . . , t1m
, . . . ,
idn, tn1 . . . , tnm
}. The i-th data case
idi, ti1 . . . , tim
has identifier idi for i=1, 2, . . . , n. For example, in a user attribute table, idi is a user ID. For transaction tables, idi is a user-offer pair including the ID of a known user and that of a known offer. For a user table, each term ti4 is the value of the j-th attribute for the individual specified by idi, and for a transaction table, tij specifies the value of the j-th transaction for the user-offer pair specified in idi.
Referring now to
To model a target attribute in a given attribute table, a decision tree of the target attribute is built in terms of other attributes in the table. In certain exemplary aspects, a decision tree for attribute data can be defined in the following paragraph identified as Definition 1:
Let D be an attribute table with attributes A={a1, a2, . . . , ak}. A decision tree for table D is a data structure TD(x; F)={Sv
Decision trees are understood to be recursive structures and branches of any node in the tree links to either a leaf or a sub-tree. The lea(ves) correspond to a minimal data partition in which no sub-partitions are defined by the tree. In a simplified exemplary aspect of a single attribute table, a decision tree can be constructed using a generic process, such as the one described in the below paragraph and identified as Process 1. One input attribute can be used to split the input data, and the input attribute can be chosen as the one that maximizes some heuristic score. For example, in a certain models the heuristic score selected to be maximized may be information gain or gain ratio, which measures the gain in information from the pre-split data to the post-split data. For each partition resulting from the split, further partitioning is done by a recursive call of the process. This recursion proceeds until the data has been exhausted, or that the input attribute set is empty, or that no remaining attribute yields acceptable score, at which point a leaf is returned. A generic decision tree process is listed below.
Process 1—compute_tree(D, A, a*, ε).
Inputs for the process include attribute table D with non-target attributes A and target attribute a*. The heuristic threshold for the process is defined as. The process then proceeds according to the following steps:
Referring now to
Process 1, which is described above, is a generic decision tree process that builds “top down”. Another class of decision tree learning produces decision trees in a “bottom up” manner. It is contemplated that in certain aspects, any process that produces decision trees using a given dataset and attributes can be used for creating a model for the recommender system.
It is further contemplated that decision trees can be constructed in certain to model transactions in terms of attributes of users and offers. One exemplary transaction model according to an aspect of the present disclosure is defined in the following paragraph identified as Definition 2.
Let D={DO, DU, Dtr} be an offer attribute table, user attribute table, and a transaction table, respectively, that yields offer attribute AO, user attributes AU, and transactions Atr. Let a*∈Atr be the target transaction. A decision tree for a* is a data structure TD(x; F)={Sv
Process 2 below is a modified version of Process 1 and constructs decision trees for relational data, such as the exemplary decision tree shown in
Process 2—compute_trans_tree(DO, AO, DU, AU, Dtr, ε).
Inputs for the process include offer attribute table DO, user attribute table DU, offer attributes AO with attributes AU, and transaction table Dtr including data for target relation a*. The heuristic threshold for the process is defined as. The process proceeds according to the following steps:
The flow of Process 2 is generally similar to that of Process 1, which was illustrated in
Referring now to
The use of decision trees in a recommender system can be beneficial because decision trees support ease-of-interpretation, as each path from root-to-leaf in the tree corresponds to a rule in terms of known attributes. For example, the P7 partition 450 of the “viewed” transaction in
It is also contemplated that the structure of a rule can form an explanation of the prediction. For example, one explanation that can be made from the above example for any user u and offer o is that some user is expected to view a condominium with a 75 percent chance if the user is a full-time worker. However, the effectiveness of such limited explanations for increasing user engagement and trust may not be readily quantifiable, and thus, could result in improperly targeted offers.
It is contemplated that in some aspects of the present disclosure, an explanation can be understood to be a description of a logical sequence that leads to a recommendation or offer transmitted or outputted to a user. For example, in decision trees, a root-to-leaf path may provide such a logical sequence. An example of this may be illustrated from
It is contemplate that the explanation feedback of some aspects can be desirable by improving transparency by showing a user the segmentation employed to generate prediction on which recommendations for offers are based along with allowing users the opportunity to edit or comment on an explanation. The desirability of such aspects is further enhanced with the combination of decision trees and clustering for generating recommendations and explanations to users.
It is contemplated that the accuracy of decision trees can depend significantly on the ability of a prediction process to find “correct” partitions of data. In turn, finding correct partitions of data can depend on the availability of informative attributes, which may or may not be available. If the number of informative attributes is limited, the resulting partitions in a decision tree may harbor significant amounts of unexploited information. However, it is contemplated that in some aspects of the present disclosure it is desirable to discover or determine subpartitions within each (or some) leaf partition(s)—a task called clustering—to make a more complete, and thus more refined or better, use of remaining information in a partition. Subpartitioning via clustering is similar to subpartitioning by another attribute, where in the case of clustering, the subpartitions and their constituents are discovered or determined rather than given.
The determination of clusters within a leaf partition includes a process of introducing a number of clusters and assigning each data point in the leaf partition to one of these clusters. The number of clusters can be predefined or determined generally contemporaneously with the clustering or on the fly. It is contemplated that the assignment of data points to each cluster can be inferred by probabilistic inference. The goal of clustering is to find a more likely or a most likely set of assignments of data in the leaf to the clusters; e.g. find assignments such that the resulting model achieves a desirable (e.g., best) statistical fit to the leaf data. It is contemplated that any technique in the field of the present disclosure for optimizing the assignment of data to a given number of clusters is applicable to some of the aspects of the present disclosure; these can include distance functions, hierarchical Bayesian models, and others.
To further illustrate and describe exemplary aspects of clustering as it may be applied to determining offers, let Ltr={x1, x2, . . . , xn} be a set of transactional data that, for example, is in some leaf partition. Next, suppose that K hidden clusters are introduced. Then, for each xi∈Ltr an assignment variable zi (a random variable) can be introduced which can take integer values from 1 to K. An assignment probability distribution can then be expressed as the posterior distribution of assignment variables for the given data, which can be described by the following expression using Bayes' rule:
p(z1, . . . ,zn|x1, . . . ,xn)=p(x1, . . . ,xn|z1, . . . ,zn)p(z1, . . . ,zn)/p(x1, . . . ,xn)
It is contemplated that for clustering aspects where K is known and fixed, an expectation maximization (EM) approach can be applied. An EM process can be a desirable application for parameter estimation in probabilistic models with latent variables. EM is also desirable because it computes the posterior distribution over the assignment variables described above, as well as parameters of each distribution composing the right hand side of the above expression. Possessing an estimate of the posterior distribution over the assignment variables facilitates the selection of the desired assignment of each leaf datum to one of the K clusters. For example, the assignment with the highest posterior probability can be the desired assignment in some aspects of the present disclosure. It is contemplated that other methods known in the field of the present disclosure, such as variational EM or Markov chain Monte Carlo sampling, are also viable alternatives for performing probabilistic inference for a clustering process combined with decision trees. It is further contemplated that selection of an assignment vector that maximizes the above exemplary expression can provide desirable outcomes for the recommender system by enhancing its predictive accuracy.
It is contemplated that once the more likely assignments of data to clusters are determined for each leaf of a decision tree then predictions of user interests using the constructed clustered tree can proceed similar to a non-clustered decision tree.
Process 3 below is a method for generating or constructing a combined predictive model of user interest that can be used to determine offers in a recommender system.
Process 3—compute_cluster_tree(DO, AO, DU, AU, Dtr, ε).
Inputs for the process include offer attribute table DO, user attribute table DU, offer attributes AO with attributes AU, and transaction table Dtr including data for target relation a*. The heuristic threshold for the process is defined as. The process proceeds according to the following steps:
T=compute_trans_tree(DO, AO, DO, AU, Dtr, ε)
Augment Dtr and AO with a hidden transaction h
FOR each leaf l in T
RETURN T
Referring now to
Referring now to
The exemplary aspects of the present disclosures provide a practical combination of decision tree learning and clustering that includes the advantages of both approaches along with the ease-of-interpretation of decision trees and the accuracy gains of optimized hidden clusters. The combined method improves the predictive accuracy of single decision trees learned from data, while retaining the interpretable and consequently explainable nature of decision trees. The choice of decision tree process and clustering process used in the combined method is flexible, in that any combination of tree and cluster learning may be applied.
It will be understood that in certain exemplary aspects of the present disclosure, the combination of decision trees with clustering has the effect of producing accurate predictions of user transactions. The follow on effect is that useful recommendations of offers can then be made to users based on such predictions. Such a combination is also useful for improving user trust when future offers are made and thus allows for improved user engagement in the disclosed recommender system.
It will further be understood that the exemplary aspects of the present disclosure are non-limiting and that the combination of decision trees and clustering is process-general, in that any decision tree construction process can be implemented along with any clustering process being implemented at the leaves of the decision tree.
According to one aspect of the present disclosure, a computer-implemented method recommends offers to a user. The method is implemented via one or more processors operating on one or more server systems. The method includes receiving in a recommender module attribute data stored on one or more memory devices. The attribute data is associated with one or more target users of the recommender module. An offer to transmit to the one or more target users is determined via one or more processors associated with the recommender module. The offer is based on at least a portion of the attribute data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is output, sent or transmitted via one or more communication interfaces associated with a network. The outputting, sending, or transmitting of the offer us configured to be received by the one or more targeted users.
According to one aspect of the present disclosure, a computer-implemented method recommends offers to a user. The method is implemented via one or more processors operating on one or more server systems. The method includes receiving in a recommender module attribute data stored on one or more memory devices. The attribute data is associated with one or more target users of the recommender module. Attribute data received in a recommender module is stored on one or more memory devices. Additional attribute data is associated with one or more pre-selected offers to be distributed to one or more target users of the recommender module. Transaction data stored on one or more memory devices is received receiving in a recommender module/The transaction data is associated with one or more user-offer pairs. The user and offer are described in the received attribute data of the recommender module. An offer to transmit to the one or more target users is determined via one or more processors associated with the recommender module. The offer is based at least in part on the attribute data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is output via one or more communication interfaces associated with a network. The outputting of the offer is configured to be received by the one or more targeted users.
Additional aspects of the above methods can include determining, via at least one of the one or more processors, an explanation associated with the offer; and outputting, sending, or transmitting the explanation, via at least one of the one or more communication interfaces where the outputting, sending, or transmitting of the explanation is configured to be received by the one or more target users. Other aspects of the method include receiving a response via at least one of the one or more communication interfaces, where the response is stored on at least one of the one or more memory devices. The response can include information relating to the one or more target users accepting or declining the offer. The response can also include explanation feedback from the one or more target users. It is also contemplated that the attribute data can include user demographic data, user description data, a plurality of pre-selected offers, or prior transaction data including target users responses to prior offers. The method can also include receiving in the recommender module updated attribute data, where the updated attribute data includes the response; and determining a second offer to transmit to the one or more target users, the offer based on at least a portion of the updated attribute data analyzed by a process including a decision tree combined with a clustering process. The clustering process can include determining based on probability distributions a plurality of hidden clusters in the decision tree. The one or more target users can include a mobile device, and at least a portion of the network can include a wireless network.
According to one aspect of the present disclosure, a computer-implemented method recommends offers to a user. The method is implemented via one or more processors operating on one or more server systems. The method includes receiving attribute data associated with one or more target users. An offer to transmit to the one or more target users is determined. The offer is based on at least a portion of the attribute data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is configured to be received by the one or more targeted users and is output.
Additional aspects of the above methods can include receiving additional attribute data associated with one or more preselected offers to be distributed to the one or more target users, where the offer is further based on at least a portion of the additional attribute data. The methods can also include receiving transactional data associated with one or more user-offer associations based on the attribute data and the additional attribute data, where the offer is further based on at least a portion of the transactional data. The methods can further include determining an explanation associated with the offer; and outputting the explanation, where the explanation is configured to be received by the one or more target users. For yet other aspects of the methods can include receiving a response transmitted by the one or more target users, where the response includes information relating to the one or more target users accepting or declining the offer. The methods can also include receiving a response transmitted by the one or more target users, where the response includes explanation feedback from the one or more target users. Additionally, the attribute data can include user demographic data and user description data, where the additional attribute data includes a plurality of pre-selected offers, and the transaction data includes prior transactions including target users responses to prior offers. Other aspects of the methods can include receiving a response transmitted by the one or more target users, where the response is associated with the explanation; receiving updated attribute and transactional data, wherein the updated transactional data includes the response; and determining a second offer to transmit to the one or more target users, where the offer is based on at least a portion of the updated attribute data analyzed by a predictive process including a decision tree combined with a clustering process. The methods can further include the clustering process determining based on probability distributions of a plurality of hidden clusters in data partitions generated by the decision tree. The methods can further include the one or more target users having a mobile device, and the network including at least in part a wireless network.
According to another aspect of the present disclosure, a system for recommending offers includes one or more non-transitory physical computer-readable storage media configured to store attribute and transaction data associated with one or more target users. The attribute and transaction data include target user identifications, offer attributes, and prior target user transaction data. A recommender component includes one or more communication interfaces for connecting with the storage media. The communication interfaces are configured to send and receive data. The recommender component further includes one or more processors operative to generate a recommended offer for at least one of the one or more target users by implementing acts including receiving the attribute and transaction data from at least one of the one or more storage media. The recommended offer is determined based on at least a portion of the attribute and transaction data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is output via at least one of the one or more communication interfaces. The outputting of the offer is configured to be received by the one or more targeted users.
Additional aspects of the above systems can include the one or more processors being further operative to generate a recommended offer for at least one of the one or more target users by implementing additional acts including determining an explanation associated with the offer; and outputting the explanation, via at least one of said one or more communication interfaces, where the outputting of the explanation is configured to be received by the one or more targeted users. The systems can include the one or more processors being further operative to generate a recommended offer for at least one of the one or more target users by implementing additional acts including receiving a response via at least one of the one or more communication interfaces, where the response is associated with the explanation. The systems can include the response having information relating to the one or more target users accepting or declining the offer. The system can include the response having explanation feedback from the one or more target users. The systems can also include receiving in the recommender component updated attribute and transaction data, wherein the updated transaction data includes data related to the response; and determining a second offer to transmit to the one or more target users, where the offer is based on at least a portion of the updated attribute data analyzed by a process including a decision tree combined with a clustering process. The systems can also include the clustering process determining based on probability distributions a plurality of hidden clusters in data partitions generated by the decision tree.
According to yet another aspect of the present disclosure, a method includes receiving in a recommender system attribute and transactional data stored on one or more memory devices. The attribute and transactional data are associated with one or more target users of the recommender system. An offer to transmit to the one or more target users is determined via one or more processors associated with the recommender system. The offer is based on at least a portion of the attribute and transaction data analyzed by a predictive process including a decision tree combined with a clustering process. The offer is output via one or more communication interfaces associated with a network. The outputting of the offer is configured to be received by the one or more targeted users.
Additional aspects of the above methods include determining an explanation associated with the offer; and outputting the explanation, via at least one of the one or more communication interfaces, where the outputting of the explanation is configured to be received by the one or more target users. The methods can also include receiving a response via at least one of the one or more communication interfaces; receiving in the recommender system updated attribute and transactional data, wherein the updated transactional data includes the response data; and determining a second offer to transmit to the one or more target users, the offer based on at least a portion of the updated attribute and transactional data analyzed by a process including a decision tree combined with a clustering process.
According to further aspects of the present disclosure, one or more physical machine-readable storage media include instructions which, when executed by one or more processors, cause the one or more processors to perform the above methods.
Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 13538693 | Jun 2012 | US |
Child | 13554431 | US |