This application claims priority to foreign French patent application No. FR 1302697, filed on Nov. 22, 2013, the disclosure of which is incorporated by reference in its entirety.
The invention concerns the field of satellite positioning. In particular it concerns the determination of a positioning error that a receiver produces when using a satellite localization system. These systems are for example implemented in systems for improving the accuracy of the localization supplied by the GPS (Global Positioning System). These systems are also referred to as localization augmentation systems. They are also known by the acronym SBAS for Satellite-Based Augmentation Systems. The system EGNOS, an acronym for European Geostationary Navigation Overlay Service, is another known GPS augmentation system.
Knowing this positioning error of the receiver makes it possible to determine a volume for which the probability of presence of the receiver is above a threshold set by a standard. Knowing this volume thus makes it possible, for example, to determine the minimum distance at which two aircraft must not come closer to each other. Knowing this information is in particular necessary for integrity services. The term integrity service refers to the capability of a system to supply an alert to the pilot when the navigation system can no longer be used with the requisite performance in terms of user risk.
These error determination systems may be used in aircraft but also in ground vehicles or ships, for example.
Systems are known in the prior art in which information representing the positions of the satellites, and times of passage through the ionosphere as well as information representing the error on these positions and these times of passage are sent to the various receivers. Knowing this information makes it possible to determine the position error of the receiver, also referred to as the integrity of the position of the object located by the receiver.
It is known in the prior art that the items of information representing errors are marginal standard deviations (σi) of the distributions of the errors committed. Thus the error distribution is modelled by a centred Gaussian law of the form N(0, σi2). However, the modelling of the error distribution in the form of a centred Gaussian law is too coarse, and leads to the need for a safety margin to be applied, which is in some cases too large. This is particularly the case when the combination of the marginal standard deviations (σi), of the position error of each satellite used, must be small to allow sufficient accuracy for the performance of the manoeuvres to be executed. In such cases, the margin, chosen to cover the lack of fit of a model based on centred Gaussians, too frequently makes the service unavailable. It has also been possible to demonstrate that the use of centred Gaussians is only correct from a mathematical point of view if one can posit the hypothesis that the errors are distributed in a unimodal and symmetrical way, which is in no way guaranteed as a general rule.
The present invention aims to remedy these problems by providing a system for determining the position error of a receiver whose accuracy is increased in relation to the accuracy of systems based on the exchange of marginal standard deviations of the distribution of the error on the position of the satellites.
According to an aspect of the invention, a system is suggested for determining a distribution of a position error of a receiver of localization signals, the signals being sent by at least one satellite. The system includes:
The system is characterized in that
The first and second cumulants of higher-than-second order can also be referred to by the expression “series of cumulants” or “set of cumulants”.
The cumulants κn of the random variable X are defined by the cumulant generating function g(t):
In this equation X represents the mathematical expectation of the random variable X and κn the nth order cumulant.
The system therefore allows the transmission to the receivers of satellite signals of an item of information representing the distribution of the position error of the satellites. In addition, the use of this information makes it possible to determine the positioning error that the receiver produces by using the satellite localization system.
In addition, the use of the cumulants makes it possible to transmit to the users an item of information representing the distribution of the position error of the satellite that is more reliable than in the case of the systems known in the prior art. The use of these cumulants then obviates the need for applying so many margins in the position, for two reasons:
In other words, the form of the distribution allowed by the invention is much more accurate than a centred Gaussian distribution. However, this generic form can be described by a few parameters only, the cumulants. It is therefore possible to transmit much more detailed information on the probability distribution of the second positioning errors of the satellites.
This accurate information then makes it possible to model the first position errors of the receiver in as reliable a manner as possible. Thus, it is not necessary to apply large safety margins to ensure safety, and it is possible to use the localization system to perform manoeuvres in which the demand for accuracy is high.
According to a technical feature the second determination device is adapted for applying the model to the second cumulant(s).
According to a technical feature the first determination device is furthermore adapted for determining the second cumulants of first to fifth order, and in which the second determination device is furthermore adapted for determining the first cumulants of first to fifth order.
The larger the number of cumulants the more accurate the modelling will be, but a larger number of cumulants are more complicated to measure experimentally.
According to a technical feature the third device is furthermore adapted for using an Edgeworth expansion.
The invention also concerns a method for determining a distribution of a position error of a receiver of localization signals, the signals being sent by at least one satellite. The method includes:
The method is characterized in that
According to a technical feature the second determination step is adapted for applying the model to the second cumulant(s).
According to a technical feature the first determination step is furthermore adapted for determining the second cumulants of first to fifth order, and in which the second determination step is furthermore adapted for determining the first cumulants of first to fifth order.
According to a technical feature the third determination step is furthermore adapted for using an Edgeworth expansion.
The invention will be better understood, and other advantages will become apparent, upon reading the detailed description, given by way of non-limiting example. This detailed description is made using the following FIGURES:
In order to perform this determination, the system allows the transmission (via a transmission device 103) of second cumulants that represent a second distribution representing a second error associated with the second position of a satellite. The determination of these elements is performed by a first determination device 104.
The first cumulants are determined by the receiver using a second determination device 105.
Finally a third device 106 enables the determination of the first distribution, from the first cumulants.
This modelling is based on the use of the Edgeworth expansion of the probability density of the error associated with the position of a satellite.
The cumulants of a random variable X distributed according to a probability density f (note that X˜f) are determined by introducing the function φ(t)=eiXtX.
It will be noted that the expansion of this function, as a function of the powers of the exponent, is a series that involves the nth-order moments of f: μn=Xn.
It is also possible to carry out the expansion of the function ln(eiXtX), in which case a set of coefficients κn is obtained, which are defined in the following manner:
Each κn thus defined is the nth-order cumulant of the distribution f. The two first cumulants are the mean and the variance of the distribution.
In addition, if X and Y are two random variables distributed according to f and g respectively, and whose nth-order cumulants are κn[f] and κn[g] respectively, then the nth-order cumulants of the distribution h associated with the random variable Z=pX+qY, are given by:
κn[h]=pnκn[f]+qnκn[g]
In addition it is known that any distribution that results from the combination of m random variables can be represented by an expansion, known as the Edgeworth expansion and having the following form:
In this equation the variables are as follows:
Based on the mathematical concepts above, the invention provides the determination of the first position error of the receiver as follows:
With n=1, . . . , m representing the order of the cumulant, j the satellite, Mp,j the coefficient p,j of the matrix that makes it possible to determine the second position of the receiver on the basis of the distances between the receiver and the satellites, p represents the direction (x, y or z) for which the cumulant is determined.
In one embodiment, it is possible to use the least squares method to determine the matrix Mp,j. In this embodiment the vector of the distances between the receiver and the satellites is modelled as follows:
ρ=ĜX+ε
In this equation ρ=[ρ1 . . . ρN
is the observation matrix of the problem. In the matrix Ĝ, c represents the speed of light and eXej is the cosine of the angle between the vector in the direction x and the vector towards the satellite j.
Using the least squares method, the relationship between the second position of the receiver and the distances between the receiver and the satellites can be written Xest=(ĜtĈ−1 Ĝ)−1 ĜtĈ−1ρ.
In this relationship Ĉ=<ε εt> is the error correlation matrix. In this embodiment it can then be determined that M=(ĜtĈ−1 Ĝ)−1 ĜtĈ−1.
This determination must be carried out for each direction in space (vertical, horizontal). PHMI represents the tolerated probability of non-integrity, in order to ensure that these Rps are smaller than the dimensions of the tolerance region (for example the alert radii used in civil navigation).
It is also possible to directly find the risk of being found outside the requisite tolerance region (Ra), and for this the following equation can be used:
The system as presented in this invention necessitates certain pre-requisites before being used. In particular, it is necessary that:
In another embodiment of the system the latter uses the knowledge of the cumulants up to the fourth or fifth order, associated with the position error of each satellite, and/or with the error on the time of passage of the signal of each satellite through the ionospheric layer.
This computation of the error distribution is based on a combination of the statistical calibrations that are carried out over a long period and on contributions arriving within a short period. The latter are more reactive and are based for example on the observation of the position/synchronization/ionospheric delay computations.
The broadcasting of the cumulants to the receivers is performed with an alert device and/or by re-updating the values of the cumulants in the case where they have turned out to be poorly fitted to the integrity requirements following a change in the state of the system.
The distribution of the first errors is produced using the broadcast cumulants and modelling the reference function Ψ as a Gaussian centred on the first first-order cumulant and of the width of the first second-order cumulant.
Next it is possible to evaluate the availability of the service and therefore the region in which probability of the receiver being present exceeds a threshold using the preceding equations.
The first device 104 for determining the positions of the satellite(s) can be located on the ground or in one of the satellites.
The various determination devices described in this invention can be computers or processors programmed in such a way as to produce the various operations performed by the devices. It is also possible to use dedicated components, programmable logic circuits, programmable logic networks (also known by the acronym FPGA for Field-Programmable Gate Array) or integrated circuits specific to one application (also known by the acronym ASIC for Application-Specific Integrated Circuit) programmed in such a way as to produce the various operations performed by the devices.
The present invention can also be implemented from hardware and software elements. It can be available as a computer program product on a computer-readable medium. The medium can be electronic, magnetic, optical, electro-magnetic or be an infra-red type broadcasting medium. Such media are, for example, semi-conductor memories (Random Access Memory RAM, Read-Only Memory ROM), tapes, diskettes or magnetic or optical disks (Compact Disk-Read Only Memory (CD-ROM), Compact Disk-Read/Write (CD-R/W) and DVD).
Number | Date | Country | Kind |
---|---|---|---|
1302697 | Nov 2013 | FR | national |