1. Field of the Invention
The present invention relates generally to positioning systems, and more particularly to methods for using such systems to determine relative differential positioning for transportation applications.
2. Related Art
As is well known in the relevant art(s), the Department of Defense's Global Positioning Satellite (GPS) constellation operationally consists of twenty-four satellites that provide global coverage for determining the geographic position of a user equipped with any of a variety of commercially-available receivers. GPS receivers are capable of receiving the L-band radio signals emitted from the satellites in the constellation whose orbits have an altitude of approximately 12,660 miles above the Earth. For any given signal reading, at least four satellites are required to compute the three dimensions of position (X, Y, and Z or latitude, longitude and altitude, respectively) and time.
More specifically, GPS receivers receive transmissions of at least four satellites and combine the information with information in an electronic almanac, so that it can mathematically determine the receiver's position on Earth in a well-known manner. The basic information a GPS receiver provides is the latitude, longitude and altitude, or some similar measurement, of its current position. Most receivers then combine this data with other information, such as maps, to make the receiver more useable (i.e., more “user friendly”).
Aside from the recreational uses that automobile drivers, boaters, hikers, etc. can make of GPS receivers (an aside from GPS' military applications), there a several large-scale, commercial uses of GPS receiver systems.
For example, the pressure to increase the performance of modern rail (i.e., train) systems, in terms of speed, reliability and safety, has led to many proposals to automate various aspects of train operation. Controlling the movement of trains in a modern environment both in a train yard and on main train lines is a complex process. Collisions with other trains must be avoided and regulations in areas such as grade crossings must be complied with.
Trains or a maintenance crews must be coordinated by a dispatcher to occupy a portion of main line track between named locations (e.g., mile markers, switches, stations, or other points). In addition to specifying certain track sections, dispatchers must be able to coordinate trains and crews with respect to specifying speed limits, direction, time limits, and whether to clear the main line (e.g., by entering a secondary track such as a siding) and/or any other section of track (sidings, yards secondary track, etc.). Any errors in this process can lead to disastrous consequences.
Attempts to automate the above-described track coordination system include Centralized Traffic Control (CTC) systems which allow a dispatcher to control movement of trains by controlling track switches and wayside signals from a central dispatch office. More advanced systems include Automatic Train Control (ATC) systems where train location, speed and train control information are continually exchanged between a train cab and computerized wayside controllers in real time (in some systems, often referred to as cab signal systems, track rails are used to carry this information). The more advanced versions of CTC and ATC systems often employ GPS technology for accurate positioning information for speed, reliability and safety reasons.
Given the foregoing, one can conclude that the accuracy of any particular standalone GPS receiver (e.g., located on a train car), or collection of GPS receivers (e.g., several receivers working as part of a CTC or ATC system) is of concern. Any given GPS receiver can have an accuracy (i.e., can have errors in their positioning determination) ranging from 10 to 100 meters. The accuracy of a GPS receiver is affected by several different factors that can be categorized as either “natural” or “military.”
As for the natural category of errors, the position information provided by a GPS receiver is derived from determining the amount of time a signal takes to travel from the satellite to the receiver. This measurement is made possible by placing clocks in each of the satellites and the receivers. Errors in either the satellites' clocks or the receiver's clock alter this determination. Lack of stability or synchronicity among the clocks will result in an inaccurate measurement of signal travel time. When this is multiplied by the speed of electromagnetic radiation (i.e., the emitted L-band signal), an error in the apparent distance, will result.
A second natural source of error is in the value representing the propagation speed of electromagnetic radiation (i.e., the L-band radio signal). While the propagation speed of electromagnetic radiation is constant in a vacuum, it is retarded by passage through matter such as air in the atmosphere. The amount of speed alteration (i.e., delay) caused by the atmosphere will depend on the thickness of the air layer traversed, temperature, and a variety of other atmospheric conditions.
Apart from the “natural” category of errors in pseudorange determination and in determination of precise satellite positions, GPS also contains the capability to produce purposeful errors—known as selective availability (“SA”)—which can be introduced by the U.S. military. That is, in order to prevent the precision of GPS positioning from being used by the wrong persons, the military has the capability to introduce purposeful random errors into the clock signal broadcast by the GPS satellites. This has the effect of further degrading the accuracy of the pseudorange determinations and, hence, the accuracy of the coordinates determined for the GPS receiver.
A more detailed discussion of both the so-called “natural” and “military” categories of errors affecting the accuracy of GPS receivers can be found in U.S. Pat. No. 5,828,336 issued to Yunck, et al. which is incorporated herein by reference in its entirety.
A known method of improving the accuracy of a (standalone) GPS receiver's position determinations in spite of the above-mentioned category of errors is known as Differential GPS (DGPS). In this technique, one or more additional known locations are added to the GPS determination. Essentially, one or more ground stations in the general vicinity of a moving GPS receiver simultaneously receive the GPS signals and determine their own positions. Because the ground stations are stationary, any change in their determined position must be due to GPS error, either natural or military. The delta value between the ground station's true position and the position recently determined by GPS is broadcast so that mobile GPS receivers in the vicinity of the relevant ground station can use this correction to improve their own positioning solution.
Because mobile receivers in the vicinity of the ground station are receiving the same GPS satellites through essentially the same part of the atmosphere and at the same instant as the known ground station, these differential corrections are quite effective at overcoming the effects of the above-mentioned two categories of errors. Because the mobile GPS receiver is not at exactly the same coordinates as the ground station and the true programmed position of the ground station may not be perfect, however, the correction achieved by DGPS-type techniques is consequently not perfect as well. In addition, the DGPS receivers are more complex, and therefore more expensive, than ordinary GPS receivers.
In the transportation industry, it is important to know which path a vehicle has taken from among a plurality of possible fixed paths. In particular, in the railroad industry, it is important to know whether a train is on the correct track after passing a switch. If the switch is set at an incorrect position and the train has taken the wrong track, a collision may result. Ideally, track switches are set at the correct position so that a train will take the correct track and, in the event the switch is not correctly set, a train operator will stop the train before or shortly after passing the switch. However, human beings are imperfect and prone to mistakes. Thus, it would be desirable to have a system that can automatically determine whether a correct path has been taken. However, in many situations, alternate paths are often separated by a distance less than the accuracy of a GPS system receiver and are therefore not spaced far enough apart to permit an unambiguous determination as to which of two or more alternate paths have been taken by a vehicle.
Therefore, what is needed is a system, method and apparatus for determining whether a vehicle has taken a correct path when alternate paths are separated by a distance less than the accuracy of a positioning system receiver.
The present invention addresses the above-discussed issues to a great extent by proving a method and system in which a vehicle carries an on-board positioning system and has access to a database of information pertaining to a plurality of fixed paths. Preferably, the positioning system is a global positioning system receiver and the database comprises coordinates for a plurality of points corresponding to the plurality of fixed paths. In the method, a vector between the position of the fixed path and a position of the vehicle as reported by the positioning system is calculated prior to arriving at a point of divergence (i.e., a point at which a path branches, such as a switch on a railroad track or a fork in a road). After passing the path divergence, a second vector is calculated between the position of the vehicle as reported by the positioning system and at least one of the alternate paths, preferably the “correct” alternate path (the path the vehicle should have taken). The first vector is compared to the second vector, and a determination as to which path the vehicle is on is made based on the comparison.
If the comparison indicates that the first and second vectors are close, the vehicle is on the alternate path corresponding to the second vector. If the difference between the vectors is significantly large, then second vectors between the vehicle's current position as reported by the GPS system and the alternative paths are calculated and the second vector that most closely matches the first vector indicates which of alternate paths the vehicle has taken.
In preferred embodiments, the vectors represent the direction and distance between the position reported by the positioning system and the nearest point on the fixed path. In some of these embodiments, the vector is calculated forming a first line between the point in the database that has most recently been passed by the vehicle and the next point in the database that will be passed by the vehicle, and calculating a distance between this first line and the vehicle's location as reported by the GPS system along a second line normal to the first line.
The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numbers indicate identical or functionally similar elements.
a–d are flowcharts illustrating the processing performed by the train control system of
The present invention will be discussed with reference to preferred embodiments of vehicle control systems. Specific details, such as accuracies of GPS receivers, are set forth in order to provide a thorough understanding of the present invention. The preferred embodiments discussed herein should not be understood to limit the invention. Furthermore, for ease of understanding, certain method steps are delineated as separate steps; however, these steps should not be construed as necessarily distinct nor order dependent in their performance.
The present invention provides a system and method for determining relative differential global positioning (“RDGPS”) system measurement solutions. The invention is particularly useful in determining which path from among a plurality of available paths a vehicle has taken. The invention has particular application in the transportation field. More specifically, train control system (e.g., CTC systems, ATC systems and the like) may employ the present invention to quickly and accurately determine, for example, when a train has changed tracks. That is, the present invention is useful in determining whether the positional setting of track switches are proper and whether trains (intentionally or accidentally) have changed or stayed course upon passing a track switch. The invention is also applicable to cars, trucks and other vehicles traveling on fixed paths such as public roads.
The present invention is now described in more detail herein in terms of the above examples. This is for convenience only and is not intended to limit the application of the present invention. In fact, after reading the following description, it will be apparent to one skilled in the relevant art(s) how to implement the following invention in alternative embodiments (e.g., using an external global navigation system other than the GPS system, nautical and other commercial applications other than those for train/rail transportation systems, recreational applications, etc.).
As mentioned above, GPS receivers, even DGPS receivers, exhibit an error. This error is not constant. However, it does change slowly. Therefore, if position measurements are taken using a GPS receiver over a short period of time (e.g., a minute or two), the error in these signals will be almost constant. This allows highly accurate determinations of differential movement to be made. For example, referring now to
A consequence of this slowly changing error vector can be seen with reference to
A possible scenario involving a switch is illustrated in
On the other hand, if the potential error in the GPS is large compared to the distance D, it may not be possible to determine whether the train is on the main line 310 or the siding 312. For example, if the potential error of the GPS receiver is represented by the circle 313 around point A, then it is possible that point A could be reported by a GPS receiver on either the main line 310 or the siding 312 as both are within the circle 313. Thus, a position report from the GPS receiver at point A cannot be used to determine whether the train is on the main line 310 or the siding 312.
However, if one or more position reports from the GPS receiver are obtained prior to the switch 311, then it will be possible to determine whether the train is on the main line or the siding using the same GPS receiver. This can be done using the method illustrated in the flowchart 400 of
Referring now back to
The number of paths for which vectors must be calculated depends upon the circumstances and is not the same for all embodiments. In situations in which the path diverges into only two branches, some embodiments of the invention determine the vector for only a single path. If the vector matches (within some tolerance) the previously determined GPS path error, the vehicle is on the branch of the path for which the vector was calculated—otherwise, the vehicle is on the other branch of the path. Other embodiments of the invention calculate the vector for both branches and choose the path for which the vector most closely matches the GPS path error. When the path diverges into three or more branches, some of the embodiments calculate the vector between pre- and post-divergence GPS path errors one branch at a time, stopping when one of the GPS path errors is within some predetermined delta. Other embodiments calculate GPS path errors for all of the paths, and select the one that most closely matches the pre-divergence GPS path error.
A train control system 500 suitable for determining which of a plurality of paths a train has taken is illustrated in
A positioning system 120 is connected to the controller 110. As used herein, the term “positioning system” refers to the portion of a positioning system that is commonly located on a mobile vehicle, which may or may not comprise the entire system. Thus, for example, in connection with a global positioning system, the term “positioning system” as used herein refers to a GPS receiver and does not include the satellites that are used to transmit information to the GPS receiver. The invention is believed to be particularly applicable to GPS receivers and therefore will be discussed primarily in that context herein. However, the invention is not so limited and can be used with any type of positioning system that has better precision than accuracy. The GPS receiver 120 can be of any type, including a differential GPS, or DGPS, receiver. The GPS receiver 120 supplies the controller 110 with position information for the train on which the system 500 is installed. By using train position information obtained from the positioning system 120 as an index into a track database 130 (discussed in further detail below), the controller 110 can determine the train's position relative to switches on the railroad.
A track database 130 is also connected to the controller 110. The track database 140 preferably comprises a non-volatile memory such as a hard disk, flash memory, CD-ROM or other storage device, on which track data and the locations of wayside signal devices is stored. In preferred embodiments, the track data comprises coordinates for a plurality of points corresponding to different locations on the track in a manner well known in the art. The points are not necessarily uniformly spaced. In some embodiments, the points are more closely spaced where the track is curved and less closely spaced where the track is straight. Other types of memory, including volatile memory, may also be used. The track data also includes positions of switches and other points of interest such as grade crossings, stations, etc. The track database 130 also includes information concerning the direction and grade of the track in some embodiments. The track database 130 further includes information as to the route that the train is supposed to follow in some embodiments (in other embodiments, the route information is stored in the memory associated with the controller 110).
A brake interface 140 connected to the controller 110 allows the controller 110 to activate and control the train brakes when necessary to slow and/or stop the train, such as when the system 500 determines that an incorrect path has been taken. Brake interfaces are well known in the art and will not be discussed in further detail herein.
Some embodiments of the invention include a warning device 150 connected to the controller 110. The warning device 150 may be a part of an operator's pendant or may be a light or an audible device such as a bell or horn.
Some embodiments of the invention also include a transceiver 160 by which the train on which the system 500 is installed can communicate with a dispatcher (not shown in
The operations performed by the system 500 in some embodiments of the invention are illustrated in the flowchart 600 of
If the difference is less than the threshold at step 608, the controller 110 determines the pre-switch GPS path error at step 612. As discussed above, the GPS path error is the vector between the train's position as reported by the GPS receiver 120 and the nearest point on the train track. Where the track database 130 stores coordinates of points on the train track, the nearest point on the train track will most likely not be a point for which coordinates are stored in the track database 130. In this situation, the coordinates in the track database for the closest point that has been passed by the train on its current trip and the closest point that has not yet been passed by the train are used to form a line. The GPS path error is then determined by calculating a vector between this first line and the vehicle's location as reported by the GPS system along a second line normal to the first line.
After the GPS path error is determined at step 612, the controller 110 gets the current train position from the GPS receiver 120 at step 614 and checks whether the train has traveled a distance past the switch sufficient to allow a path determination to be made at step 616. The distance by which the train must past the switch must be large enough so that the tracks diverge by a significant amount, but should be as small as possible so that the taking of an incorrect path can be detected as soon as possible. The actual distance depends upon the application.
Referring now to
If, however, the difference between the pre- and post-switch GPS errors exceeds the threshold at step 624, indicating that the train has taken the wrong path because the switch was not set correctly, corrective action is taken at step 626. This corrective action may take a variety of forms. In some embodiments, the controller 110 immediately activates the train's brakes via brake interface 140. In other embodiments, the controller activates the warning device 150 to give the operator the opportunity to take action. In these embodiments, the controller 110 may automatically activate the brakes to stop the train if the operator does not acknowledge the warning device 140 and/or activate the brakes to stop or slow the train within some predetermined time period. Yet other corrective actions may also be taken by the controller 110 in the event that it is determined that the train has taken the wrong path.
c represents an alternative to the processing of
d represents another alternative to the processing of
The embodiments described above have discussed the calculation of vectors from a point reported by a GPS receiver to a point corresponding to a track location. It will be readily apparent to those of skill in the art that the vectors could be calculated in the opposite direction, i.e., from a point corresponding to a track location to the position reported by the GPS receiver. Therefore, the terms “calculating a vector between” and “determining a vector between” points A and B should be understood to include a vector from point A to point B as well as a vector from point B to point A.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4181943 | Mercer, Sr. et al. | Jan 1980 | A |
4306694 | Kuhn | Dec 1981 | A |
4459668 | Inoue et al. | Jul 1984 | A |
4561057 | Haley, Jr. et al. | Dec 1985 | A |
4711418 | Aver, Jr. et al. | Dec 1987 | A |
4728063 | Petit et al. | Mar 1988 | A |
4886226 | Frielinghaus | Dec 1989 | A |
5072900 | Malon | Dec 1991 | A |
5129605 | Burns et al. | Jul 1992 | A |
5145131 | Franke | Sep 1992 | A |
5177685 | Davis et al. | Jan 1993 | A |
5332180 | Peterson et al. | Jul 1994 | A |
5340062 | Heggestad | Aug 1994 | A |
5364047 | Petit et al. | Nov 1994 | A |
5394333 | Kao | Feb 1995 | A |
5398894 | Pascoe | Mar 1995 | A |
5452870 | Heggestad | Sep 1995 | A |
5470034 | Reeves | Nov 1995 | A |
5533695 | Heggestad et al. | Jul 1996 | A |
5620155 | Michalek | Apr 1997 | A |
5699986 | Welk | Dec 1997 | A |
5740547 | Kull et al. | Apr 1998 | A |
5743495 | Welles, II et al. | Apr 1998 | A |
5751569 | Metel et al. | May 1998 | A |
5803411 | Ackerman et al. | Sep 1998 | A |
5828336 | Yunck et al. | Oct 1998 | A |
5828979 | Polivka et al. | Oct 1998 | A |
5867122 | Zahm et al. | Feb 1999 | A |
5944768 | Ito et al. | Aug 1999 | A |
5950966 | Hungate et al. | Sep 1999 | A |
5978718 | Kull | Nov 1999 | A |
5995881 | Kull | Nov 1999 | A |
6049745 | Douglas et al. | Apr 2000 | A |
6081769 | Curtis | Jun 2000 | A |
6102340 | Peek et al. | Aug 2000 | A |
6112142 | Shockley et al. | Aug 2000 | A |
6135396 | Whitfield et al. | Oct 2000 | A |
6179252 | Roop et al. | Jan 2001 | B1 |
6218961 | Gross et al. | Apr 2001 | B1 |
6311109 | Hawthorne et al. | Oct 2001 | B1 |
6322025 | Colbert et al. | Nov 2001 | B1 |
6345233 | Erick | Feb 2002 | B1 |
6371416 | Hawthorne | Apr 2002 | B1 |
6373403 | Korver et al. | Apr 2002 | B1 |
6374184 | Zahm et al. | Apr 2002 | B1 |
6377877 | Doner | Apr 2002 | B1 |
6397147 | Whitehead | May 2002 | B1 |
6421587 | Diana et al. | Jul 2002 | B1 |
6456937 | Doner et al. | Sep 2002 | B1 |
6459964 | Vu et al. | Oct 2002 | B1 |
6459965 | Polivka et al. | Oct 2002 | B1 |
6487478 | Azzaro et al. | Nov 2002 | B1 |
6609049 | Kane et al. | Aug 2003 | B1 |
6701228 | Kane et al. | Mar 2004 | B1 |
6824110 | Kane et al. | Nov 2004 | B1 |
6853888 | Kane et al. | Feb 2005 | B1 |
6854953 | Van Drentham-Susman et al. | Feb 2005 | B1 |
6863246 | Kane et al. | Mar 2005 | B1 |
7079926 | Kane et al. | Jul 2006 | B1 |
7092800 | Kane et al. | Aug 2006 | B1 |
20010056544 | Walker | Dec 2001 | A1 |
20020070879 | Gazit et al. | Jun 2002 | A1 |
20020096605 | Berry et al. | Jul 2002 | A1 |
20030117333 | McLean | Jun 2003 | A1 |
20030225490 | Kane et al. | Dec 2003 | A1 |
20040006411 | Kane et al. | Jan 2004 | A1 |
20040006413 | Kane et al. | Jan 2004 | A1 |
20040073342 | Kane et al. | Apr 2004 | A1 |
20040102877 | Kane et al. | May 2004 | A1 |
20040181320 | Kane et al. | Sep 2004 | A1 |
20040236482 | Kane et al. | Nov 2004 | A1 |
20050004722 | Kane et al. | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060058957 A1 | Mar 2006 | US |